nfp_net_common.c 87.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp_eth.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88
static dma_addr_t
89
nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag, int direction)
90
{
91
	return dma_map_single(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
92 93
			      dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			      direction);
94 95 96
}

static void
97
nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
98
		     int direction)
99
{
100
	dma_unmap_single(dp->dev, dma_addr,
101
			 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
102 103
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

214 215 216 217 218 219 220 221 222 223 224 225 226
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
227 228 229
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
230 231 232

	spin_lock_bh(&nn->reconfig_lock);

233
	nn->reconfig_sync_present = true;
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
252 253
	}

254 255 256 257 258 259 260 261 262 263
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

264
	spin_unlock_bh(&nn->reconfig_lock);
265

266 267 268 269 270 271 272 273 274 275 276
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
277
 * Clear the ICR for the IRQ entry.
278 279 280 281 282 283 284 285
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
286 287 288 289 290
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
291
 *
292
 * Return: Number of irqs obtained or 0 on error.
293
 */
294 295 296
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
297
{
298 299
	unsigned int i;
	int got_irqs;
300

301 302
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
303

304 305 306 307 308
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
309 310 311
		return 0;
	}

312 313 314 315 316
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
317 318 319
}

/**
320 321 322 323
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
324
 *
325 326
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
327
 */
328 329 330
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
331
{
332 333
	struct nfp_net_dp *dp = &nn->dp;

334
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
335
	dp->num_r_vecs = nn->max_r_vecs;
336

337
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
338

339 340
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
341
		nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
342 343
			dp->num_rx_rings, dp->num_tx_rings,
			dp->num_r_vecs);
344

345 346 347
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
348 349 350 351
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
352
 * @pdev:        PCI device structure
353 354 355
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
356
void nfp_net_irqs_disable(struct pci_dev *pdev)
357
{
358
	pci_disable_msix(pdev);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
402 403
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
404
	} else {
405 406
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
422 423 424
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
425 426 427

	nfp_net_read_link_status(nn);

428
	nfp_net_irq_unmask(nn, entry->entry);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
452 453
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
454
 */
455 456 457
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
458 459 460
{
	struct nfp_net *nn = r_vec->nfp_net;

461 462 463
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

464 465 466 467 468 469 470
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
471 472
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
473
 */
474 475 476
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
477 478 479
{
	struct nfp_net *nn = r_vec->nfp_net;

480 481 482
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

483 484 485 486 487 488 489 490
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);

	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
	rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
}

/**
491
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
492 493
 * @netdev:   netdev structure
 */
494
static void nfp_net_vecs_init(struct net_device *netdev)
495 496 497 498 499 500 501 502
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

503
	for (r = 0; r < nn->max_r_vecs; r++) {
504 505 506 507
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

508 509 510
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
511 512
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

538
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
539 540 541 542 543 544
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
545
	nn_writeb(nn, ctrl_offset, entry->entry);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
587
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
633
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
664
 * @dp:  NFP Net data path struct
665 666 667 668 669 670 671 672
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
673 674
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
675 676 677 678 679 680 681
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

682
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
701
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
702 703 704 705 706 707 708 709 710 711 712
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
713
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
714 715 716 717 718 719 720 721 722 723 724
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

725 726 727 728 729 730 731
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

732 733 734 735 736 737 738 739 740 741 742 743 744
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
745 746
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
747
	struct netdev_queue *nd_q;
748
	struct nfp_net_dp *dp;
749 750 751 752 753 754
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

755
	dp = &nn->dp;
756
	qidx = skb_get_queue_mapping(skb);
757
	tx_ring = &dp->tx_rings[qidx];
758
	r_vec = tx_ring->r_vec;
759
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
760 761 762 763

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
764 765
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
766 767 768 769 770 771 772 773
		netif_tx_stop_queue(nd_q);
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
774
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
775
				  DMA_TO_DEVICE);
776
	if (dma_mapping_error(dp->dev, dma_addr))
777 778
		goto err_free;

779
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

800
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
801

802
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
803

804
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
805 806 807 808 809 810 811 812 813 814 815 816 817
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

818
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
819
						    fsize, DMA_TO_DEVICE);
820
			if (dma_mapping_error(dp->dev, dma_addr))
821 822
				goto err_unmap;

823
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
848 849
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
850 851 852 853 854 855 856 857 858

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
859
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
860 861 862 863 864 865 866 867
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
868
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
869 870 871 872 873
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
874
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
891
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
913
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
914 915 916 917 918 919 920 921 922 923 924
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
925
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
926 927 928 929 930 931 932
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
933
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

953
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
954 955 956 957 958 959 960 961 962 963 964 965 966 967
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

968 969 970
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
971
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

994
		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[idx].dma_addr,
995
				     DMA_BIDIRECTIONAL);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1018
/**
1019
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1020
 * @dp:		NFP Net data path struct
1021
 * @tx_ring:	TX ring structure
1022 1023 1024
 *
 * Assumes that the device is stopped
 */
1025
static void
1026
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1027
{
1028
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1029
	const struct skb_frag_struct *frag;
1030
	struct netdev_queue *nd_q;
1031 1032

	while (tx_ring->rd_p != tx_ring->wr_p) {
1033 1034
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1035

1036
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1037
		tx_buf = &tx_ring->txbufs[idx];
1038

1039
		if (tx_ring == r_vec->xdp_ring) {
1040
			nfp_net_dma_unmap_rx(dp, tx_buf->dma_addr,
1041
					     DMA_BIDIRECTIONAL);
1042
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1043
		} else {
1044 1045 1046 1047 1048
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
1049
				dma_unmap_single(dp->dev, tx_buf->dma_addr,
1050 1051 1052 1053 1054
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1055
				dma_unmap_page(dp->dev, tx_buf->dma_addr,
1056 1057 1058
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1059

1060 1061 1062 1063
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1064

1065 1066 1067
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1068 1069 1070 1071 1072

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1073 1074 1075 1076 1077 1078
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1079 1080 1081
	if (tx_ring == r_vec->xdp_ring)
		return;

1082
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1083 1084 1085 1086 1087 1088 1089 1090
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1091
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1092 1093 1094 1095 1096 1097 1098 1099 1100
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1101
static unsigned int
1102
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp, unsigned int mtu)
1103 1104 1105
{
	unsigned int fl_bufsz;

1106
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1107
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1108
		fl_bufsz += NFP_NET_MAX_PREPEND;
1109
	else
1110
		fl_bufsz += dp->rx_offset;
1111 1112
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + mtu;

1113 1114 1115
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1116 1117
	return fl_bufsz;
}
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1128
/**
1129
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1130
 * @dp:		NFP Net data path struct
1131 1132
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
1133
 * @xdp:	Whether XDP is enabled
1134
 *
1135
 * This function will allcate a new page frag, map it for DMA.
1136
 *
1137
 * Return: allocated page frag or NULL on failure.
1138
 */
1139
static void *
1140 1141
nfp_net_rx_alloc_one(struct nfp_net_dp *dp,
		     struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
1142
		     bool xdp)
1143
{
1144
	int direction;
1145
	void *frag;
1146

1147
	if (!xdp)
1148
		frag = netdev_alloc_frag(dp->fl_bufsz);
1149 1150
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1151
	if (!frag) {
1152
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1153 1154 1155
		return NULL;
	}

1156 1157
	direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;

1158
	*dma_addr = nfp_net_dma_map_rx(dp, frag, direction);
1159
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1160
		nfp_net_free_frag(frag, xdp);
1161
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1162 1163 1164
		return NULL;
	}

1165
	return frag;
1166 1167
}

1168
static void *
1169 1170
nfp_net_napi_alloc_one(struct nfp_net_dp *dp, int direction,
		       dma_addr_t *dma_addr)
1171 1172 1173
{
	void *frag;

1174 1175
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1176 1177
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1178
	if (!frag) {
1179
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1180 1181 1182
		return NULL;
	}

1183
	*dma_addr = nfp_net_dma_map_rx(dp, frag, direction);
1184 1185 1186
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1187 1188 1189 1190 1191 1192
		return NULL;
	}

	return frag;
}

1193 1194 1195
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
 * @rx_ring:	RX ring structure
1196
 * @frag:	page fragment buffer
1197 1198 1199
 * @dma_addr:	DMA address of skb mapping
 */
static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1200
				void *frag, dma_addr_t dma_addr)
1201 1202 1203
{
	unsigned int wr_idx;

1204
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1205 1206

	/* Stash SKB and DMA address away */
1207
	rx_ring->rxbufs[wr_idx].frag = frag;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1228 1229
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1230
 *
1231 1232
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1233
 */
1234
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1235
{
1236
	unsigned int wr_idx, last_idx;
1237

1238
	/* Move the empty entry to the end of the list */
1239
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1240 1241
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1242
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1243
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1244
	rx_ring->rxbufs[last_idx].frag = NULL;
1245

1246 1247 1248 1249 1250
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1251

1252 1253
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1254
 * @dp:		NFP Net data path struct
1255
 * @rx_ring:	RX ring to remove buffers from
1256
 * @xdp:	Whether XDP is enabled
1257 1258 1259 1260 1261 1262
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1263 1264
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
			  struct nfp_net_rx_ring *rx_ring, bool xdp)
1265
{
1266
	int direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1267
	unsigned int i;
1268

1269 1270 1271 1272 1273
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1274
		if (!rx_ring->rxbufs[i].frag)
1275 1276
			continue;

1277
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr,
1278
				     direction);
1279
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, xdp);
1280
		rx_ring->rxbufs[i].dma_addr = 0;
1281
		rx_ring->rxbufs[i].frag = NULL;
1282 1283 1284 1285
	}
}

/**
1286
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1287
 * @dp:		NFP Net data path struct
1288
 * @rx_ring:	RX ring to remove buffers from
1289
 * @xdp:	Whether XDP is enabled
1290
 */
1291
static int
1292 1293
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
			   struct nfp_net_rx_ring *rx_ring, bool xdp)
1294
{
1295 1296 1297 1298
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1299

1300
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1301
		rxbufs[i].frag =
1302
			nfp_net_rx_alloc_one(dp, rx_ring, &rxbufs[i].dma_addr,
1303
					     xdp);
1304
		if (!rxbufs[i].frag) {
1305
			nfp_net_rx_ring_bufs_free(dp, rx_ring, xdp);
1306 1307 1308 1309 1310 1311 1312
			return -ENOMEM;
		}
	}

	return 0;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
 * @rx_ring: RX ring to fill
 */
static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1322
		nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1323 1324 1325
				    rx_ring->rxbufs[i].dma_addr);
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1342
 * @dp:  NFP Net data path struct
1343 1344 1345 1346
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
1347 1348
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1349 1350 1351 1352
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

1353
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1385
			     unsigned int type, __be32 *hash)
1386
{
1387
	if (!(netdev->features & NETIF_F_RXHASH))
1388 1389
		return;

1390
	switch (type) {
1391 1392 1393
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1394
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1395 1396
		break;
	default:
1397
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1398 1399 1400 1401
		break;
	}
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
		      struct nfp_net_rx_desc *rxd)
{
	struct nfp_net_rx_hash *rx_hash;

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
		   int meta_len)
{
	u8 *data = skb->data - meta_len;
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1450 1451 1452 1453 1454 1455 1456 1457
static void
nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
		struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1458 1459 1460 1461 1462
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1463
	if (rxbuf)
1464
		nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1465 1466 1467 1468
	if (skb)
		dev_kfree_skb_any(skb);
}

1469
static bool
1470
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		   struct nfp_net_tx_ring *tx_ring,
		   struct nfp_net_rx_buf *rxbuf, unsigned int pkt_off,
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1483
		return false;
1484 1485
	}

1486
	new_frag = nfp_net_napi_alloc_one(dp, DMA_BIDIRECTIONAL, &new_dma_addr);
1487 1488
	if (unlikely(!new_frag)) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1489
		return false;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	}
	nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1503
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + pkt_off,
1504
				   pkt_len, DMA_BIDIRECTIONAL);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + pkt_off);
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1519
	return true;
1520 1521 1522 1523 1524 1525 1526 1527 1528
}

static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, unsigned int len)
{
	struct xdp_buff xdp;

	xdp.data = data;
	xdp.data_end = data + len;

1529
	return bpf_prog_run_xdp(prog, &xdp);
1530 1531
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1546
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1547 1548 1549
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1550
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1551
	int pkts_polled = 0;
1552
	int rx_dma_map_dir;
1553 1554
	int idx;

1555
	rcu_read_lock();
1556
	xdp_prog = READ_ONCE(dp->xdp_prog);
1557
	rx_dma_map_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1558
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1559 1560
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1561
	while (pkts_polled < budget) {
1562 1563 1564 1565 1566 1567
		unsigned int meta_len, data_len, data_off, pkt_len, pkt_off;
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;

1568
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1569 1570

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1571
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1572
			break;
J
Jakub Kicinski 已提交
1573

1574 1575 1576 1577 1578 1579 1580 1581
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1582
		rxbuf =	&rx_ring->rxbufs[idx];
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1595 1596
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1597
		pkt_len = data_len - meta_len;
1598

1599
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1600
			pkt_off = meta_len;
1601
		else
1602
			pkt_off = dp->rx_offset;
1603
		data_off = NFP_NET_RX_BUF_HEADROOM + pkt_off;
1604 1605 1606 1607

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1608
		r_vec->rx_bytes += pkt_len;
1609 1610
		u64_stats_update_end(&r_vec->rx_sync);

1611
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1612
				  dp->bpf_offload_xdp)) {
1613 1614
			int act;

1615
			dma_sync_single_for_cpu(dp->dev,
1616
						rxbuf->dma_addr + pkt_off,
1617
						pkt_len, DMA_BIDIRECTIONAL);
1618 1619 1620 1621 1622 1623
			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag + data_off,
					      pkt_len);
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1624
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1625
								 tx_ring, rxbuf,
1626 1627 1628 1629
								 pkt_off,
								 pkt_len)))
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1630 1631 1632 1633
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1634
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1635 1636 1637 1638 1639 1640 1641 1642
			case XDP_DROP:
				nfp_net_rx_give_one(rx_ring, rxbuf->frag,
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1643 1644 1645 1646
		if (unlikely(!skb)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}
1647
		new_frag = nfp_net_napi_alloc_one(dp, rx_dma_map_dir,
1648
						  &new_dma_addr);
1649 1650 1651 1652 1653
		if (unlikely(!new_frag)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
			continue;
		}

1654
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr, rx_dma_map_dir);
1655 1656 1657 1658 1659 1660

		nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1661 1662
		if (!dp->chained_metadata_format) {
			nfp_net_set_hash_desc(dp->netdev, skb, rxd);
1663 1664 1665
		} else if (meta_len) {
			void *end;

1666
			end = nfp_net_parse_meta(dp->netdev, skb, meta_len);
1667
			if (unlikely(end != skb->data)) {
1668
				nn_dp_warn(dp, "invalid RX packet metadata\n");
1669
				nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1670 1671 1672 1673
				continue;
			}
		}

1674
		skb_record_rx_queue(skb, rx_ring->idx);
1675
		skb->protocol = eth_type_trans(skb, dp->netdev);
1676

1677
		nfp_net_rx_csum(dp, r_vec, rxd, skb);
1678 1679 1680 1681 1682 1683 1684 1685

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1686 1687 1688 1689
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1704
	unsigned int pkts_polled = 0;
1705

1706 1707
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1708
	if (r_vec->rx_ring) {
1709
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1710 1711 1712
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1713

1714 1715 1716
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1731
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1732 1733 1734 1735

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1736
		dma_free_coherent(dp->dev, tx_ring->size,
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
 * @tx_ring:   TX Ring structure to allocate
1749
 * @cnt:       Ring buffer count
1750
 * @is_xdp:    True if ring will be used for XDP
1751 1752 1753
 *
 * Return: 0 on success, negative errno otherwise.
 */
1754 1755
static int
nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt, bool is_xdp)
1756 1757
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1758
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1759 1760
	int sz;

1761
	tx_ring->cnt = cnt;
1762 1763

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1764
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1765 1766 1767 1768 1769 1770 1771 1772 1773
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1774
	if (!is_xdp)
1775
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1776
				    tx_ring->idx);
1777 1778 1779 1780 1781 1782 1783 1784

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1785
static struct nfp_net_tx_ring *
1786
nfp_net_tx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_dp *dp,
1787
			    struct nfp_net_ring_set *s)
1788 1789 1790 1791
{
	struct nfp_net_tx_ring *rings;
	unsigned int r;

1792
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1793 1794 1795
	if (!rings)
		return NULL;

1796
	for (r = 0; r < s->n_rings; r++) {
1797 1798
		int bias = 0;

1799 1800
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1801

1802 1803 1804
		nfp_net_tx_ring_init(&rings[r], &nn->r_vecs[r - bias], r);

		if (nfp_net_tx_ring_alloc(&rings[r], s->dcnt, bias))
1805 1806 1807
			goto err_free_prev;
	}

1808
	return s->rings = rings;
1809 1810 1811 1812 1813 1814 1815 1816

err_free_prev:
	while (r--)
		nfp_net_tx_ring_free(&rings[r]);
	kfree(rings);
	return NULL;
}

1817
static void
1818
nfp_net_tx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1819
{
1820
	struct nfp_net_ring_set new = *s;
1821

1822 1823 1824
	s->dcnt = nn->dp.txd_cnt;
	s->rings = nn->dp.tx_rings;
	s->n_rings = nn->dp.num_tx_rings;
1825

1826 1827 1828
	nn->dp.txd_cnt = new.dcnt;
	nn->dp.tx_rings = new.rings;
	nn->dp.num_tx_rings = new.n_rings;
1829 1830
}

1831
static void nfp_net_tx_ring_set_free(struct nfp_net_ring_set *s)
1832
{
1833
	struct nfp_net_tx_ring *rings = s->rings;
1834 1835
	unsigned int r;

1836
	for (r = 0; r < s->n_rings; r++)
1837 1838 1839 1840 1841
		nfp_net_tx_ring_free(&rings[r]);

	kfree(rings);
}

1842 1843 1844 1845 1846 1847 1848
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1849
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1850 1851 1852 1853

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1854
		dma_free_coherent(dp->dev, rx_ring->size,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1866
 * @dp:	      NFP Net data path struct
1867
 * @rx_ring:  RX ring to allocate
1868
 * @cnt:      Ring buffer count
1869 1870 1871
 *
 * Return: 0 on success, negative errno otherwise.
 */
1872
static int
1873
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1874
		      u32 cnt)
1875 1876 1877
{
	int sz;

1878
	rx_ring->cnt = cnt;
1879
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1880
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1897
static struct nfp_net_rx_ring *
1898 1899
nfp_net_rx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_dp *dp,
			    struct nfp_net_ring_set *s, bool xdp)
1900 1901 1902 1903
{
	struct nfp_net_rx_ring *rings;
	unsigned int r;

1904
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1905 1906 1907
	if (!rings)
		return NULL;

1908 1909
	for (r = 0; r < s->n_rings; r++) {
		nfp_net_rx_ring_init(&rings[r], &nn->r_vecs[r], r);
1910

1911
		if (nfp_net_rx_ring_alloc(dp, &rings[r], s->dcnt))
1912 1913
			goto err_free_prev;

1914
		if (nfp_net_rx_ring_bufs_alloc(dp, &rings[r], xdp))
1915 1916 1917
			goto err_free_ring;
	}

1918
	return s->rings = rings;
1919 1920 1921

err_free_prev:
	while (r--) {
1922
		nfp_net_rx_ring_bufs_free(dp, &rings[r], xdp);
1923 1924 1925 1926 1927 1928 1929
err_free_ring:
		nfp_net_rx_ring_free(&rings[r]);
	}
	kfree(rings);
	return NULL;
}

1930
static void
1931 1932
nfp_net_rx_ring_set_swap(struct nfp_net *nn, struct nfp_net_dp *dp,
			 struct nfp_net_ring_set *s)
1933
{
1934
	struct nfp_net_ring_set new = *s;
1935
	struct nfp_net_dp new_dp = *dp;
1936

1937
	dp->fl_bufsz = nn->dp.fl_bufsz;
1938 1939 1940 1941
	s->mtu = nn->dp.netdev->mtu;
	s->dcnt = nn->dp.rxd_cnt;
	s->rings = nn->dp.rx_rings;
	s->n_rings = nn->dp.num_rx_rings;
1942

1943
	nn->dp.netdev->mtu = new.mtu;
1944
	nn->dp.fl_bufsz = new_dp.fl_bufsz;
1945 1946 1947
	nn->dp.rxd_cnt = new.dcnt;
	nn->dp.rx_rings = new.rings;
	nn->dp.num_rx_rings = new.n_rings;
1948 1949 1950
}

static void
1951
nfp_net_rx_ring_set_free(struct nfp_net_dp *dp, struct nfp_net_ring_set *s,
1952
			 bool xdp)
1953
{
1954
	struct nfp_net_rx_ring *rings = s->rings;
1955 1956
	unsigned int r;

1957
	for (r = 0; r < s->n_rings; r++) {
1958
		nfp_net_rx_ring_bufs_free(dp, &rings[r], xdp);
1959 1960 1961 1962 1963 1964
		nfp_net_rx_ring_free(&rings[r]);
	}

	kfree(rings);
}

1965
static void
1966 1967
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
1968
{
1969
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
1970
	r_vec->tx_ring =
1971
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
1972

1973 1974
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
1975 1976
}

1977 1978 1979
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1980
{
1981
	int err;
1982

1983
	/* Setup NAPI */
1984
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
1985 1986
		       nfp_net_poll, NAPI_POLL_WEIGHT);

1987
	snprintf(r_vec->name, sizeof(r_vec->name),
1988
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
1989 1990
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
1991
	if (err) {
1992
		netif_napi_del(&r_vec->napi);
1993
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
1994 1995
		return err;
	}
1996
	disable_irq(r_vec->irq_vector);
1997

1998
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
1999

2000 2001
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2002

2003
	return 0;
2004 2005
}

2006 2007
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2008
{
2009
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2010
	netif_napi_del(&r_vec->napi);
2011
	free_irq(r_vec->irq_vector, r_vec);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2035
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2059
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2060 2061 2062 2063 2064
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2065
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2066 2067 2068 2069
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2070
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2071 2072
 * @nn:      NFP Net device to reconfigure
 *
2073 2074 2075
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2076
 */
2077
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2078 2079
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2080
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2081
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2082
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2083 2084
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2096 2097 2098 2099 2100 2101 2102
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2103
	unsigned int r;
2104 2105
	int err;

2106
	new_ctrl = nn->dp.ctrl;
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2120
	if (err)
2121 2122
		nn_err(nn, "Could not disable device: %d\n", err);

2123 2124 2125 2126 2127
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2128 2129
		nfp_net_vec_clear_ring_data(nn, r);

2130
	nn->dp.ctrl = new_ctrl;
2131 2132
}

2133
static void
2134 2135
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2136 2137
{
	/* Write the DMA address, size and MSI-X info to the device */
2138 2139
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2140
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2141
}
2142

2143 2144 2145 2146 2147 2148
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2149
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2150 2151
}

2152 2153 2154 2155 2156 2157
static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

2158
	new_ctrl = nn->dp.ctrl;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2174 2175 2176 2177
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2178

2179 2180
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2181

2182 2183
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2184

2185
	nfp_net_write_mac_addr(nn);
2186

2187
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2188
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
2189
		  nn->dp.fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);

2202
	nn->dp.ctrl = new_ctrl;
2203

2204 2205
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_fill_freelist(&nn->dp.rx_rings[r]);
2206

2207 2208 2209
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2210
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2211 2212
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2213
		udp_tunnel_get_rx_info(nn->dp.netdev);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	}

	return err;
}

/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	int err;

	err = __nfp_net_set_config_and_enable(nn);
	if (err)
		nfp_net_clear_config_and_disable(nn);

	return err;
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2242
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2243
		napi_enable(&nn->r_vecs[r].napi);
2244
		enable_irq(nn->r_vecs[r].irq_vector);
2245
	}
2246

2247
	netif_tx_wake_all_queues(nn->dp.netdev);
2248

2249
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2250 2251 2252
	nfp_net_read_link_status(nn);
}

2253 2254 2255
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
2256
	struct nfp_net_ring_set rx = {
2257 2258 2259
		.n_rings = nn->dp.num_rx_rings,
		.mtu = nn->dp.netdev->mtu,
		.dcnt = nn->dp.rxd_cnt,
2260 2261
	};
	struct nfp_net_ring_set tx = {
2262 2263
		.n_rings = nn->dp.num_tx_rings,
		.dcnt = nn->dp.txd_cnt,
2264
	};
2265 2266
	int err, r;

2267 2268
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_ENABLE) {
		nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->dp.ctrl);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		return -EBUSY;
	}

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2282 2283 2284 2285 2286
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2287
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2288

2289
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2290 2291
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2292 2293
			goto err_cleanup_vec_p;
	}
2294

2295 2296
	nn->dp.rx_rings = nfp_net_rx_ring_set_prepare(nn, &nn->dp, &rx,
						      nn->dp.xdp_prog);
2297
	if (!nn->dp.rx_rings) {
2298 2299
		err = -ENOMEM;
		goto err_cleanup_vec;
2300
	}
2301

2302
	nn->dp.tx_rings = nfp_net_tx_ring_set_prepare(nn, &nn->dp, &tx);
2303
	if (!nn->dp.tx_rings) {
2304 2305
		err = -ENOMEM;
		goto err_free_rx_rings;
2306
	}
2307

2308
	for (r = 0; r < nn->max_r_vecs; r++)
2309
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2310

2311
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2312 2313 2314
	if (err)
		goto err_free_rings;

2315
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2326
	err = nfp_net_set_config_and_enable(nn);
2327
	if (err)
2328
		goto err_free_rings;
2329 2330 2331 2332 2333 2334 2335

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2336
	nfp_net_open_stack(nn);
2337 2338 2339 2340

	return 0;

err_free_rings:
2341
	nfp_net_tx_ring_set_free(&tx);
2342
err_free_rx_rings:
2343
	nfp_net_rx_ring_set_free(&nn->dp, &rx, nn->dp.xdp_prog);
2344
err_cleanup_vec:
2345
	r = nn->dp.num_r_vecs;
2346
err_cleanup_vec_p:
2347
	while (r--)
2348
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2349
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2350 2351 2352 2353 2354 2355
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2356 2357
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2358
 */
2359
static void nfp_net_close_stack(struct nfp_net *nn)
2360
{
2361
	unsigned int r;
2362

2363
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2364
	netif_carrier_off(nn->dp.netdev);
2365 2366
	nn->link_up = false;

2367
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2368
		disable_irq(nn->r_vecs[r].irq_vector);
2369
		napi_disable(&nn->r_vecs[r].napi);
2370
	}
2371

2372
	netif_tx_disable(nn->dp.netdev);
2373
}
2374

2375 2376 2377 2378 2379 2380 2381
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2382

2383 2384 2385 2386
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r],
					  nn->dp.xdp_prog);
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2387
	}
2388 2389 2390
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2391
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2392

2393 2394
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2395

2396
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2397
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

2408 2409
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
		nn_err(nn, "Dev is not up: 0x%08x\n", nn->dp.ctrl);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		return 0;
	}

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2434
	new_ctrl = nn->dp.ctrl;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2445
	if (new_ctrl == nn->dp.ctrl)
2446 2447 2448
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2449
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2450

2451
	nn->dp.ctrl = new_ctrl;
2452 2453
}

2454 2455 2456 2457 2458 2459
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2460
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2461 2462
}

2463 2464 2465 2466 2467 2468 2469 2470
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
}

2471
static int
2472
nfp_net_ring_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp,
2473
			 struct bpf_prog **xdp_prog,
2474 2475
			 struct nfp_net_ring_set *rx,
			 struct nfp_net_ring_set *tx)
2476
{
2477
	unsigned int r;
2478
	int err;
2479

2480
	if (rx)
2481
		nfp_net_rx_ring_set_swap(nn, dp, rx);
2482
	if (tx)
2483
		nfp_net_tx_ring_set_swap(nn, tx);
2484

2485 2486
	swap(dp->num_r_vecs, nn->dp.num_r_vecs);
	swap(dp->num_stack_tx_rings, nn->dp.num_stack_tx_rings);
2487
	*xdp_prog = xchg(&nn->dp.xdp_prog, *xdp_prog);
2488

2489
	for (r = 0; r <	nn->max_r_vecs; r++)
2490
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2491

2492
	if (!netif_is_rxfh_configured(nn->dp.netdev))
2493
		nfp_net_rss_init_itbl(nn);
2494

2495
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2496 2497
	if (err)
		return err;
2498

2499 2500 2501
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2502 2503 2504 2505
		if (err)
			return err;
	}

2506 2507
	return __nfp_net_set_config_and_enable(nn);
}
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2529
static int
2530 2531
nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
		     struct bpf_prog *xdp_prog,
2532 2533 2534 2535 2536
		     struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
{
	/* XDP-enabled tests */
	if (!xdp_prog)
		return 0;
2537
	if (dp->fl_bufsz > PAGE_SIZE) {
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
	if (tx && tx->n_rings > nn->max_tx_rings) {
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2549
static void
2550 2551
nfp_net_ring_reconfig_down(struct nfp_net *nn, struct nfp_net_dp *dp,
			   struct bpf_prog **xdp_prog,
2552
			   struct nfp_net_ring_set *rx,
2553
			   struct nfp_net_ring_set *tx)
2554
{
2555 2556
	nfp_net_dp_swap(nn, dp);

2557 2558 2559 2560 2561 2562 2563 2564
	nn->dp.netdev->mtu = rx ? rx->mtu : nn->dp.netdev->mtu;
	nn->dp.rxd_cnt = rx ? rx->dcnt : nn->dp.rxd_cnt;
	nn->dp.txd_cnt = tx ? tx->dcnt : nn->dp.txd_cnt;
	nn->dp.num_rx_rings = rx ? rx->n_rings : nn->dp.num_rx_rings;
	nn->dp.num_tx_rings = tx ? tx->n_rings : nn->dp.num_tx_rings;
	*xdp_prog = xchg(&nn->dp.xdp_prog, *xdp_prog);

	if (!netif_is_rxfh_configured(nn->dp.netdev))
2565
		nfp_net_rss_init_itbl(nn);
2566 2567
}

2568
int
2569 2570
nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
		      struct bpf_prog **xdp_prog,
2571
		      struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
2572
{
2573
	int r, err;
2574

2575 2576 2577
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp,
					     rx ? rx->mtu : nn->dp.netdev->mtu);

2578
	dp->num_stack_tx_rings = tx ? tx->n_rings : dp->num_tx_rings;
2579
	if (*xdp_prog)
2580
		dp->num_stack_tx_rings -= rx ? rx->n_rings : dp->num_rx_rings;
2581

2582 2583
	dp->num_r_vecs = max(rx ? rx->n_rings : dp->num_rx_rings,
			     dp->num_stack_tx_rings);
2584

2585
	err = nfp_net_check_config(nn, dp, *xdp_prog, rx, tx);
2586
	if (err)
2587
		goto exit_free_dp;
2588

2589
	if (!netif_running(dp->netdev)) {
2590 2591
		nfp_net_ring_reconfig_down(nn, dp, xdp_prog, rx, tx);

2592 2593
		err = 0;
		goto exit_free_dp;
2594 2595 2596
	}

	/* Prepare new rings */
2597
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2598 2599
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2600
			dp->num_r_vecs = r;
2601 2602 2603
			goto err_cleanup_vecs;
		}
	}
2604
	if (rx) {
2605
		if (!nfp_net_rx_ring_set_prepare(nn, dp, rx, *xdp_prog)) {
2606 2607 2608
			err = -ENOMEM;
			goto err_cleanup_vecs;
		}
2609
	}
2610
	if (tx) {
2611
		if (!nfp_net_tx_ring_set_prepare(nn, dp, tx)) {
2612 2613
			err = -ENOMEM;
			goto err_free_rx;
2614 2615 2616 2617 2618 2619 2620
		}
	}

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2621
	err = nfp_net_ring_swap_enable(nn, dp, xdp_prog, rx, tx);
2622
	if (err) {
2623
		int err2;
2624

2625
		nfp_net_clear_config_and_disable(nn);
2626

2627
		/* Try with old configuration and old rings */
2628
		err2 = nfp_net_ring_swap_enable(nn, dp, xdp_prog, rx, tx);
2629
		if (err2)
2630
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2631
			       err, err2);
2632
	}
2633
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2634
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2635

2636
	if (rx)
2637
		nfp_net_rx_ring_set_free(dp, rx, *xdp_prog);
2638
	if (tx)
2639
		nfp_net_tx_ring_set_free(tx);
2640 2641

	nfp_net_open_stack(nn);
2642 2643
exit_free_dp:
	kfree(dp);
2644 2645

	return err;
2646 2647 2648

err_free_rx:
	if (rx)
2649
		nfp_net_rx_ring_set_free(dp, rx, *xdp_prog);
2650
err_cleanup_vecs:
2651
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2652
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2653
	kfree(dp);
2654 2655 2656 2657 2658 2659 2660
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_ring_set rx = {
2661
		.n_rings = nn->dp.num_rx_rings,
2662
		.mtu = new_mtu,
2663
		.dcnt = nn->dp.rxd_cnt,
2664
	};
2665 2666 2667 2668 2669
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2670

2671
	return nfp_net_ring_reconfig(nn, dp, &nn->dp.xdp_prog, &rx, NULL);
2672 2673
}

2674 2675
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2676 2677 2678 2679
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2680
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

2726
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2727
		if (!nn->dp.bpf_offload_xdp)
2728 2729 2730 2731
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2732 2733 2734 2735

	return -EINVAL;
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2746
	new_ctrl = nn->dp.ctrl;
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2790
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2791 2792 2793 2794
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2795 2796 2797
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2798
	if (new_ctrl == nn->dp.ctrl)
2799 2800
		return 0;

2801
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2802 2803 2804 2805 2806
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2807
	nn->dp.ctrl = new_ctrl;
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2844
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2845 2846 2847 2848 2849 2850 2851 2852
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2853
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2854 2855 2856 2857

	return features;
}

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2890
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2891 2892 2893 2894 2895 2896 2897 2898
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2899
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2926
				   struct udp_tunnel_info *ti)
2927 2928 2929 2930
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2931 2932 2933 2934
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2935 2936 2937 2938
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2939
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2940 2941 2942
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2943
				   struct udp_tunnel_info *ti)
2944 2945 2946 2947
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2948 2949 2950 2951
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2952
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2953 2954 2955 2956 2957 2958
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2969 2970
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2983
	nn->dp.bpf_offload_xdp = prog && !ret;
2984 2985 2986
	return ret;
}

2987 2988 2989
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct nfp_net_ring_set rx = {
2990 2991 2992
		.n_rings = nn->dp.num_rx_rings,
		.mtu = nn->dp.netdev->mtu,
		.dcnt = nn->dp.rxd_cnt,
2993 2994
	};
	struct nfp_net_ring_set tx = {
2995 2996
		.n_rings = nn->dp.num_tx_rings,
		.dcnt = nn->dp.txd_cnt,
2997
	};
2998
	struct nfp_net_dp *dp;
2999 3000
	int err;

3001 3002 3003 3004
	if (prog && prog->xdp_adjust_head) {
		nn_err(nn, "Does not support bpf_xdp_adjust_head()\n");
		return -EOPNOTSUPP;
	}
3005
	if (!prog && !nn->dp.xdp_prog)
3006
		return 0;
3007 3008
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
3009
		bpf_prog_put(prog);
3010
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
3011 3012 3013
		return 0;
	}

3014 3015 3016 3017
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

3018
	tx.n_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3019 3020

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3021
	err = nfp_net_ring_reconfig(nn, dp, &prog, &rx, &tx);
3022 3023 3024 3025 3026 3027 3028
	if (err)
		return err;

	/* @prog got swapped and is now the old one */
	if (prog)
		bpf_prog_put(prog);

3029
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
3042
		xdp->prog_attached = !!nn->dp.xdp_prog;
3043 3044 3045 3046 3047 3048
		return 0;
	default:
		return -EINVAL;
	}
}

3049 3050 3051 3052 3053
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
3054
	.ndo_setup_tc		= nfp_net_setup_tc,
3055 3056 3057 3058 3059 3060
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
3061
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3062 3063
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3064
	.ndo_xdp		= nfp_net_xdp,
3065 3066 3067 3068 3069 3070 3071 3072
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3073
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3074 3075 3076
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
3077 3078 3079 3080
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
3081
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3098 3099
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3114 3115
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3128 3129
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3130 3131 3132 3133 3134
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3135 3136 3137
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3138
				 netif_get_num_default_rss_queues());
3139

3140 3141 3142
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3143

3144 3145
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3146 3147

	spin_lock_init(&nn->reconfig_lock);
3148
	spin_lock_init(&nn->rx_filter_lock);
3149 3150
	spin_lock_init(&nn->link_status_lock);

3151 3152
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3153 3154
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
3165
	free_netdev(nn->dp.netdev);
3166 3167
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3189 3190 3191 3192 3193 3194
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3207
		dev_warn(nn->dp.dev,
3208 3209 3210 3211 3212 3213
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3214

3215
	nfp_net_rss_init_itbl(nn);
3216 3217 3218 3219

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3220
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

3247
	nn->dp.chained_metadata_format = nn->fw_ver.major > 3;
J
Jakub Kicinski 已提交
3248

3249 3250 3251 3252
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3253
	nfp_net_write_mac_addr(nn);
3254

3255 3256
	/* Determine RX packet/metadata boundary offset */
	if (nn->fw_ver.major >= 2)
3257
		nn->dp.rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3258
	else
3259
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3260

3261 3262 3263 3264 3265
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3266
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp, netdev->mtu);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
3277
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3278 3279 3280
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3281
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3282 3283 3284
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3285
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3286 3287 3288
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3289
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO;
3290 3291 3292 3293
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3294
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS;
3295 3296 3297 3298 3299 3300
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3301
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3302 3303 3304 3305 3306 3307 3308 3309

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3310
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3311 3312 3313
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3314
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3315 3316 3317 3318
	}

	netdev->features = netdev->hw_features;

3319 3320 3321
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3322 3323 3324 3325 3326
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3327
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3328
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3329
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3330 3331 3332 3333

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3334
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3352 3353 3354 3355 3356

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3357
	netif_carrier_off(netdev);
3358 3359

	nfp_net_set_ethtool_ops(netdev);
3360
	nfp_net_vecs_init(netdev);
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3371 3372
	struct nfp_net *nn = netdev_priv(netdev);

3373 3374 3375
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3376
		nfp_net_xdp_offload(nn, NULL);
3377
	unregister_netdev(nn->dp.netdev);
3378
}