nfp_net_common.c 84.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp_eth.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
89
{
90
	return dma_map_single(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
91
			      dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
92
			      dp->rx_dma_dir);
93 94
}

95
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
96
{
97
	dma_unmap_single(dp->dev, dma_addr,
98 99
			 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			 dp->rx_dma_dir);
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
225 226 227
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
228 229 230

	spin_lock_bh(&nn->reconfig_lock);

231
	nn->reconfig_sync_present = true;
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
250 251
	}

252 253 254 255 256 257 258 259 260 261
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

262
	spin_unlock_bh(&nn->reconfig_lock);
263

264 265 266 267 268 269 270 271 272 273 274
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
275
 * Clear the ICR for the IRQ entry.
276 277 278 279 280 281 282 283
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
284 285 286 287 288
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
289
 *
290
 * Return: Number of irqs obtained or 0 on error.
291
 */
292 293 294
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
295
{
296 297
	unsigned int i;
	int got_irqs;
298

299 300
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
301

302 303 304 305 306
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
307 308 309
		return 0;
	}

310 311 312 313 314
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
315 316 317
}

/**
318 319 320 321
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
322
 *
323 324
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
325
 */
326 327 328
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
329
{
330 331
	struct nfp_net_dp *dp = &nn->dp;

332
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
333
	dp->num_r_vecs = nn->max_r_vecs;
334

335
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
336

337 338
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
339
		nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
340 341
			dp->num_rx_rings, dp->num_tx_rings,
			dp->num_r_vecs);
342

343 344 345
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
346 347 348 349
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
350
 * @pdev:        PCI device structure
351 352 353
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
354
void nfp_net_irqs_disable(struct pci_dev *pdev)
355
{
356
	pci_disable_msix(pdev);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
400 401
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
402
	} else {
403 404
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
420 421 422
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
423 424 425

	nfp_net_read_link_status(nn);

426
	nfp_net_irq_unmask(nn, entry->entry);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
450 451
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
452
 */
453 454 455
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
456 457 458
{
	struct nfp_net *nn = r_vec->nfp_net;

459 460 461
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

462 463 464 465 466 467 468
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
469 470
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
471
 */
472 473 474
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
475 476 477
{
	struct nfp_net *nn = r_vec->nfp_net;

478 479 480
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

481 482 483 484 485 486 487 488
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);

	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
	rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
}

/**
489
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
490 491
 * @netdev:   netdev structure
 */
492
static void nfp_net_vecs_init(struct net_device *netdev)
493 494 495 496 497 498 499 500
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

501
	for (r = 0; r < nn->max_r_vecs; r++) {
502 503 504 505
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

506 507 508
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
509 510
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

536
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
537 538 539 540 541 542
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
543
	nn_writeb(nn, ctrl_offset, entry->entry);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
585
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
631
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
662
 * @dp:  NFP Net data path struct
663 664 665 666 667 668 669 670
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
671 672
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
673 674 675 676 677 678 679
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

680
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
699
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
700 701 702 703 704 705 706 707 708 709 710
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
711
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
712 713 714 715 716 717 718 719 720 721 722
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

723 724 725 726 727 728 729
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

730 731 732 733 734 735 736 737 738 739 740 741 742
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
743 744
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
745
	struct netdev_queue *nd_q;
746
	struct nfp_net_dp *dp;
747 748 749 750 751 752
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

753
	dp = &nn->dp;
754
	qidx = skb_get_queue_mapping(skb);
755
	tx_ring = &dp->tx_rings[qidx];
756
	r_vec = tx_ring->r_vec;
757
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
758 759 760 761

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
762 763
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
764 765 766 767 768 769 770 771
		netif_tx_stop_queue(nd_q);
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
772
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
773
				  DMA_TO_DEVICE);
774
	if (dma_mapping_error(dp->dev, dma_addr))
775 776
		goto err_free;

777
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

798
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
799

800
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
801

802
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
803 804 805 806 807 808 809 810 811 812 813 814 815
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

816
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
817
						    fsize, DMA_TO_DEVICE);
818
			if (dma_mapping_error(dp->dev, dma_addr))
819 820
				goto err_unmap;

821
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
846 847
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
848 849 850 851 852 853 854 855 856

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
857
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
858 859 860 861 862 863 864 865
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
866
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
867 868 869 870 871
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
872
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
889
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
911
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
912 913 914 915 916 917 918 919 920 921 922
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
923
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
924 925 926 927 928 929 930
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
931
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

951
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
952 953 954 955 956 957 958 959 960 961 962 963 964 965
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

966 967 968
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
969
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

992
		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[idx].dma_addr);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1015
/**
1016
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1017
 * @dp:		NFP Net data path struct
1018
 * @tx_ring:	TX ring structure
1019 1020 1021
 *
 * Assumes that the device is stopped
 */
1022
static void
1023
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1024
{
1025
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1026
	const struct skb_frag_struct *frag;
1027
	struct netdev_queue *nd_q;
1028 1029

	while (tx_ring->rd_p != tx_ring->wr_p) {
1030 1031
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1032

1033
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1034
		tx_buf = &tx_ring->txbufs[idx];
1035

1036
		if (tx_ring == r_vec->xdp_ring) {
1037
			nfp_net_dma_unmap_rx(dp, tx_buf->dma_addr);
1038
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1039
		} else {
1040 1041 1042 1043 1044
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
1045
				dma_unmap_single(dp->dev, tx_buf->dma_addr,
1046 1047 1048 1049 1050
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1051
				dma_unmap_page(dp->dev, tx_buf->dma_addr,
1052 1053 1054
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1055

1056 1057 1058 1059
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1060

1061 1062 1063
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1064 1065 1066 1067 1068

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1069 1070 1071 1072 1073 1074
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1075 1076 1077
	if (tx_ring == r_vec->xdp_ring)
		return;

1078
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1079 1080 1081 1082 1083 1084 1085 1086
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1087
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1088 1089 1090 1091 1092 1093 1094 1095 1096
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1097
static unsigned int
1098
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1099 1100 1101
{
	unsigned int fl_bufsz;

1102
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1103
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1104
		fl_bufsz += NFP_NET_MAX_PREPEND;
1105
	else
1106
		fl_bufsz += dp->rx_offset;
1107
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1108

1109 1110 1111
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1112 1113
	return fl_bufsz;
}
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1124
/**
1125
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1126
 * @dp:		NFP Net data path struct
1127 1128 1129
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1130
 * This function will allcate a new page frag, map it for DMA.
1131
 *
1132
 * Return: allocated page frag or NULL on failure.
1133
 */
1134
static void *
1135 1136
nfp_net_rx_alloc_one(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
		     dma_addr_t *dma_addr)
1137
{
1138
	void *frag;
1139

1140
	if (!dp->xdp_prog)
1141
		frag = netdev_alloc_frag(dp->fl_bufsz);
1142 1143
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1144
	if (!frag) {
1145
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1146 1147 1148
		return NULL;
	}

1149
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1150
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1151
		nfp_net_free_frag(frag, dp->xdp_prog);
1152
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1153 1154 1155
		return NULL;
	}

1156
	return frag;
1157 1158
}

1159
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1160 1161 1162
{
	void *frag;

1163 1164
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1165 1166
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1167
	if (!frag) {
1168
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1169 1170 1171
		return NULL;
	}

1172
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1173 1174 1175
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1176 1177 1178 1179 1180 1181
		return NULL;
	}

	return frag;
}

1182 1183 1184
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
 * @rx_ring:	RX ring structure
1185
 * @frag:	page fragment buffer
1186 1187 1188
 * @dma_addr:	DMA address of skb mapping
 */
static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1189
				void *frag, dma_addr_t dma_addr)
1190 1191 1192
{
	unsigned int wr_idx;

1193
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1194 1195

	/* Stash SKB and DMA address away */
1196
	rx_ring->rxbufs[wr_idx].frag = frag;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1217 1218
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1219
 *
1220 1221
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1222
 */
1223
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1224
{
1225
	unsigned int wr_idx, last_idx;
1226

1227
	/* Move the empty entry to the end of the list */
1228
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1229 1230
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1231
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1232
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1233
	rx_ring->rxbufs[last_idx].frag = NULL;
1234

1235 1236 1237 1238 1239
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1240

1241 1242
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1243
 * @dp:		NFP Net data path struct
1244 1245 1246 1247 1248 1249 1250
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1251
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1252
			  struct nfp_net_rx_ring *rx_ring)
1253 1254
{
	unsigned int i;
1255

1256 1257 1258 1259 1260
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1261
		if (!rx_ring->rxbufs[i].frag)
1262 1263
			continue;

1264
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1265
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1266
		rx_ring->rxbufs[i].dma_addr = 0;
1267
		rx_ring->rxbufs[i].frag = NULL;
1268 1269 1270 1271
	}
}

/**
1272
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1273
 * @dp:		NFP Net data path struct
1274
 * @rx_ring:	RX ring to remove buffers from
1275
 */
1276
static int
1277
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1278
			   struct nfp_net_rx_ring *rx_ring)
1279
{
1280 1281 1282 1283
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1284

1285
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1286
		rxbufs[i].frag =
1287
			nfp_net_rx_alloc_one(dp, rx_ring, &rxbufs[i].dma_addr);
1288
		if (!rxbufs[i].frag) {
1289
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1290 1291 1292 1293 1294 1295 1296
			return -ENOMEM;
		}
	}

	return 0;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
 * @rx_ring: RX ring to fill
 */
static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1306
		nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1307 1308 1309
				    rx_ring->rxbufs[i].dma_addr);
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1326
 * @dp:  NFP Net data path struct
1327 1328 1329 1330
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
1331 1332
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1333 1334 1335 1336
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

1337
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1369
			     unsigned int type, __be32 *hash)
1370
{
1371
	if (!(netdev->features & NETIF_F_RXHASH))
1372 1373
		return;

1374
	switch (type) {
1375 1376 1377
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1378
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1379 1380
		break;
	default:
1381
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1382 1383 1384 1385
		break;
	}
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
		      struct nfp_net_rx_desc *rxd)
{
	struct nfp_net_rx_hash *rx_hash;

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
		   int meta_len)
{
	u8 *data = skb->data - meta_len;
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1434 1435 1436 1437 1438 1439 1440 1441
static void
nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
		struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1442 1443 1444 1445 1446
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1447
	if (rxbuf)
1448
		nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1449 1450 1451 1452
	if (skb)
		dev_kfree_skb_any(skb);
}

1453
static bool
1454
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1455
		   struct nfp_net_tx_ring *tx_ring,
1456
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1467
		return false;
1468 1469
	}

1470
	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1471 1472
	if (unlikely(!new_frag)) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1473
		return false;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	}
	nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1487
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1488
				   pkt_len, DMA_BIDIRECTIONAL);
1489 1490 1491 1492 1493

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1494
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1495 1496 1497 1498 1499 1500 1501 1502
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1503
	return true;
1504 1505 1506 1507 1508 1509 1510 1511 1512
}

static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, unsigned int len)
{
	struct xdp_buff xdp;

	xdp.data = data;
	xdp.data_end = data + len;

1513
	return bpf_prog_run_xdp(prog, &xdp);
1514 1515
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1530
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1531 1532 1533
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1534
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1535
	int pkts_polled = 0;
1536 1537
	int idx;

1538
	rcu_read_lock();
1539 1540
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1541 1542
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1543
	while (pkts_polled < budget) {
1544
		unsigned int meta_len, data_len, data_off, pkt_len;
1545 1546 1547 1548 1549
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;

1550
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1551 1552

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1553
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1554
			break;
J
Jakub Kicinski 已提交
1555

1556 1557 1558 1559 1560 1561 1562 1563
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1564
		rxbuf =	&rx_ring->rxbufs[idx];
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1577 1578
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1579
		pkt_len = data_len - meta_len;
1580

1581
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1582
			data_off = NFP_NET_RX_BUF_HEADROOM + meta_len;
1583
		else
1584
			data_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_offset;
1585 1586 1587 1588

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1589
		r_vec->rx_bytes += pkt_len;
1590 1591
		u64_stats_update_end(&r_vec->rx_sync);

1592
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1593
				  dp->bpf_offload_xdp)) {
1594
			unsigned int dma_off;
1595 1596
			int act;

1597
			dma_off = data_off - NFP_NET_RX_BUF_HEADROOM;
1598
			dma_sync_single_for_cpu(dp->dev,
1599
						rxbuf->dma_addr + dma_off,
1600
						pkt_len, DMA_BIDIRECTIONAL);
1601 1602 1603 1604 1605 1606
			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag + data_off,
					      pkt_len);
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1607
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1608
								 tx_ring, rxbuf,
1609
								 dma_off,
1610 1611 1612
								 pkt_len)))
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1613 1614 1615 1616
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1617
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1618 1619 1620 1621 1622 1623 1624 1625
			case XDP_DROP:
				nfp_net_rx_give_one(rx_ring, rxbuf->frag,
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1626 1627 1628 1629
		if (unlikely(!skb)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}
1630
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1631 1632 1633 1634 1635
		if (unlikely(!new_frag)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
			continue;
		}

1636
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1637 1638 1639 1640 1641 1642

		nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1643 1644
		if (!dp->chained_metadata_format) {
			nfp_net_set_hash_desc(dp->netdev, skb, rxd);
1645 1646 1647
		} else if (meta_len) {
			void *end;

1648
			end = nfp_net_parse_meta(dp->netdev, skb, meta_len);
1649
			if (unlikely(end != skb->data)) {
1650
				nn_dp_warn(dp, "invalid RX packet metadata\n");
1651
				nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1652 1653 1654 1655
				continue;
			}
		}

1656
		skb_record_rx_queue(skb, rx_ring->idx);
1657
		skb->protocol = eth_type_trans(skb, dp->netdev);
1658

1659
		nfp_net_rx_csum(dp, r_vec, rxd, skb);
1660 1661 1662 1663 1664 1665 1666 1667

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1668 1669 1670 1671
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1686
	unsigned int pkts_polled = 0;
1687

1688 1689
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1690
	if (r_vec->rx_ring) {
1691
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1692 1693 1694
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1695

1696 1697 1698
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1713
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1714 1715 1716 1717

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1718
		dma_free_coherent(dp->dev, tx_ring->size,
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1730
 * @dp:        NFP Net data path struct
1731
 * @tx_ring:   TX Ring structure to allocate
1732
 * @is_xdp:    True if ring will be used for XDP
1733 1734 1735
 *
 * Return: 0 on success, negative errno otherwise.
 */
1736
static int
1737 1738
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring,
		      bool is_xdp)
1739 1740 1741 1742
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1743
	tx_ring->cnt = dp->txd_cnt;
1744 1745

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1746
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1747 1748 1749 1750 1751 1752 1753 1754 1755
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1756
	if (!is_xdp)
1757
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1758
				    tx_ring->idx);
1759 1760 1761 1762 1763 1764 1765 1766

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1767
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1768 1769 1770
{
	unsigned int r;

1771 1772 1773 1774
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1775

1776
	for (r = 0; r < dp->num_tx_rings; r++) {
1777 1778
		int bias = 0;

1779 1780
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1781

1782 1783
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
				     r);
1784

1785
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r], bias))
1786 1787 1788
			goto err_free_prev;
	}

1789
	return 0;
1790 1791 1792

err_free_prev:
	while (r--)
1793 1794 1795
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
	kfree(dp->tx_rings);
	return -ENOMEM;
1796 1797
}

1798
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1799 1800 1801
{
	unsigned int r;

1802 1803
	for (r = 0; r < dp->num_tx_rings; r++)
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1804

1805
	kfree(dp->tx_rings);
1806 1807
}

1808 1809 1810 1811 1812 1813 1814
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1815
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1816 1817 1818 1819

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1820
		dma_free_coherent(dp->dev, rx_ring->size,
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1832
 * @dp:	      NFP Net data path struct
1833 1834 1835 1836
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1837
static int
1838
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1839 1840 1841
{
	int sz;

1842
	rx_ring->cnt = dp->rxd_cnt;
1843
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1844
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1861
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1862 1863 1864
{
	unsigned int r;

1865 1866 1867 1868
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1869

1870 1871
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1872

1873
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1874 1875
			goto err_free_prev;

1876
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1877 1878 1879
			goto err_free_ring;
	}

1880
	return 0;
1881 1882 1883

err_free_prev:
	while (r--) {
1884
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1885
err_free_ring:
1886
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1887
	}
1888 1889
	kfree(dp->rx_rings);
	return -ENOMEM;
1890 1891
}

1892
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
1893 1894 1895
{
	unsigned int r;

1896 1897 1898
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1899 1900
	}

1901
	kfree(dp->rx_rings);
1902 1903
}

1904
static void
1905 1906
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
1907
{
1908
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
1909
	r_vec->tx_ring =
1910
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
1911

1912 1913
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
1914 1915
}

1916 1917 1918
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1919
{
1920
	int err;
1921

1922
	/* Setup NAPI */
1923
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
1924 1925
		       nfp_net_poll, NAPI_POLL_WEIGHT);

1926
	snprintf(r_vec->name, sizeof(r_vec->name),
1927
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
1928 1929
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
1930
	if (err) {
1931
		netif_napi_del(&r_vec->napi);
1932
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
1933 1934
		return err;
	}
1935
	disable_irq(r_vec->irq_vector);
1936

1937
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
1938

1939 1940
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
1941

1942
	return 0;
1943 1944
}

1945 1946
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
1947
{
1948
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
1949
	netif_napi_del(&r_vec->napi);
1950
	free_irq(r_vec->irq_vector, r_vec);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

1974
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
1998
	for (i = 0; i < nn->dp.num_rx_rings; i++)
1999 2000 2001 2002 2003
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2004
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2005 2006 2007 2008
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2009
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2010 2011
 * @nn:      NFP Net device to reconfigure
 *
2012 2013 2014
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2015
 */
2016
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2017 2018
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2019
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2020
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2021
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2022 2023
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2035 2036 2037 2038 2039 2040 2041
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2042
	unsigned int r;
2043 2044
	int err;

2045
	new_ctrl = nn->dp.ctrl;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2059
	if (err)
2060 2061
		nn_err(nn, "Could not disable device: %d\n", err);

2062 2063 2064 2065 2066
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2067 2068
		nfp_net_vec_clear_ring_data(nn, r);

2069
	nn->dp.ctrl = new_ctrl;
2070 2071
}

2072
static void
2073 2074
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2075 2076
{
	/* Write the DMA address, size and MSI-X info to the device */
2077 2078
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2079
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2080
}
2081

2082 2083 2084 2085 2086 2087
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2088
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2089 2090
}

2091 2092 2093 2094 2095 2096
static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

2097
	new_ctrl = nn->dp.ctrl;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2113 2114 2115 2116
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2117

2118 2119
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2120

2121 2122
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2123

2124
	nfp_net_write_mac_addr(nn);
2125

2126
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2127
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
2128
		  nn->dp.fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);

2141
	nn->dp.ctrl = new_ctrl;
2142

2143 2144
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_fill_freelist(&nn->dp.rx_rings[r]);
2145

2146 2147 2148
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2149
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2150 2151
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2152
		udp_tunnel_get_rx_info(nn->dp.netdev);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	}

	return err;
}

/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	int err;

	err = __nfp_net_set_config_and_enable(nn);
	if (err)
		nfp_net_clear_config_and_disable(nn);

	return err;
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2181
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2182
		napi_enable(&nn->r_vecs[r].napi);
2183
		enable_irq(nn->r_vecs[r].irq_vector);
2184
	}
2185

2186
	netif_tx_wake_all_queues(nn->dp.netdev);
2187

2188
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2189 2190 2191
	nfp_net_read_link_status(nn);
}

2192 2193 2194 2195 2196
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

2197 2198
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_ENABLE) {
		nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->dp.ctrl);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		return -EBUSY;
	}

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2212 2213 2214 2215 2216
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2217
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2218

2219
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2220 2221
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2222 2223
			goto err_cleanup_vec_p;
	}
2224

2225 2226
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2227
		goto err_cleanup_vec;
2228

2229 2230
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2231
		goto err_free_rx_rings;
2232

2233
	for (r = 0; r < nn->max_r_vecs; r++)
2234
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2235

2236
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2237 2238 2239
	if (err)
		goto err_free_rings;

2240
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2251
	err = nfp_net_set_config_and_enable(nn);
2252
	if (err)
2253
		goto err_free_rings;
2254 2255 2256 2257 2258 2259 2260

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2261
	nfp_net_open_stack(nn);
2262 2263 2264 2265

	return 0;

err_free_rings:
2266
	nfp_net_tx_rings_free(&nn->dp);
2267
err_free_rx_rings:
2268
	nfp_net_rx_rings_free(&nn->dp);
2269
err_cleanup_vec:
2270
	r = nn->dp.num_r_vecs;
2271
err_cleanup_vec_p:
2272
	while (r--)
2273
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2274
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2275 2276 2277 2278 2279 2280
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2281 2282
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2283
 */
2284
static void nfp_net_close_stack(struct nfp_net *nn)
2285
{
2286
	unsigned int r;
2287

2288
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2289
	netif_carrier_off(nn->dp.netdev);
2290 2291
	nn->link_up = false;

2292
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2293
		disable_irq(nn->r_vecs[r].irq_vector);
2294
		napi_disable(&nn->r_vecs[r].napi);
2295
	}
2296

2297
	netif_tx_disable(nn->dp.netdev);
2298
}
2299

2300 2301 2302 2303 2304 2305 2306
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2307

2308
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2309
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2310
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2311
	}
2312 2313 2314
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2315
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2316

2317 2318
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2319

2320
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2321
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

2332 2333
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
		nn_err(nn, "Dev is not up: 0x%08x\n", nn->dp.ctrl);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		return 0;
	}

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2358
	new_ctrl = nn->dp.ctrl;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2369
	if (new_ctrl == nn->dp.ctrl)
2370 2371 2372
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2373
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2374

2375
	nn->dp.ctrl = new_ctrl;
2376 2377
}

2378 2379 2380 2381 2382 2383
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2384
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2385 2386
}

2387 2388 2389 2390 2391 2392
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2393 2394

	nn->dp.netdev->mtu = new_dp.mtu;
2395 2396 2397

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2398 2399
}

2400
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2401
{
2402
	unsigned int r;
2403
	int err;
2404

2405
	nfp_net_dp_swap(nn, dp);
2406

2407
	for (r = 0; r <	nn->max_r_vecs; r++)
2408
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2409

2410
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2411 2412
	if (err)
		return err;
2413

2414 2415 2416
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2417 2418 2419 2420
		if (err)
			return err;
	}

2421 2422
	return __nfp_net_set_config_and_enable(nn);
}
2423

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2444
static int nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp)
2445 2446
{
	/* XDP-enabled tests */
2447
	if (!dp->xdp_prog)
2448
		return 0;
2449
	if (dp->fl_bufsz > PAGE_SIZE) {
2450 2451 2452
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
2453
	if (dp->num_tx_rings > nn->max_tx_rings) {
2454 2455 2456 2457 2458 2459 2460
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2461
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp)
2462
{
2463
	int r, err;
2464

2465
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2466

2467
	dp->num_stack_tx_rings = dp->num_tx_rings;
2468
	if (dp->xdp_prog)
2469
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2470

2471
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2472

2473
	err = nfp_net_check_config(nn, dp);
2474
	if (err)
2475
		goto exit_free_dp;
2476

2477
	if (!netif_running(dp->netdev)) {
2478
		nfp_net_dp_swap(nn, dp);
2479 2480
		err = 0;
		goto exit_free_dp;
2481 2482 2483
	}

	/* Prepare new rings */
2484
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2485 2486
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2487
			dp->num_r_vecs = r;
2488 2489 2490
			goto err_cleanup_vecs;
		}
	}
2491 2492 2493 2494 2495 2496 2497 2498

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2499 2500 2501 2502 2503

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2504
	err = nfp_net_dp_swap_enable(nn, dp);
2505
	if (err) {
2506
		int err2;
2507

2508
		nfp_net_clear_config_and_disable(nn);
2509

2510
		/* Try with old configuration and old rings */
2511
		err2 = nfp_net_dp_swap_enable(nn, dp);
2512
		if (err2)
2513
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2514
			       err, err2);
2515
	}
2516
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2517
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2518

2519 2520
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2521 2522

	nfp_net_open_stack(nn);
2523 2524
exit_free_dp:
	kfree(dp);
2525 2526

	return err;
2527 2528

err_free_rx:
2529
	nfp_net_rx_rings_free(dp);
2530
err_cleanup_vecs:
2531
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2532
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2533
	kfree(dp);
2534 2535 2536 2537 2538 2539
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2540 2541 2542 2543 2544
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2545

2546 2547
	dp->mtu = new_mtu;

2548
	return nfp_net_ring_reconfig(nn, dp);
2549 2550
}

2551 2552
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2553 2554 2555 2556
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2557
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

2603
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2604
		if (!nn->dp.bpf_offload_xdp)
2605 2606 2607 2608
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2609 2610 2611 2612

	return -EINVAL;
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2623
	new_ctrl = nn->dp.ctrl;
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2667
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2668 2669 2670 2671
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2672 2673 2674
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2675
	if (new_ctrl == nn->dp.ctrl)
2676 2677
		return 0;

2678
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2679 2680 2681 2682 2683
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2684
	nn->dp.ctrl = new_ctrl;
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2721
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2722 2723 2724 2725 2726 2727 2728 2729
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2730
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2731 2732 2733 2734

	return features;
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2767
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2768 2769 2770 2771 2772 2773 2774 2775
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2776
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2803
				   struct udp_tunnel_info *ti)
2804 2805 2806 2807
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2808 2809 2810 2811
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2812 2813 2814 2815
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2816
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2817 2818 2819
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2820
				   struct udp_tunnel_info *ti)
2821 2822 2823 2824
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2825 2826 2827 2828
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2829
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2830 2831 2832 2833 2834 2835
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2846 2847
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2860
	nn->dp.bpf_offload_xdp = prog && !ret;
2861 2862 2863
	return ret;
}

2864 2865
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
2866
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2867
	struct nfp_net_dp *dp;
2868 2869
	int err;

2870 2871 2872 2873
	if (prog && prog->xdp_adjust_head) {
		nn_err(nn, "Does not support bpf_xdp_adjust_head()\n");
		return -EOPNOTSUPP;
	}
2874
	if (!prog && !nn->dp.xdp_prog)
2875
		return 0;
2876 2877
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2878
		bpf_prog_put(prog);
2879
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2880 2881 2882
		return 0;
	}

2883 2884 2885 2886
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2887
	dp->xdp_prog = prog;
2888
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2889
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2890 2891

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2892
	err = nfp_net_ring_reconfig(nn, dp);
2893 2894 2895
	if (err)
		return err;

2896 2897
	if (old_prog)
		bpf_prog_put(old_prog);
2898

2899
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
2912
		xdp->prog_attached = !!nn->dp.xdp_prog;
2913 2914 2915 2916 2917 2918
		return 0;
	default:
		return -EINVAL;
	}
}

2919 2920 2921 2922 2923
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
2924
	.ndo_setup_tc		= nfp_net_setup_tc,
2925 2926 2927 2928 2929 2930
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
2931
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
2932 2933
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
2934
	.ndo_xdp		= nfp_net_xdp,
2935 2936 2937 2938 2939 2940 2941 2942
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
2943
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2944 2945 2946
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
2947 2948 2949 2950
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
2951
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
2968 2969
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
2984 2985
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

2998 2999
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3000 3001 3002 3003 3004
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3005 3006 3007
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3008
				 netif_get_num_default_rss_queues());
3009

3010 3011 3012
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3013

3014 3015
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3016 3017

	spin_lock_init(&nn->reconfig_lock);
3018
	spin_lock_init(&nn->rx_filter_lock);
3019 3020
	spin_lock_init(&nn->link_status_lock);

3021 3022
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3023 3024
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3025

3026 3027 3028 3029 3030 3031 3032 3033 3034
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
3035
	free_netdev(nn->dp.netdev);
3036 3037
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3059 3060 3061 3062 3063 3064
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3077
		dev_warn(nn->dp.dev,
3078 3079 3080 3081 3082 3083
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3084

3085
	nfp_net_rss_init_itbl(nn);
3086 3087 3088 3089

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3090
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

3117
	nn->dp.chained_metadata_format = nn->fw_ver.major > 3;
J
Jakub Kicinski 已提交
3118

3119 3120
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3121 3122 3123 3124
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3125
	nfp_net_write_mac_addr(nn);
3126

3127
	/* Determine RX packet/metadata boundary offset */
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3138
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3139
	}
3140

3141 3142 3143 3144 3145
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3146 3147
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
3158
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3159 3160 3161
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3162
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3163 3164 3165
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3166
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3167 3168 3169
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3170
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO;
3171 3172 3173 3174
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3175
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS;
3176 3177 3178 3179 3180 3181
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3182
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3183 3184 3185 3186 3187 3188 3189 3190

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3191
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3192 3193 3194
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3195
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3196 3197 3198 3199
	}

	netdev->features = netdev->hw_features;

3200 3201 3202
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3203 3204 3205 3206 3207
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3208
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3209
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3210
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3211 3212 3213 3214

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3215
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3233 3234 3235 3236 3237

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3238
	netif_carrier_off(netdev);
3239 3240

	nfp_net_set_ethtool_ops(netdev);
3241
	nfp_net_vecs_init(netdev);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3252 3253
	struct nfp_net *nn = netdev_priv(netdev);

3254 3255 3256
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3257
		nfp_net_xdp_offload(nn, NULL);
3258
	unregister_netdev(nn->dp.netdev);
3259
}