amd_iommu_init.c 57.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <linux/amd-iommu.h>
28
#include <linux/export.h>
A
Alex Williamson 已提交
29
#include <linux/iommu.h>
30
#include <asm/pci-direct.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34
#include <asm/iommu_table.h>
35
#include <asm/io_apic.h>
36
#include <asm/irq_remapping.h>
37 38 39

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
40
#include "irq_remapping.h"
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47
60 61 62 63
#define IVHD_DEV_SPECIAL		0x48

#define IVHD_SPECIAL_IOAPIC		1
#define IVHD_SPECIAL_HPET		2
64

J
Joerg Roedel 已提交
65 66 67 68
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
69 70 71 72 73 74 75 76 77 78 79 80 81

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

82 83 84 85 86 87 88 89 90 91 92
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
93 94 95 96 97 98 99 100 101
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
102 103 104 105 106
	u32 efr_attr;

	/* Following only valid on IVHD type 11h and 40h */
	u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */
	u64 res;
107 108
} __attribute__((packed));

109 110 111 112
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
113 114 115 116 117 118 119
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

120 121 122 123
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
124 125 126 127 128 129 130 131 132 133 134
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

135
bool amd_iommu_dump;
136
bool amd_iommu_irq_remap __read_mostly;
137

138
static bool amd_iommu_detected;
139
static bool __initdata amd_iommu_disabled;
140

141 142
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
143
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
144
					   we find in ACPI */
145
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
146

147
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
148
					   system */
149

150 151 152 153
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

154 155
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
156
bool amd_iommu_iotlb_sup __read_mostly = true;
157

158
u32 amd_iommu_max_pasid __read_mostly = ~0;
159

160
bool amd_iommu_v2_present __read_mostly;
J
Joerg Roedel 已提交
161
static bool amd_iommu_pc_present __read_mostly;
162

163 164
bool amd_iommu_force_isolation __read_mostly;

165 166 167 168 169 170
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

171 172 173 174 175 176
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
177
struct dev_table_entry *amd_iommu_dev_table;
178 179 180 181 182 183

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
184
u16 *amd_iommu_alias_table;
185 186 187 188 189

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
190
struct amd_iommu **amd_iommu_rlookup_table;
191 192

/*
193 194 195 196 197
 * This table is used to find the irq remapping table for a given device id
 * quickly.
 */
struct irq_remap_table **irq_lookup_table;

198
/*
F
Frank Arnold 已提交
199
 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
200 201
 * to know which ones are already in use.
 */
202 203
unsigned long *amd_iommu_pd_alloc_bitmap;

204 205 206
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
207

208 209 210 211 212 213 214 215 216 217 218 219 220
enum iommu_init_state {
	IOMMU_START_STATE,
	IOMMU_IVRS_DETECTED,
	IOMMU_ACPI_FINISHED,
	IOMMU_ENABLED,
	IOMMU_PCI_INIT,
	IOMMU_INTERRUPTS_EN,
	IOMMU_DMA_OPS,
	IOMMU_INITIALIZED,
	IOMMU_NOT_FOUND,
	IOMMU_INIT_ERROR,
};

221 222 223 224 225 226
/* Early ioapic and hpet maps from kernel command line */
#define EARLY_MAP_SIZE		4
static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
static int __initdata early_ioapic_map_size;
static int __initdata early_hpet_map_size;
227
static bool __initdata cmdline_maps;
228

229 230
static enum iommu_init_state init_state = IOMMU_START_STATE;

231
static int amd_iommu_enable_interrupts(void);
232
static int __init iommu_go_to_state(enum iommu_init_state state);
233
static void init_device_table_dma(void);
234

235 236 237 238
static int iommu_pc_get_set_reg_val(struct amd_iommu *iommu,
				    u8 bank, u8 cntr, u8 fxn,
				    u64 *value, bool is_write);

239 240 241 242 243 244
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

245 246 247
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
248
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
249 250 251 252

	return 1UL << shift;
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

286 287 288 289 290 291 292 293
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
294

295 296 297 298
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
299
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

317
/* Programs the physical address of the device table into the IOMMU hardware */
318
static void iommu_set_device_table(struct amd_iommu *iommu)
319
{
320
	u64 entry;
321 322 323 324 325 326 327 328 329

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

330
/* Generic functions to enable/disable certain features of the IOMMU. */
331
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
332 333 334 335 336 337 338 339
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

340
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
341 342 343
{
	u32 ctrl;

344
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
345 346 347 348
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

349 350 351 352 353 354 355 356 357 358
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl &= ~CTRL_INV_TO_MASK;
	ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

359
/* Function to enable the hardware */
360
static void iommu_enable(struct amd_iommu *iommu)
361 362 363 364
{
	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

365
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
366
{
367 368 369 370 371 372 373 374
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
375
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
376 377
}

378 379 380 381
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
382
static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end)
383
{
384 385 386
	if (!request_mem_region(address, end, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx-%llx for mmio\n",
			address, end);
387
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
388
		return NULL;
389
	}
390

391
	return (u8 __iomem *)ioremap_nocache(address, end);
392 393 394 395 396 397
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
398
	release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end);
399 400
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static inline u32 get_ivhd_header_size(struct ivhd_header *h)
{
	u32 size = 0;

	switch (h->type) {
	case 0x10:
		size = 24;
		break;
	case 0x11:
	case 0x40:
		size = 40;
		break;
	}
	return size;
}

417 418 419 420 421 422 423 424 425
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

426 427 428 429 430 431 432 433
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

434 435 436 437
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
438 439 440 441 442
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

443 444 445 446 447 448 449 450
	u32 ivhd_size = get_ivhd_header_size(h);

	if (!ivhd_size) {
		pr_err("AMD-Vi: Unsupported IVHD type %#x\n", h->type);
		return -EINVAL;
	}

	p += ivhd_size;
451 452 453 454 455
	end += h->length;

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
456 457 458 459
		case IVHD_DEV_ALL:
			/* Use maximum BDF value for DEV_ALL */
			update_last_devid(0xffff);
			break;
460 461 462 463
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
464
			/* all the above subfield types refer to device ids */
465
			update_last_devid(dev->devid);
466 467 468 469
			break;
		default:
			break;
		}
470
		p += ivhd_entry_length(p);
471 472 473 474 475 476 477
	}

	WARN_ON(p != end);

	return 0;
}

478 479 480 481 482
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
483 484 485 486 487 488 489 490 491 492 493 494
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
495
	if (checksum != 0)
496
		/* ACPI table corrupt */
497
		return -ENODEV;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

518 519
/****************************************************************************
 *
F
Frank Arnold 已提交
520
 * The following functions belong to the code path which parses the ACPI table
521 522 523 524 525 526 527 528 529 530 531
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
532
static int __init alloc_command_buffer(struct amd_iommu *iommu)
533
{
534 535
	iommu->cmd_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						  get_order(CMD_BUFFER_SIZE));
536

537
	return iommu->cmd_buf ? 0 : -ENOMEM;
538 539
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

554 555 556 557 558 559 560 561 562 563 564
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
565
	entry |= MMIO_CMD_SIZE_512;
566

567
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
568
		    &entry, sizeof(entry));
569

570
	amd_iommu_reset_cmd_buffer(iommu);
571 572 573 574
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
575
	free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE));
576 577
}

578
/* allocates the memory where the IOMMU will log its events to */
579
static int __init alloc_event_buffer(struct amd_iommu *iommu)
580
{
581 582
	iommu->evt_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						  get_order(EVT_BUFFER_SIZE));
583

584
	return iommu->evt_buf ? 0 : -ENOMEM;
585 586 587 588 589 590 591 592
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

593
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
594

595 596 597
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

598 599 600 601
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

602
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
603 604 605 606 607 608 609
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

610
/* allocates the memory where the IOMMU will log its events to */
611
static int __init alloc_ppr_log(struct amd_iommu *iommu)
612
{
613 614
	iommu->ppr_log = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						  get_order(PPR_LOG_SIZE));
615

616
	return iommu->ppr_log ? 0 : -ENOMEM;
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
}

static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
	u64 entry;

	if (iommu->ppr_log == NULL)
		return;

	entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;

	memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
		    &entry, sizeof(entry));

	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
	iommu_feature_enable(iommu, CONTROL_PPR_EN);
}

static void __init free_ppr_log(struct amd_iommu *iommu)
{
	if (iommu->ppr_log == NULL)
		return;

	free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}

647 648 649 650 651 652 653 654
static void iommu_enable_gt(struct amd_iommu *iommu)
{
	if (!iommu_feature(iommu, FEATURE_GT))
		return;

	iommu_feature_enable(iommu, CONTROL_GT_EN);
}

655
/* sets a specific bit in the device table entry. */
656 657
static void set_dev_entry_bit(u16 devid, u8 bit)
{
658 659
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
660

661
	amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
662 663
}

664 665
static int get_dev_entry_bit(u16 devid, u8 bit)
{
666 667
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
668

669
	return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
670 671 672 673 674 675 676 677 678 679 680 681 682 683
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

684 685 686 687 688 689
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

690 691 692 693
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
694 695
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

712 713
	amd_iommu_apply_erratum_63(devid);

714
	set_iommu_for_device(iommu, devid);
715 716
}

717
static int __init add_special_device(u8 type, u8 id, u16 *devid, bool cmd_line)
718 719 720 721
{
	struct devid_map *entry;
	struct list_head *list;

722 723 724 725 726
	if (type == IVHD_SPECIAL_IOAPIC)
		list = &ioapic_map;
	else if (type == IVHD_SPECIAL_HPET)
		list = &hpet_map;
	else
727 728
		return -EINVAL;

729 730 731 732 733 734 735
	list_for_each_entry(entry, list, list) {
		if (!(entry->id == id && entry->cmd_line))
			continue;

		pr_info("AMD-Vi: Command-line override present for %s id %d - ignoring\n",
			type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);

736 737
		*devid = entry->devid;

738 739 740
		return 0;
	}

741 742 743 744
	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return -ENOMEM;

745
	entry->id	= id;
746
	entry->devid	= *devid;
747
	entry->cmd_line	= cmd_line;
748 749 750 751 752 753

	list_add_tail(&entry->list, list);

	return 0;
}

754 755 756 757 758 759 760
static int __init add_early_maps(void)
{
	int i, ret;

	for (i = 0; i < early_ioapic_map_size; ++i) {
		ret = add_special_device(IVHD_SPECIAL_IOAPIC,
					 early_ioapic_map[i].id,
761
					 &early_ioapic_map[i].devid,
762 763 764 765 766 767 768 769
					 early_ioapic_map[i].cmd_line);
		if (ret)
			return ret;
	}

	for (i = 0; i < early_hpet_map_size; ++i) {
		ret = add_special_device(IVHD_SPECIAL_HPET,
					 early_hpet_map[i].id,
770
					 &early_hpet_map[i].devid,
771 772 773 774 775 776 777 778
					 early_hpet_map[i].cmd_line);
		if (ret)
			return ret;
	}

	return 0;
}

779
/*
F
Frank Arnold 已提交
780
 * Reads the device exclusion range from ACPI and initializes the IOMMU with
781 782
 * it
 */
783 784 785 786 787 788 789 790
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
791 792 793 794 795
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
796
		set_dev_entry_bit(devid, DEV_ENTRY_EX);
797 798 799 800 801
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

802 803 804 805
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
806
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
807 808 809 810
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
811 812
	u16 devid = 0, devid_start = 0, devid_to = 0;
	u32 dev_i, ext_flags = 0;
813
	bool alias = false;
814
	struct ivhd_entry *e;
815
	u32 ivhd_size;
816 817 818 819 820 821
	int ret;


	ret = add_early_maps();
	if (ret)
		return ret;
822 823

	/*
824
	 * First save the recommended feature enable bits from ACPI
825
	 */
826
	iommu->acpi_flags = h->flags;
827 828 829 830

	/*
	 * Done. Now parse the device entries
	 */
831 832 833 834 835 836 837 838
	ivhd_size = get_ivhd_header_size(h);
	if (!ivhd_size) {
		pr_err("AMD-Vi: Unsupported IVHD type %#x\n", h->type);
		return -EINVAL;
	}

	p += ivhd_size;

839 840
	end += h->length;

841

842 843 844 845
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
846

847
			DUMP_printk("  DEV_ALL\t\t\tflags: %02x\n", e->flags);
848

849 850
			for (dev_i = 0; dev_i <= amd_iommu_last_bdf; ++dev_i)
				set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0);
851 852
			break;
		case IVHD_DEV_SELECT:
853 854 855

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
856
				    PCI_BUS_NUM(e->devid),
857 858 859 860
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

861
			devid = e->devid;
862
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
863 864
			break;
		case IVHD_DEV_SELECT_RANGE_START:
865 866 867

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
868
				    PCI_BUS_NUM(e->devid),
869 870 871 872
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

873 874 875
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
876
			alias = false;
877 878
			break;
		case IVHD_DEV_ALIAS:
879 880 881

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
882
				    PCI_BUS_NUM(e->devid),
883 884 885
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
886
				    PCI_BUS_NUM(e->ext >> 8),
887 888 889
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

890 891
			devid = e->devid;
			devid_to = e->ext >> 8;
892
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
893
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
894 895 896
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
897 898 899 900

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
901
				    PCI_BUS_NUM(e->devid),
902 903 904
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
905
				    PCI_BUS_NUM(e->ext >> 8),
906 907 908
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

909 910 911 912
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
913
			alias = true;
914 915
			break;
		case IVHD_DEV_EXT_SELECT:
916 917 918

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
919
				    PCI_BUS_NUM(e->devid),
920 921 922 923
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

924
			devid = e->devid;
925 926
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
927 928
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
929 930 931

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
932
				    PCI_BUS_NUM(e->devid),
933 934 935 936
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

937 938 939
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
940
			alias = false;
941 942
			break;
		case IVHD_DEV_RANGE_END:
943 944

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
945
				    PCI_BUS_NUM(e->devid),
946 947 948
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

949 950
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
951
				if (alias) {
952
					amd_iommu_alias_table[dev_i] = devid_to;
953 954 955 956 957
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
958 959
			}
			break;
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
		case IVHD_DEV_SPECIAL: {
			u8 handle, type;
			const char *var;
			u16 devid;
			int ret;

			handle = e->ext & 0xff;
			devid  = (e->ext >>  8) & 0xffff;
			type   = (e->ext >> 24) & 0xff;

			if (type == IVHD_SPECIAL_IOAPIC)
				var = "IOAPIC";
			else if (type == IVHD_SPECIAL_HPET)
				var = "HPET";
			else
				var = "UNKNOWN";

			DUMP_printk("  DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
				    var, (int)handle,
979
				    PCI_BUS_NUM(devid),
980 981 982
				    PCI_SLOT(devid),
				    PCI_FUNC(devid));

983
			ret = add_special_device(type, handle, &devid, false);
984 985
			if (ret)
				return ret;
986 987 988 989 990 991 992 993

			/*
			 * add_special_device might update the devid in case a
			 * command-line override is present. So call
			 * set_dev_entry_from_acpi after add_special_device.
			 */
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);

994 995
			break;
		}
996 997 998 999
		default:
			break;
		}

1000
		p += ivhd_entry_length(p);
1001
	}
1002 1003

	return 0;
1004 1005
}

1006 1007 1008
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
1009
	free_event_buffer(iommu);
1010
	free_ppr_log(iommu);
1011 1012 1013 1014 1015 1016 1017
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

1018
	for_each_iommu_safe(iommu, next) {
1019 1020 1021 1022 1023 1024
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

1025 1026 1027 1028 1029 1030
/*
 * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
 * Workaround:
 *     BIOS should disable L2B micellaneous clock gating by setting
 *     L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
 */
1031
static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	u32 value;

	if ((boot_cpu_data.x86 != 0x15) ||
	    (boot_cpu_data.x86_model < 0x10) ||
	    (boot_cpu_data.x86_model > 0x1f))
		return;

	pci_write_config_dword(iommu->dev, 0xf0, 0x90);
	pci_read_config_dword(iommu->dev, 0xf4, &value);

	if (value & BIT(2))
		return;

	/* Select NB indirect register 0x90 and enable writing */
	pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));

	pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
	pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n",
		dev_name(&iommu->dev->dev));

	/* Clear the enable writing bit */
	pci_write_config_dword(iommu->dev, 0xf0, 0x90);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/*
 * Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission)
 * Workaround:
 *     BIOS should enable ATS write permission check by setting
 *     L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b
 */
static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu)
{
	u32 value;

	if ((boot_cpu_data.x86 != 0x15) ||
	    (boot_cpu_data.x86_model < 0x30) ||
	    (boot_cpu_data.x86_model > 0x3f))
		return;

	/* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */
	value = iommu_read_l2(iommu, 0x47);

	if (value & BIT(0))
		return;

	/* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */
	iommu_write_l2(iommu, 0x47, value | BIT(0));

	pr_info("AMD-Vi: Applying ATS write check workaround for IOMMU at %s\n",
		dev_name(&iommu->dev->dev));
}

1085 1086 1087 1088 1089
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
1090 1091
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
1092 1093
	int ret;

1094
	spin_lock_init(&iommu->lock);
1095 1096

	/* Add IOMMU to internal data structures */
1097
	list_add_tail(&iommu->list, &amd_iommu_list);
1098 1099 1100 1101 1102 1103 1104 1105 1106
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
1107 1108 1109 1110

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
1111
	iommu->devid   = h->devid;
1112
	iommu->cap_ptr = h->cap_ptr;
1113
	iommu->pci_seg = h->pci_seg;
1114
	iommu->mmio_phys = h->mmio_phys;
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	switch (h->type) {
	case 0x10:
		/* Check if IVHD EFR contains proper max banks/counters */
		if ((h->efr_attr != 0) &&
		    ((h->efr_attr & (0xF << 13)) != 0) &&
		    ((h->efr_attr & (0x3F << 17)) != 0))
			iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
		else
			iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
		break;
	case 0x11:
	case 0x40:
		if (h->efr_reg & (1 << 9))
			iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
		else
			iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
		break;
	default:
		return -EINVAL;
1135 1136 1137 1138
	}

	iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys,
						iommu->mmio_phys_end);
1139 1140 1141
	if (!iommu->mmio_base)
		return -ENOMEM;

1142
	if (alloc_command_buffer(iommu))
1143 1144
		return -ENOMEM;

1145
	if (alloc_event_buffer(iommu))
1146 1147
		return -ENOMEM;

1148 1149
	iommu->int_enabled = false;

1150 1151 1152
	ret = init_iommu_from_acpi(iommu, h);
	if (ret)
		return ret;
1153

1154 1155 1156 1157
	ret = amd_iommu_create_irq_domain(iommu);
	if (ret)
		return ret;

1158 1159 1160 1161 1162 1163
	/*
	 * Make sure IOMMU is not considered to translate itself. The IVRS
	 * table tells us so, but this is a lie!
	 */
	amd_iommu_rlookup_table[iommu->devid] = NULL;

1164
	return 0;
1165 1166
}

1167 1168 1169 1170
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
1185

1186
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1187
				    "seg: %d flags: %01x info %04x\n",
1188
				    PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid),
1189 1190 1191 1192 1193
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

1194
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1195 1196
			if (iommu == NULL)
				return -ENOMEM;
1197

1198
			ret = init_iommu_one(iommu, h);
1199 1200
			if (ret)
				return ret;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

static void init_iommu_perf_ctr(struct amd_iommu *iommu)
{
	u64 val = 0xabcd, val2 = 0;

	if (!iommu_feature(iommu, FEATURE_PC))
		return;

	amd_iommu_pc_present = true;

	/* Check if the performance counters can be written to */
1224 1225
	if ((0 != iommu_pc_get_set_reg_val(iommu, 0, 0, 0, &val, true)) ||
	    (0 != iommu_pc_get_set_reg_val(iommu, 0, 0, 0, &val2, false)) ||
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	    (val != val2)) {
		pr_err("AMD-Vi: Unable to write to IOMMU perf counter.\n");
		amd_iommu_pc_present = false;
		return;
	}

	pr_info("AMD-Vi: IOMMU performance counters supported\n");

	val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET);
	iommu->max_banks = (u8) ((val >> 12) & 0x3f);
	iommu->max_counters = (u8) ((val >> 7) & 0xf);
}

A
Alex Williamson 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static ssize_t amd_iommu_show_cap(struct device *dev,
				  struct device_attribute *attr,
				  char *buf)
{
	struct amd_iommu *iommu = dev_get_drvdata(dev);
	return sprintf(buf, "%x\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL);

static ssize_t amd_iommu_show_features(struct device *dev,
				       struct device_attribute *attr,
				       char *buf)
{
	struct amd_iommu *iommu = dev_get_drvdata(dev);
	return sprintf(buf, "%llx\n", iommu->features);
}
static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL);

static struct attribute *amd_iommu_attrs[] = {
	&dev_attr_cap.attr,
	&dev_attr_features.attr,
	NULL,
};

static struct attribute_group amd_iommu_group = {
	.name = "amd-iommu",
	.attrs = amd_iommu_attrs,
};

static const struct attribute_group *amd_iommu_groups[] = {
	&amd_iommu_group,
	NULL,
};
1272

1273 1274 1275 1276 1277
static int iommu_init_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
	u32 range, misc, low, high;

1278
	iommu->dev = pci_get_bus_and_slot(PCI_BUS_NUM(iommu->devid),
1279 1280 1281 1282
					  iommu->devid & 0xff);
	if (!iommu->dev)
		return -ENODEV;

1283 1284 1285
	/* Prevent binding other PCI device drivers to IOMMU devices */
	iommu->dev->match_driver = false;

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);

	if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
		amd_iommu_iotlb_sup = false;

	/* read extended feature bits */
	low  = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
	high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);

	iommu->features = ((u64)high << 32) | low;

	if (iommu_feature(iommu, FEATURE_GT)) {
		int glxval;
1304 1305
		u32 max_pasid;
		u64 pasmax;
1306

1307 1308 1309
		pasmax = iommu->features & FEATURE_PASID_MASK;
		pasmax >>= FEATURE_PASID_SHIFT;
		max_pasid  = (1 << (pasmax + 1)) - 1;
1310

1311 1312 1313
		amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid);

		BUG_ON(amd_iommu_max_pasid & ~PASID_MASK);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

		glxval   = iommu->features & FEATURE_GLXVAL_MASK;
		glxval >>= FEATURE_GLXVAL_SHIFT;

		if (amd_iommu_max_glx_val == -1)
			amd_iommu_max_glx_val = glxval;
		else
			amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
	}

	if (iommu_feature(iommu, FEATURE_GT) &&
	    iommu_feature(iommu, FEATURE_PPR)) {
		iommu->is_iommu_v2   = true;
		amd_iommu_v2_present = true;
	}

1330 1331
	if (iommu_feature(iommu, FEATURE_PPR) && alloc_ppr_log(iommu))
		return -ENOMEM;
1332 1333 1334 1335

	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

1336 1337
	init_iommu_perf_ctr(iommu);

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (is_rd890_iommu(iommu->dev)) {
		int i, j;

		iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
				PCI_DEVFN(0, 0));

		/*
		 * Some rd890 systems may not be fully reconfigured by the
		 * BIOS, so it's necessary for us to store this information so
		 * it can be reprogrammed on resume
		 */
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
				&iommu->stored_addr_lo);
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
				&iommu->stored_addr_hi);

		/* Low bit locks writes to configuration space */
		iommu->stored_addr_lo &= ~1;

		for (i = 0; i < 6; i++)
			for (j = 0; j < 0x12; j++)
				iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

		for (i = 0; i < 0x83; i++)
			iommu->stored_l2[i] = iommu_read_l2(iommu, i);
	}

1365
	amd_iommu_erratum_746_workaround(iommu);
1366
	amd_iommu_ats_write_check_workaround(iommu);
1367

A
Alex Williamson 已提交
1368 1369 1370 1371
	iommu->iommu_dev = iommu_device_create(&iommu->dev->dev, iommu,
					       amd_iommu_groups, "ivhd%d",
					       iommu->index);

1372 1373 1374
	return pci_enable_device(iommu->dev);
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static void print_iommu_info(void)
{
	static const char * const feat_str[] = {
		"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
		"IA", "GA", "HE", "PC"
	};
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		int i;

		pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
			dev_name(&iommu->dev->dev), iommu->cap_ptr);

		if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
			pr_info("AMD-Vi:  Extended features: ");
1391
			for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1392 1393 1394
				if (iommu_feature(iommu, (1ULL << i)))
					pr_cont(" %s", feat_str[i]);
			}
1395
			pr_cont("\n");
1396
		}
1397
	}
1398 1399
	if (irq_remapping_enabled)
		pr_info("AMD-Vi: Interrupt remapping enabled\n");
1400 1401
}

1402
static int __init amd_iommu_init_pci(void)
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_pci(iommu);
		if (ret)
			break;
	}

1413 1414 1415 1416 1417
	init_device_table_dma();

	for_each_iommu(iommu)
		iommu_flush_all_caches(iommu);

1418
	ret = amd_iommu_init_api();
1419

1420 1421
	if (!ret)
		print_iommu_info();
1422

1423 1424 1425
	return ret;
}

1426 1427 1428
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
F
Frank Arnold 已提交
1429
 * in the system. It's a bit challenging because there could be multiple
1430 1431 1432 1433 1434
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1435
static int iommu_setup_msi(struct amd_iommu *iommu)
1436 1437 1438
{
	int r;

1439 1440 1441
	r = pci_enable_msi(iommu->dev);
	if (r)
		return r;
1442

1443 1444 1445 1446
	r = request_threaded_irq(iommu->dev->irq,
				 amd_iommu_int_handler,
				 amd_iommu_int_thread,
				 0, "AMD-Vi",
1447
				 iommu);
1448 1449 1450

	if (r) {
		pci_disable_msi(iommu->dev);
1451
		return r;
1452 1453
	}

1454
	iommu->int_enabled = true;
1455

1456 1457 1458
	return 0;
}

1459
static int iommu_init_msi(struct amd_iommu *iommu)
1460
{
1461 1462
	int ret;

1463
	if (iommu->int_enabled)
1464
		goto enable_faults;
1465

1466
	if (iommu->dev->msi_cap)
1467 1468 1469 1470 1471 1472
		ret = iommu_setup_msi(iommu);
	else
		ret = -ENODEV;

	if (ret)
		return ret;
1473

1474 1475
enable_faults:
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1476

1477 1478 1479 1480
	if (iommu->ppr_log != NULL)
		iommu_feature_enable(iommu, CONTROL_PPFINT_EN);

	return 0;
1481 1482
}

1483 1484 1485 1486
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
F
Frank Arnold 已提交
1487
 * gathered (like exclusion and unity mapping ranges).
1488 1489 1490
 *
 ****************************************************************************/

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1501
/* called when we find an exclusion range definition in ACPI */
1502 1503 1504 1505 1506 1507 1508 1509 1510
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1511
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1525
/* called for unity map ACPI definition */
1526 1527
static int __init init_unity_map_range(struct ivmd_header *m)
{
J
Joerg Roedel 已提交
1528
	struct unity_map_entry *e = NULL;
1529
	char *s;
1530 1531 1532 1533 1534 1535 1536

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1537 1538
		kfree(e);
		return 0;
1539
	case ACPI_IVMD_TYPE:
1540
		s = "IVMD_TYPEi\t\t\t";
1541 1542 1543
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1544
		s = "IVMD_TYPE_ALL\t\t";
1545 1546 1547 1548
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1549
		s = "IVMD_TYPE_RANGE\t\t";
1550 1551 1552 1553 1554 1555 1556 1557
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1558 1559
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
1560 1561
		    PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS_NUM(e->devid_end),
1562 1563 1564
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1565 1566 1567 1568 1569
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1570
/* iterates over all memory definitions we find in the ACPI table */
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1592 1593 1594 1595
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
1596
static void init_device_table_dma(void)
1597
{
1598
	u32 devid;
1599 1600 1601 1602 1603 1604 1605

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static void __init uninit_device_table_dma(void)
{
	u32 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		amd_iommu_dev_table[devid].data[0] = 0ULL;
		amd_iommu_dev_table[devid].data[1] = 0ULL;
	}
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static void init_device_table(void)
{
	u32 devid;

	if (!amd_iommu_irq_remap)
		return;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1649 1650 1651

	/* Set IOTLB invalidation timeout to 1s */
	iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1652 1653
}

1654
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1655
{
1656 1657
	int i, j;
	u32 ioc_feature_control;
1658
	struct pci_dev *pdev = iommu->root_pdev;
1659 1660

	/* RD890 BIOSes may not have completely reconfigured the iommu */
1661
	if (!is_rd890_iommu(iommu->dev) || !pdev)
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1695 1696
}

1697 1698 1699 1700
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1701
static void early_enable_iommus(void)
1702 1703 1704
{
	struct amd_iommu *iommu;

1705
	for_each_iommu(iommu) {
1706
		iommu_disable(iommu);
1707
		iommu_init_flags(iommu);
1708 1709 1710
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1711 1712
		iommu_set_exclusion_range(iommu);
		iommu_enable(iommu);
1713
		iommu_flush_all_caches(iommu);
1714 1715 1716
	}
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static void enable_iommus_v2(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		iommu_enable_ppr_log(iommu);
		iommu_enable_gt(iommu);
	}
}

static void enable_iommus(void)
{
	early_enable_iommus();

	enable_iommus_v2();
}

1734 1735 1736 1737 1738 1739 1740 1741
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1742 1743 1744 1745 1746
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1747
static void amd_iommu_resume(void)
1748
{
1749 1750 1751 1752 1753
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1754 1755
	/* re-load the hardware */
	enable_iommus();
1756 1757

	amd_iommu_enable_interrupts();
1758 1759
}

1760
static int amd_iommu_suspend(void)
1761
{
1762 1763 1764 1765
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1766 1767
}

1768
static struct syscore_ops amd_iommu_syscore_ops = {
1769 1770 1771 1772
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1773 1774
static void __init free_on_init_error(void)
{
1775 1776
	free_pages((unsigned long)irq_lookup_table,
		   get_order(rlookup_table_size));
1777

1778 1779
	kmem_cache_destroy(amd_iommu_irq_cache);
	amd_iommu_irq_cache = NULL;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));

	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));

	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));

	free_iommu_all();

#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif
}

1802 1803 1804
/* SB IOAPIC is always on this device in AMD systems */
#define IOAPIC_SB_DEVID		((0x00 << 8) | PCI_DEVFN(0x14, 0))

1805 1806
static bool __init check_ioapic_information(void)
{
1807
	const char *fw_bug = FW_BUG;
1808
	bool ret, has_sb_ioapic;
1809 1810
	int idx;

1811 1812
	has_sb_ioapic = false;
	ret           = false;
1813

1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * If we have map overrides on the kernel command line the
	 * messages in this function might not describe firmware bugs
	 * anymore - so be careful
	 */
	if (cmdline_maps)
		fw_bug = "";

1822 1823 1824 1825 1826
	for (idx = 0; idx < nr_ioapics; idx++) {
		int devid, id = mpc_ioapic_id(idx);

		devid = get_ioapic_devid(id);
		if (devid < 0) {
1827 1828
			pr_err("%sAMD-Vi: IOAPIC[%d] not in IVRS table\n",
				fw_bug, id);
1829 1830 1831 1832
			ret = false;
		} else if (devid == IOAPIC_SB_DEVID) {
			has_sb_ioapic = true;
			ret           = true;
1833 1834 1835
		}
	}

1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (!has_sb_ioapic) {
		/*
		 * We expect the SB IOAPIC to be listed in the IVRS
		 * table. The system timer is connected to the SB IOAPIC
		 * and if we don't have it in the list the system will
		 * panic at boot time.  This situation usually happens
		 * when the BIOS is buggy and provides us the wrong
		 * device id for the IOAPIC in the system.
		 */
1845
		pr_err("%sAMD-Vi: No southbridge IOAPIC found\n", fw_bug);
1846 1847 1848
	}

	if (!ret)
1849
		pr_err("AMD-Vi: Disabling interrupt remapping\n");
1850 1851

	return ret;
1852 1853
}

1854 1855 1856 1857 1858 1859 1860 1861
static void __init free_dma_resources(void)
{
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));

	free_unity_maps();
}

1862
/*
1863 1864 1865
 * This is the hardware init function for AMD IOMMU in the system.
 * This function is called either from amd_iommu_init or from the interrupt
 * remapping setup code.
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
1884 1885
 * After everything is set up the IOMMUs are enabled and the necessary
 * hotplug and suspend notifiers are registered.
1886
 */
1887
static int __init early_amd_iommu_init(void)
1888
{
1889 1890 1891
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;
1892 1893
	int i, ret = 0;

1894
	if (!amd_iommu_detected)
1895 1896
		return -ENODEV;

1897 1898 1899 1900 1901 1902 1903 1904 1905
	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return -ENODEV;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return -EINVAL;
	}

1906 1907 1908 1909 1910
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
1911 1912
	ret = find_last_devid_acpi(ivrs_base);
	if (ret)
1913 1914
		goto out;

1915 1916 1917
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1918 1919

	/* Device table - directly used by all IOMMUs */
1920
	ret = -ENOMEM;
1921
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
1933
		goto out;
1934 1935

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1936 1937
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1938 1939
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
1940
		goto out;
1941

1942 1943
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1944 1945
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
1946
		goto out;
1947 1948

	/*
1949
	 * let all alias entries point to itself
1950
	 */
1951
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1952 1953 1954 1955 1956 1957 1958 1959
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1960 1961
	spin_lock_init(&amd_iommu_pd_lock);

1962 1963 1964 1965
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
1966 1967
	ret = init_iommu_all(ivrs_base);
	if (ret)
1968
		goto out;
1969

1970 1971 1972
	if (amd_iommu_irq_remap)
		amd_iommu_irq_remap = check_ioapic_information();

1973 1974 1975 1976 1977
	if (amd_iommu_irq_remap) {
		/*
		 * Interrupt remapping enabled, create kmem_cache for the
		 * remapping tables.
		 */
1978
		ret = -ENOMEM;
1979 1980 1981 1982 1983 1984
		amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
				MAX_IRQS_PER_TABLE * sizeof(u32),
				IRQ_TABLE_ALIGNMENT,
				0, NULL);
		if (!amd_iommu_irq_cache)
			goto out;
1985 1986 1987 1988 1989 1990

		irq_lookup_table = (void *)__get_free_pages(
				GFP_KERNEL | __GFP_ZERO,
				get_order(rlookup_table_size));
		if (!irq_lookup_table)
			goto out;
1991 1992
	}

1993 1994
	ret = init_memory_definitions(ivrs_base);
	if (ret)
1995
		goto out;
1996

1997 1998 1999
	/* init the device table */
	init_device_table();

2000
out:
2001 2002 2003 2004
	/* Don't leak any ACPI memory */
	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
	ivrs_base = NULL;

2005 2006 2007
	return ret;
}

2008
static int amd_iommu_enable_interrupts(void)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_msi(iommu);
		if (ret)
			goto out;
	}

out:
	return ret;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static bool detect_ivrs(void)
{
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;

	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return false;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return false;
	}

	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);

2040 2041 2042
	/* Make sure ACS will be enabled during PCI probe */
	pci_request_acs();

2043 2044 2045
	return true;
}

2046
/****************************************************************************
2047
 *
2048 2049 2050 2051 2052
 * AMD IOMMU Initialization State Machine
 *
 ****************************************************************************/

static int __init state_next(void)
2053 2054 2055
{
	int ret = 0;

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	switch (init_state) {
	case IOMMU_START_STATE:
		if (!detect_ivrs()) {
			init_state	= IOMMU_NOT_FOUND;
			ret		= -ENODEV;
		} else {
			init_state	= IOMMU_IVRS_DETECTED;
		}
		break;
	case IOMMU_IVRS_DETECTED:
		ret = early_amd_iommu_init();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
		break;
	case IOMMU_ACPI_FINISHED:
		early_enable_iommus();
		register_syscore_ops(&amd_iommu_syscore_ops);
		x86_platform.iommu_shutdown = disable_iommus;
		init_state = IOMMU_ENABLED;
		break;
	case IOMMU_ENABLED:
		ret = amd_iommu_init_pci();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
		enable_iommus_v2();
		break;
	case IOMMU_PCI_INIT:
		ret = amd_iommu_enable_interrupts();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
		break;
	case IOMMU_INTERRUPTS_EN:
2085
		ret = amd_iommu_init_dma_ops();
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
		break;
	case IOMMU_DMA_OPS:
		init_state = IOMMU_INITIALIZED;
		break;
	case IOMMU_INITIALIZED:
		/* Nothing to do */
		break;
	case IOMMU_NOT_FOUND:
	case IOMMU_INIT_ERROR:
		/* Error states => do nothing */
		ret = -EINVAL;
		break;
	default:
		/* Unknown state */
		BUG();
	}
2103

2104 2105
	return ret;
}
2106

2107 2108 2109
static int __init iommu_go_to_state(enum iommu_init_state state)
{
	int ret = 0;
2110

2111 2112 2113 2114 2115 2116
	while (init_state != state) {
		ret = state_next();
		if (init_state == IOMMU_NOT_FOUND ||
		    init_state == IOMMU_INIT_ERROR)
			break;
	}
2117

2118
	return ret;
2119
}
2120

2121 2122 2123
#ifdef CONFIG_IRQ_REMAP
int __init amd_iommu_prepare(void)
{
2124 2125
	int ret;

2126
	amd_iommu_irq_remap = true;
2127

2128 2129 2130 2131
	ret = iommu_go_to_state(IOMMU_ACPI_FINISHED);
	if (ret)
		return ret;
	return amd_iommu_irq_remap ? 0 : -ENODEV;
2132
}
2133

2134 2135 2136 2137 2138 2139 2140
int __init amd_iommu_enable(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_ENABLED);
	if (ret)
		return ret;
2141

2142
	irq_remapping_enabled = 1;
2143

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	return 0;
}

void amd_iommu_disable(void)
{
	amd_iommu_suspend();
}

int amd_iommu_reenable(int mode)
{
	amd_iommu_resume();

	return 0;
}
2158

2159 2160 2161 2162 2163 2164
int __init amd_iommu_enable_faulting(void)
{
	/* We enable MSI later when PCI is initialized */
	return 0;
}
#endif
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 */
static int __init amd_iommu_init(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_INITIALIZED);
	if (ret) {
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		free_dma_resources();
		if (!irq_remapping_enabled) {
			disable_iommus();
			free_on_init_error();
		} else {
			struct amd_iommu *iommu;

			uninit_device_table_dma();
			for_each_iommu(iommu)
				iommu_flush_all_caches(iommu);
		}
2188 2189 2190
	}

	return ret;
2191 2192
}

2193 2194 2195 2196 2197 2198 2199
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
2200
int __init amd_iommu_detect(void)
2201
{
2202
	int ret;
2203

2204
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
2205
		return -ENODEV;
2206

2207
	if (amd_iommu_disabled)
2208
		return -ENODEV;
2209

2210 2211 2212
	ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
	if (ret)
		return ret;
2213

2214 2215 2216 2217
	amd_iommu_detected = true;
	iommu_detected = 1;
	x86_init.iommu.iommu_init = amd_iommu_init;

2218
	return 1;
2219 2220
}

2221 2222 2223 2224 2225 2226 2227
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

2228 2229 2230 2231 2232 2233 2234
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

2235 2236 2237
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
2238
		if (strncmp(str, "fullflush", 9) == 0)
2239
			amd_iommu_unmap_flush = true;
2240 2241
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
2242 2243
		if (strncmp(str, "force_isolation", 15) == 0)
			amd_iommu_force_isolation = true;
2244 2245 2246 2247 2248
	}

	return 1;
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
static int __init parse_ivrs_ioapic(char *str)
{
	unsigned int bus, dev, fn;
	int ret, id, i;
	u16 devid;

	ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);

	if (ret != 4) {
		pr_err("AMD-Vi: Invalid command line: ivrs_ioapic%s\n", str);
		return 1;
	}

	if (early_ioapic_map_size == EARLY_MAP_SIZE) {
		pr_err("AMD-Vi: Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n",
			str);
		return 1;
	}

	devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);

2270
	cmdline_maps			= true;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	i				= early_ioapic_map_size++;
	early_ioapic_map[i].id		= id;
	early_ioapic_map[i].devid	= devid;
	early_ioapic_map[i].cmd_line	= true;

	return 1;
}

static int __init parse_ivrs_hpet(char *str)
{
	unsigned int bus, dev, fn;
	int ret, id, i;
	u16 devid;

	ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);

	if (ret != 4) {
		pr_err("AMD-Vi: Invalid command line: ivrs_hpet%s\n", str);
		return 1;
	}

	if (early_hpet_map_size == EARLY_MAP_SIZE) {
		pr_err("AMD-Vi: Early HPET map overflow - ignoring ivrs_hpet%s\n",
			str);
		return 1;
	}

	devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);

2300
	cmdline_maps			= true;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	i				= early_hpet_map_size++;
	early_hpet_map[i].id		= id;
	early_hpet_map[i].devid		= devid;
	early_hpet_map[i].cmd_line	= true;

	return 1;
}

__setup("amd_iommu_dump",	parse_amd_iommu_dump);
__setup("amd_iommu=",		parse_amd_iommu_options);
__setup("ivrs_ioapic",		parse_ivrs_ioapic);
__setup("ivrs_hpet",		parse_ivrs_hpet);
2313 2314 2315

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
J
Joerg Roedel 已提交
2316 2317
		  NULL,
		  NULL);
2318 2319 2320 2321 2322 2323

bool amd_iommu_v2_supported(void)
{
	return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

/****************************************************************************
 *
 * IOMMU EFR Performance Counter support functionality. This code allows
 * access to the IOMMU PC functionality.
 *
 ****************************************************************************/

u8 amd_iommu_pc_get_max_banks(u16 devid)
{
	struct amd_iommu *iommu;
	u8 ret = 0;

	/* locate the iommu governing the devid */
	iommu = amd_iommu_rlookup_table[devid];
	if (iommu)
		ret = iommu->max_banks;

	return ret;
}
EXPORT_SYMBOL(amd_iommu_pc_get_max_banks);

bool amd_iommu_pc_supported(void)
{
	return amd_iommu_pc_present;
}
EXPORT_SYMBOL(amd_iommu_pc_supported);

u8 amd_iommu_pc_get_max_counters(u16 devid)
{
	struct amd_iommu *iommu;
	u8 ret = 0;

	/* locate the iommu governing the devid */
	iommu = amd_iommu_rlookup_table[devid];
	if (iommu)
		ret = iommu->max_counters;

	return ret;
}
EXPORT_SYMBOL(amd_iommu_pc_get_max_counters);

2366 2367
static int iommu_pc_get_set_reg_val(struct amd_iommu *iommu,
				    u8 bank, u8 cntr, u8 fxn,
2368 2369 2370 2371 2372 2373
				    u64 *value, bool is_write)
{
	u32 offset;
	u32 max_offset_lim;

	/* Check for valid iommu and pc register indexing */
2374
	if (WARN_ON((fxn > 0x28) || (fxn & 7)))
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
		return -ENODEV;

	offset = (u32)(((0x40|bank) << 12) | (cntr << 8) | fxn);

	/* Limit the offset to the hw defined mmio region aperture */
	max_offset_lim = (u32)(((0x40|iommu->max_banks) << 12) |
				(iommu->max_counters << 8) | 0x28);
	if ((offset < MMIO_CNTR_REG_OFFSET) ||
	    (offset > max_offset_lim))
		return -EINVAL;

	if (is_write) {
		writel((u32)*value, iommu->mmio_base + offset);
		writel((*value >> 32), iommu->mmio_base + offset + 4);
	} else {
		*value = readl(iommu->mmio_base + offset + 4);
		*value <<= 32;
		*value = readl(iommu->mmio_base + offset);
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_pc_get_set_reg_val);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

int amd_iommu_pc_get_set_reg_val(u16 devid, u8 bank, u8 cntr, u8 fxn,
				    u64 *value, bool is_write)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	/* Make sure the IOMMU PC resource is available */
	if (!amd_iommu_pc_present || iommu == NULL)
		return -ENODEV;

	return iommu_pc_get_set_reg_val(iommu, bank, cntr, fxn,
					value, is_write);
}