amd_iommu_init.c 43.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <linux/amd-iommu.h>
28
#include <linux/export.h>
29 30
#include <linux/acpi.h>
#include <acpi/acpi.h>
31
#include <asm/pci-direct.h>
32
#include <asm/iommu.h>
33
#include <asm/gart.h>
34
#include <asm/x86_init.h>
35
#include <asm/iommu_table.h>
36 37 38 39

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
59 60 61 62
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
63 64 65 66 67 68 69 70 71 72 73 74 75

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

76 77 78 79 80 81 82 83 84 85 86
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
87 88 89 90 91 92 93 94 95 96 97 98
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

99 100 101 102
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
103 104 105 106 107 108 109
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

110 111 112 113
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
114 115 116 117 118 119 120 121 122 123 124
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

125 126
bool amd_iommu_dump;

127
static bool amd_iommu_detected;
128
static bool __initdata amd_iommu_disabled;
129

130 131
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
132
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
133
					   we find in ACPI */
134
u32 amd_iommu_unmap_flush;		/* if true, flush on every unmap */
135

136
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
137
					   system */
138

139 140 141 142
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

143 144
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
145
bool amd_iommu_iotlb_sup __read_mostly = true;
146

147 148
u32 amd_iommu_max_pasids __read_mostly = ~0;

149 150
bool amd_iommu_v2_present __read_mostly;

151 152
bool amd_iommu_force_isolation __read_mostly;

153 154 155 156 157 158
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

159 160 161 162 163 164
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
165
struct dev_table_entry *amd_iommu_dev_table;
166 167 168 169 170 171

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
172
u16 *amd_iommu_alias_table;
173 174 175 176 177

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
178
struct amd_iommu **amd_iommu_rlookup_table;
179 180 181 182 183

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
184 185
unsigned long *amd_iommu_pd_alloc_bitmap;

186 187 188
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
189

190
static int amd_iommu_enable_interrupts(void);
191

192 193 194 195 196 197
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

198 199 200
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
201
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
202 203 204 205

	return 1UL << shift;
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

239 240 241 242 243 244 245 246
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
247

248 249 250 251
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
252
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

270
/* Programs the physical address of the device table into the IOMMU hardware */
271
static void iommu_set_device_table(struct amd_iommu *iommu)
272
{
273
	u64 entry;
274 275 276 277 278 279 280 281 282

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

283
/* Generic functions to enable/disable certain features of the IOMMU. */
284
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
285 286 287 288 289 290 291 292
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

293
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
294 295 296
{
	u32 ctrl;

297
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
298 299 300 301
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

302 303 304 305 306 307 308 309 310 311
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl &= ~CTRL_INV_TO_MASK;
	ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

312
/* Function to enable the hardware */
313
static void iommu_enable(struct amd_iommu *iommu)
314
{
315 316 317 318 319 320 321
	static const char * const feat_str[] = {
		"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
		"IA", "GA", "HE", "PC", NULL
	};
	int i;

	printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx",
322
	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
323

324 325 326 327 328 329 330 331
	if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
		printk(KERN_CONT " extended features: ");
		for (i = 0; feat_str[i]; ++i)
			if (iommu_feature(iommu, (1ULL << i)))
				printk(KERN_CONT " %s", feat_str[i]);
	}
	printk(KERN_CONT "\n");

332 333 334
	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

335
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
336
{
337 338 339 340 341 342 343 344
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
345
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
346 347
}

348 349 350 351
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
J
Joerg Roedel 已提交
352
static u8 __iomem * __init iommu_map_mmio_space(u64 address)
353
{
354 355 356 357
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
358
		return NULL;
359
	}
360

J
Joerg Roedel 已提交
361
	return (u8 __iomem *)ioremap_nocache(address, MMIO_REGION_LENGTH);
362 363 364 365 366 367 368 369 370
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

371 372 373 374 375 376 377 378 379
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

380 381 382 383 384 385 386 387
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

388 389 390 391
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
392 393 394 395 396
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
397
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
398 399 400 401

	return 0;
}

402 403 404 405
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
426
			/* all the above subfield types refer to device ids */
427
			update_last_devid(dev->devid);
428 429 430 431
			break;
		default:
			break;
		}
432
		p += ivhd_entry_length(p);
433 434 435 436 437 438 439
	}

	WARN_ON(p != end);

	return 0;
}

440 441 442 443 444
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
445 446 447 448 449 450 451 452 453 454 455 456
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
457
	if (checksum != 0)
458
		/* ACPI table corrupt */
459
		return -ENODEV;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
494 495
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
496
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
497 498 499 500 501
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

502
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
503

504 505 506
	return cmd_buf;
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

521 522 523 524 525 526 527 528 529 530 531
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
532
	entry |= MMIO_CMD_SIZE_512;
533

534
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
535
		    &entry, sizeof(entry));
536

537
	amd_iommu_reset_cmd_buffer(iommu);
538
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
539 540 541 542
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
543
	free_pages((unsigned long)iommu->cmd_buf,
544
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
545 546
}

547 548 549 550 551 552 553 554 555
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

556 557
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

558 559 560 561 562 563 564 565 566
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

567
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
568

569 570 571
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

572 573 574 575
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

576
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
577 578 579 580 581 582 583
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_ppr_log(struct amd_iommu *iommu)
{
	iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(PPR_LOG_SIZE));

	if (iommu->ppr_log == NULL)
		return NULL;

	return iommu->ppr_log;
}

static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
	u64 entry;

	if (iommu->ppr_log == NULL)
		return;

	entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;

	memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
		    &entry, sizeof(entry));

	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
	iommu_feature_enable(iommu, CONTROL_PPR_EN);
}

static void __init free_ppr_log(struct amd_iommu *iommu)
{
	if (iommu->ppr_log == NULL)
		return;

	free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}

624 625 626 627 628 629 630 631
static void iommu_enable_gt(struct amd_iommu *iommu)
{
	if (!iommu_feature(iommu, FEATURE_GT))
		return;

	iommu_feature_enable(iommu, CONTROL_GT_EN);
}

632
/* sets a specific bit in the device table entry. */
633 634
static void set_dev_entry_bit(u16 devid, u8 bit)
{
635 636
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
637

638
	amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
639 640
}

641 642
static int get_dev_entry_bit(u16 devid, u8 bit)
{
643 644
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
645

646
	return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
647 648 649 650 651 652 653 654 655 656 657 658 659 660
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

661 662 663 664 665 666
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

667 668 669 670
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
671 672
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

689 690
	amd_iommu_apply_erratum_63(devid);

691
	set_iommu_for_device(iommu, devid);
692 693
}

694 695 696 697
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
698 699 700 701 702 703 704 705
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
706 707 708 709 710
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
711 712 713 714 715 716
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

717 718 719 720
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
721 722 723 724 725
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
726 727
	u16 devid = 0, devid_start = 0, devid_to = 0;
	u32 dev_i, ext_flags = 0;
728
	bool alias = false;
729 730 731
	struct ivhd_entry *e;

	/*
732
	 * First save the recommended feature enable bits from ACPI
733
	 */
734
	iommu->acpi_flags = h->flags;
735 736 737 738 739 740 741

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

742

743 744 745 746
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
747 748 749 750 751 752 753 754 755 756 757

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

758 759
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
760 761
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
762 763
			break;
		case IVHD_DEV_SELECT:
764 765 766 767 768 769 770 771

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

772
			devid = e->devid;
773
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
774 775
			break;
		case IVHD_DEV_SELECT_RANGE_START:
776 777 778 779 780 781 782 783

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

784 785 786
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
787
			alias = false;
788 789
			break;
		case IVHD_DEV_ALIAS:
790 791 792 793 794 795 796 797 798 799 800

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

801 802
			devid = e->devid;
			devid_to = e->ext >> 8;
803
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
804
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
805 806 807
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
808 809 810 811 812 813 814 815 816 817 818 819

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

820 821 822 823
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
824
			alias = true;
825 826
			break;
		case IVHD_DEV_EXT_SELECT:
827 828 829 830 831 832 833 834

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

835
			devid = e->devid;
836 837
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
838 839
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
840 841 842 843 844 845 846 847

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

848 849 850
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
851
			alias = false;
852 853
			break;
		case IVHD_DEV_RANGE_END:
854 855 856 857 858 859

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

860 861
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
862
				if (alias) {
863
					amd_iommu_alias_table[dev_i] = devid_to;
864 865 866 867 868
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
869 870 871 872 873 874
			}
			break;
		default:
			break;
		}

875
		p += ivhd_entry_length(p);
876 877 878
	}
}

879
/* Initializes the device->iommu mapping for the driver */
880 881
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
882
	u32 i;
883 884 885 886 887 888 889

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

890 891 892
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
893
	free_event_buffer(iommu);
894
	free_ppr_log(iommu);
895 896 897 898 899 900 901
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

902
	for_each_iommu_safe(iommu, next) {
903 904 905 906 907 908
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

909 910 911 912 913
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
914 915 916
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
917 918

	/* Add IOMMU to internal data structures */
919
	list_add_tail(&iommu->list, &amd_iommu_list);
920 921 922 923 924 925 926 927 928
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
929 930 931 932

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
933
	iommu->devid   = h->devid;
934
	iommu->cap_ptr = h->cap_ptr;
935
	iommu->pci_seg = h->pci_seg;
936 937 938 939 940 941 942 943 944
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

945 946 947 948
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

949 950
	iommu->int_enabled = false;

951 952 953
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

954
	return 0;
955 956
}

957 958 959 960
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
961 962 963 964 965 966 967 968 969 970 971 972 973 974
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
975

976
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
977 978 979 980 981 982 983
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

984
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
985 986
			if (iommu == NULL)
				return -ENOMEM;
987

988
			ret = init_iommu_one(iommu, h);
989 990
			if (ret)
				return ret;
991 992 993 994 995 996 997 998 999 1000 1001 1002
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static int iommu_init_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
	u32 range, misc, low, high;

	iommu->dev = pci_get_bus_and_slot(PCI_BUS(iommu->devid),
					  iommu->devid & 0xff);
	if (!iommu->dev)
		return -ENODEV;

	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);

	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));

	if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
		amd_iommu_iotlb_sup = false;

	/* read extended feature bits */
	low  = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
	high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);

	iommu->features = ((u64)high << 32) | low;

	if (iommu_feature(iommu, FEATURE_GT)) {
		int glxval;
		u32 pasids;
		u64 shift;

		shift   = iommu->features & FEATURE_PASID_MASK;
		shift >>= FEATURE_PASID_SHIFT;
		pasids  = (1 << shift);

		amd_iommu_max_pasids = min(amd_iommu_max_pasids, pasids);

		glxval   = iommu->features & FEATURE_GLXVAL_MASK;
		glxval >>= FEATURE_GLXVAL_SHIFT;

		if (amd_iommu_max_glx_val == -1)
			amd_iommu_max_glx_val = glxval;
		else
			amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
	}

	if (iommu_feature(iommu, FEATURE_GT) &&
	    iommu_feature(iommu, FEATURE_PPR)) {
		iommu->is_iommu_v2   = true;
		amd_iommu_v2_present = true;
	}

	if (iommu_feature(iommu, FEATURE_PPR)) {
		iommu->ppr_log = alloc_ppr_log(iommu);
		if (!iommu->ppr_log)
			return -ENOMEM;
	}

	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

	if (is_rd890_iommu(iommu->dev)) {
		int i, j;

		iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
				PCI_DEVFN(0, 0));

		/*
		 * Some rd890 systems may not be fully reconfigured by the
		 * BIOS, so it's necessary for us to store this information so
		 * it can be reprogrammed on resume
		 */
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
				&iommu->stored_addr_lo);
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
				&iommu->stored_addr_hi);

		/* Low bit locks writes to configuration space */
		iommu->stored_addr_lo &= ~1;

		for (i = 0; i < 6; i++)
			for (j = 0; j < 0x12; j++)
				iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

		for (i = 0; i < 0x83; i++)
			iommu->stored_l2[i] = iommu_read_l2(iommu, i);
	}

	return pci_enable_device(iommu->dev);
}

static int amd_iommu_init_pci(void)
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_pci(iommu);
		if (ret)
			break;
	}

	/* Make sure ACS will be enabled */
	pci_request_acs();

	ret = amd_iommu_init_devices();

	return ret;
}

1118 1119 1120 1121 1122 1123 1124 1125 1126
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1127
static int iommu_setup_msi(struct amd_iommu *iommu)
1128 1129 1130
{
	int r;

1131 1132 1133
	r = pci_enable_msi(iommu->dev);
	if (r)
		return r;
1134

1135 1136 1137 1138 1139
	r = request_threaded_irq(iommu->dev->irq,
				 amd_iommu_int_handler,
				 amd_iommu_int_thread,
				 0, "AMD-Vi",
				 iommu->dev);
1140 1141 1142

	if (r) {
		pci_disable_msi(iommu->dev);
1143
		return r;
1144 1145
	}

1146
	iommu->int_enabled = true;
1147

1148 1149 1150
	return 0;
}

1151
static int iommu_init_msi(struct amd_iommu *iommu)
1152
{
1153 1154
	int ret;

1155
	if (iommu->int_enabled)
1156
		goto enable_faults;
1157

1158
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1159 1160 1161 1162 1163 1164
		ret = iommu_setup_msi(iommu);
	else
		ret = -ENODEV;

	if (ret)
		return ret;
1165

1166 1167
enable_faults:
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1168

1169 1170 1171 1172
	if (iommu->ppr_log != NULL)
		iommu_feature_enable(iommu, CONTROL_PPFINT_EN);

	return 0;
1173 1174
}

1175 1176 1177 1178 1179 1180 1181 1182
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1193
/* called when we find an exclusion range definition in ACPI */
1194 1195 1196 1197 1198 1199 1200 1201 1202
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1203
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1217
/* called for unity map ACPI definition */
1218 1219
static int __init init_unity_map_range(struct ivmd_header *m)
{
J
Joerg Roedel 已提交
1220
	struct unity_map_entry *e = NULL;
1221
	char *s;
1222 1223 1224 1225 1226 1227 1228

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1229 1230
		kfree(e);
		return 0;
1231
	case ACPI_IVMD_TYPE:
1232
		s = "IVMD_TYPEi\t\t\t";
1233 1234 1235
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1236
		s = "IVMD_TYPE_ALL\t\t";
1237 1238 1239 1240
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1241
		s = "IVMD_TYPE_RANGE\t\t";
1242 1243 1244 1245 1246 1247 1248 1249
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1250 1251 1252 1253 1254 1255 1256
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1257 1258 1259 1260 1261
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1262
/* iterates over all memory definitions we find in the ACPI table */
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1284 1285 1286 1287 1288 1289
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
1290
	u32 devid;
1291 1292 1293 1294 1295 1296 1297

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1320 1321 1322

	/* Set IOTLB invalidation timeout to 1s */
	iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1323 1324
}

1325
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1326
{
1327 1328
	int i, j;
	u32 ioc_feature_control;
1329
	struct pci_dev *pdev = iommu->root_pdev;
1330 1331

	/* RD890 BIOSes may not have completely reconfigured the iommu */
1332
	if (!is_rd890_iommu(iommu->dev) || !pdev)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1366 1367
}

1368 1369 1370 1371
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1372
static void enable_iommus(void)
1373 1374 1375
{
	struct amd_iommu *iommu;

1376
	for_each_iommu(iommu) {
1377
		iommu_disable(iommu);
1378
		iommu_init_flags(iommu);
1379 1380 1381
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1382
		iommu_enable_ppr_log(iommu);
1383
		iommu_enable_gt(iommu);
1384 1385
		iommu_set_exclusion_range(iommu);
		iommu_enable(iommu);
1386
		iommu_flush_all_caches(iommu);
1387 1388 1389
	}
}

1390 1391 1392 1393 1394 1395 1396 1397
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1398 1399 1400 1401 1402
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1403
static void amd_iommu_resume(void)
1404
{
1405 1406 1407 1408 1409
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1410 1411
	/* re-load the hardware */
	enable_iommus();
1412 1413

	amd_iommu_enable_interrupts();
1414 1415
}

1416
static int amd_iommu_suspend(void)
1417
{
1418 1419 1420 1421
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1422 1423
}

1424
static struct syscore_ops amd_iommu_syscore_ops = {
1425 1426 1427 1428
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static void __init free_on_init_error(void)
{
	amd_iommu_uninit_devices();

	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));

	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));

	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));

	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));

	free_iommu_all();

	free_unity_maps();

#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif
}

1459
/*
1460 1461 1462
 * This is the hardware init function for AMD IOMMU in the system.
 * This function is called either from amd_iommu_init or from the interrupt
 * remapping setup code.
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
1481 1482
 * After everything is set up the IOMMUs are enabled and the necessary
 * hotplug and suspend notifiers are registered.
1483
 */
1484
int __init amd_iommu_init_hardware(void)
1485
{
1486 1487 1488
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;
1489 1490
	int i, ret = 0;

1491 1492 1493 1494
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
		return -ENODEV;

	if (amd_iommu_disabled || !amd_iommu_detected)
1495 1496 1497 1498 1499 1500 1501
		return -ENODEV;

	if (amd_iommu_dev_table != NULL) {
		/* Hardware already initialized */
		return 0;
	}

1502 1503 1504 1505 1506 1507 1508 1509 1510
	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return -ENODEV;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return -EINVAL;
	}

1511 1512 1513 1514 1515
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
1516
	if (find_last_devid_acpi(ivrs_base))
1517 1518
		goto out;

1519 1520 1521
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1522 1523

	/* Device table - directly used by all IOMMUs */
1524
	ret = -ENOMEM;
1525
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1540 1541
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1542 1543 1544 1545
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

1546 1547
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1548 1549 1550 1551
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1552 1553 1554
	/* init the device table */
	init_device_table();

1555
	/*
1556
	 * let all alias entries point to itself
1557
	 */
1558
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1559 1560 1561 1562 1563 1564 1565 1566
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1567 1568
	spin_lock_init(&amd_iommu_pd_lock);

1569 1570 1571 1572
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
1573 1574
	ret = init_iommu_all(ivrs_base);
	if (ret)
1575 1576
		goto free;

1577 1578
	ret = init_memory_definitions(ivrs_base);
	if (ret)
1579 1580
		goto free;

1581
	ret = amd_iommu_init_pci();
J
Joerg Roedel 已提交
1582 1583 1584
	if (ret)
		goto free;

1585 1586
	enable_iommus();

1587 1588 1589 1590 1591
	amd_iommu_init_notifier();

	register_syscore_ops(&amd_iommu_syscore_ops);

out:
1592 1593 1594 1595
	/* Don't leak any ACPI memory */
	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
	ivrs_base = NULL;

1596 1597 1598 1599 1600
	return ret;

free:
	free_on_init_error();

1601
	goto out;
1602 1603
}

1604
static int amd_iommu_enable_interrupts(void)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_msi(iommu);
		if (ret)
			goto out;
	}

out:
	return ret;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static bool detect_ivrs(void)
{
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;

	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return false;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return false;
	}

	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);

	return true;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * The function calls amd_iommu_init_hardware() to setup and enable the
 * IOMMU hardware if this has not happened yet. After that the driver
 * registers for the DMA-API and for the IOMMU-API as necessary.
 */
static int __init amd_iommu_init(void)
{
	int ret = 0;

	ret = amd_iommu_init_hardware();
	if (ret)
		goto out;

1656 1657 1658 1659
	ret = amd_iommu_enable_interrupts();
	if (ret)
		goto free;

1660 1661 1662 1663
	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();
1664

1665
	if (ret)
1666
		goto free;
1667

1668 1669
	amd_iommu_init_api();

1670 1671
	x86_platform.iommu_shutdown = disable_iommus;

1672 1673 1674
	if (iommu_pass_through)
		goto out;

1675
	if (amd_iommu_unmap_flush)
1676
		printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1677
	else
1678
		printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1679

1680 1681 1682
out:
	return ret;

1683
free:
1684
	disable_iommus();
1685

1686
	free_on_init_error();
1687

1688 1689 1690
	goto out;
}

1691 1692 1693 1694 1695 1696 1697
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1698
int __init amd_iommu_detect(void)
1699
{
1700

1701
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1702
		return -ENODEV;
1703

1704
	if (amd_iommu_disabled)
1705
		return -ENODEV;
1706

1707 1708
	if (!detect_ivrs())
		return -ENODEV;
1709

1710 1711 1712 1713 1714
	amd_iommu_detected = true;
	iommu_detected = 1;
	x86_init.iommu.iommu_init = amd_iommu_init;

	return 0;
1715 1716
}

1717 1718 1719 1720 1721 1722 1723
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1724 1725 1726 1727 1728 1729 1730
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

1731 1732 1733
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1734
		if (strncmp(str, "fullflush", 9) == 0)
1735
			amd_iommu_unmap_flush = true;
1736 1737
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
1738 1739
		if (strncmp(str, "force_isolation", 15) == 0)
			amd_iommu_force_isolation = true;
1740 1741 1742 1743 1744
	}

	return 1;
}

1745
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1746
__setup("amd_iommu=", parse_amd_iommu_options);
1747 1748 1749

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
J
Joerg Roedel 已提交
1750 1751
		  NULL,
		  NULL);
1752 1753 1754 1755 1756 1757

bool amd_iommu_v2_supported(void)
{
	return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);