amd_iommu_init.c 51.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <linux/amd-iommu.h>
28
#include <linux/export.h>
29
#include <acpi/acpi.h>
30
#include <asm/pci-direct.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34
#include <asm/iommu_table.h>
35
#include <asm/io_apic.h>
36
#include <asm/irq_remapping.h>
37 38 39

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
40
#include "irq_remapping.h"
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47
60 61 62 63
#define IVHD_DEV_SPECIAL		0x48

#define IVHD_SPECIAL_IOAPIC		1
#define IVHD_SPECIAL_HPET		2
64

J
Joerg Roedel 已提交
65 66 67 68
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
69 70 71 72 73 74 75 76 77 78 79 80 81

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

82 83 84 85 86 87 88 89 90 91 92
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
93 94 95 96 97 98 99 100 101 102 103 104
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

105 106 107 108
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
109 110 111 112 113 114 115
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

116 117 118 119
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
120 121 122 123 124 125 126 127 128 129 130
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

131
bool amd_iommu_dump;
132
bool amd_iommu_irq_remap __read_mostly;
133

134
static bool amd_iommu_detected;
135
static bool __initdata amd_iommu_disabled;
136

137 138
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
139
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
140
					   we find in ACPI */
141
u32 amd_iommu_unmap_flush;		/* if true, flush on every unmap */
142

143
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
144
					   system */
145

146 147 148 149
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

150 151
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
152
bool amd_iommu_iotlb_sup __read_mostly = true;
153

154 155
u32 amd_iommu_max_pasids __read_mostly = ~0;

156 157
bool amd_iommu_v2_present __read_mostly;

158 159
bool amd_iommu_force_isolation __read_mostly;

160 161 162 163 164 165
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

166 167 168 169 170 171
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
172
struct dev_table_entry *amd_iommu_dev_table;
173 174 175 176 177 178

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
179
u16 *amd_iommu_alias_table;
180 181 182 183 184

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
185
struct amd_iommu **amd_iommu_rlookup_table;
186 187

/*
188 189 190 191 192
 * This table is used to find the irq remapping table for a given device id
 * quickly.
 */
struct irq_remap_table **irq_lookup_table;

193
/*
F
Frank Arnold 已提交
194
 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
195 196
 * to know which ones are already in use.
 */
197 198
unsigned long *amd_iommu_pd_alloc_bitmap;

199 200 201
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
202

203 204 205 206 207 208 209 210 211 212 213 214 215
enum iommu_init_state {
	IOMMU_START_STATE,
	IOMMU_IVRS_DETECTED,
	IOMMU_ACPI_FINISHED,
	IOMMU_ENABLED,
	IOMMU_PCI_INIT,
	IOMMU_INTERRUPTS_EN,
	IOMMU_DMA_OPS,
	IOMMU_INITIALIZED,
	IOMMU_NOT_FOUND,
	IOMMU_INIT_ERROR,
};

216 217 218 219 220 221 222
/* Early ioapic and hpet maps from kernel command line */
#define EARLY_MAP_SIZE		4
static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
static int __initdata early_ioapic_map_size;
static int __initdata early_hpet_map_size;

223 224
static enum iommu_init_state init_state = IOMMU_START_STATE;

225
static int amd_iommu_enable_interrupts(void);
226
static int __init iommu_go_to_state(enum iommu_init_state state);
227

228 229 230 231 232 233
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

234 235 236
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
237
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
238 239 240 241

	return 1UL << shift;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

275 276 277 278 279 280 281 282
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
283

284 285 286 287
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
288
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

306
/* Programs the physical address of the device table into the IOMMU hardware */
307
static void iommu_set_device_table(struct amd_iommu *iommu)
308
{
309
	u64 entry;
310 311 312 313 314 315 316 317 318

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

319
/* Generic functions to enable/disable certain features of the IOMMU. */
320
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
321 322 323 324 325 326 327 328
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

329
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
330 331 332
{
	u32 ctrl;

333
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
334 335 336 337
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

338 339 340 341 342 343 344 345 346 347
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl &= ~CTRL_INV_TO_MASK;
	ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

348
/* Function to enable the hardware */
349
static void iommu_enable(struct amd_iommu *iommu)
350 351 352 353
{
	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

354
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
355
{
356 357 358 359 360 361 362 363
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
364
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
365 366
}

367 368 369 370
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
J
Joerg Roedel 已提交
371
static u8 __iomem * __init iommu_map_mmio_space(u64 address)
372
{
373 374 375 376
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
377
		return NULL;
378
	}
379

J
Joerg Roedel 已提交
380
	return (u8 __iomem *)ioremap_nocache(address, MMIO_REGION_LENGTH);
381 382 383 384 385 386 387 388 389
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

390 391 392 393 394 395 396 397 398
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

399 400 401 402 403 404 405 406
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

407 408 409 410
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
411 412 413 414 415
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
416
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
417 418 419 420

	return 0;
}

421 422 423 424
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
445
			/* all the above subfield types refer to device ids */
446
			update_last_devid(dev->devid);
447 448 449 450
			break;
		default:
			break;
		}
451
		p += ivhd_entry_length(p);
452 453 454 455 456 457 458
	}

	WARN_ON(p != end);

	return 0;
}

459 460 461 462 463
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
464 465 466 467 468 469 470 471 472 473 474 475
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
476
	if (checksum != 0)
477
		/* ACPI table corrupt */
478
		return -ENODEV;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

499 500
/****************************************************************************
 *
F
Frank Arnold 已提交
501
 * The following functions belong to the code path which parses the ACPI table
502 503 504 505 506 507 508 509 510 511 512
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
513 514
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
515
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
516 517 518 519 520
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

521
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
522

523 524 525
	return cmd_buf;
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

540 541 542 543 544 545 546 547 548 549 550
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
551
	entry |= MMIO_CMD_SIZE_512;
552

553
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
554
		    &entry, sizeof(entry));
555

556
	amd_iommu_reset_cmd_buffer(iommu);
557
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
558 559 560 561
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
562
	free_pages((unsigned long)iommu->cmd_buf,
563
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
564 565
}

566 567 568 569 570 571 572 573 574
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

575 576
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

577 578 579 580 581 582 583 584 585
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

586
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
587

588 589 590
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

591 592 593 594
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

595
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
596 597 598 599 600 601 602
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_ppr_log(struct amd_iommu *iommu)
{
	iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(PPR_LOG_SIZE));

	if (iommu->ppr_log == NULL)
		return NULL;

	return iommu->ppr_log;
}

static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
	u64 entry;

	if (iommu->ppr_log == NULL)
		return;

	entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;

	memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
		    &entry, sizeof(entry));

	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
	iommu_feature_enable(iommu, CONTROL_PPR_EN);
}

static void __init free_ppr_log(struct amd_iommu *iommu)
{
	if (iommu->ppr_log == NULL)
		return;

	free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}

643 644 645 646 647 648 649 650
static void iommu_enable_gt(struct amd_iommu *iommu)
{
	if (!iommu_feature(iommu, FEATURE_GT))
		return;

	iommu_feature_enable(iommu, CONTROL_GT_EN);
}

651
/* sets a specific bit in the device table entry. */
652 653
static void set_dev_entry_bit(u16 devid, u8 bit)
{
654 655
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
656

657
	amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
658 659
}

660 661
static int get_dev_entry_bit(u16 devid, u8 bit)
{
662 663
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
664

665
	return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
666 667 668 669 670 671 672 673 674 675 676 677 678 679
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

680 681 682 683 684 685
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

686 687 688 689
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
690 691
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

708 709
	amd_iommu_apply_erratum_63(devid);

710
	set_iommu_for_device(iommu, devid);
711 712
}

713
static int __init add_special_device(u8 type, u8 id, u16 devid, bool cmd_line)
714 715 716 717
{
	struct devid_map *entry;
	struct list_head *list;

718 719 720 721 722
	if (type == IVHD_SPECIAL_IOAPIC)
		list = &ioapic_map;
	else if (type == IVHD_SPECIAL_HPET)
		list = &hpet_map;
	else
723 724
		return -EINVAL;

725 726 727 728 729 730 731 732 733 734
	list_for_each_entry(entry, list, list) {
		if (!(entry->id == id && entry->cmd_line))
			continue;

		pr_info("AMD-Vi: Command-line override present for %s id %d - ignoring\n",
			type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);

		return 0;
	}

735 736 737 738
	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return -ENOMEM;

739 740 741
	entry->id	= id;
	entry->devid	= devid;
	entry->cmd_line	= cmd_line;
742 743 744 745 746 747

	list_add_tail(&entry->list, list);

	return 0;
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
static int __init add_early_maps(void)
{
	int i, ret;

	for (i = 0; i < early_ioapic_map_size; ++i) {
		ret = add_special_device(IVHD_SPECIAL_IOAPIC,
					 early_ioapic_map[i].id,
					 early_ioapic_map[i].devid,
					 early_ioapic_map[i].cmd_line);
		if (ret)
			return ret;
	}

	for (i = 0; i < early_hpet_map_size; ++i) {
		ret = add_special_device(IVHD_SPECIAL_HPET,
					 early_hpet_map[i].id,
					 early_hpet_map[i].devid,
					 early_hpet_map[i].cmd_line);
		if (ret)
			return ret;
	}

	return 0;
}

773
/*
F
Frank Arnold 已提交
774
 * Reads the device exclusion range from ACPI and initializes the IOMMU with
775 776
 * it
 */
777 778 779 780 781 782 783 784
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
785 786 787 788 789
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
790 791 792 793 794 795
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

796 797 798 799
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
800
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
801 802 803 804
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
805 806
	u16 devid = 0, devid_start = 0, devid_to = 0;
	u32 dev_i, ext_flags = 0;
807
	bool alias = false;
808
	struct ivhd_entry *e;
809 810 811 812 813 814
	int ret;


	ret = add_early_maps();
	if (ret)
		return ret;
815 816

	/*
817
	 * First save the recommended feature enable bits from ACPI
818
	 */
819
	iommu->acpi_flags = h->flags;
820 821 822 823 824 825 826

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

827

828 829 830 831
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
832 833 834 835 836 837 838 839 840 841 842

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

843 844
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
845 846
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
847 848
			break;
		case IVHD_DEV_SELECT:
849 850 851 852 853 854 855 856

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

857
			devid = e->devid;
858
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
859 860
			break;
		case IVHD_DEV_SELECT_RANGE_START:
861 862 863 864 865 866 867 868

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

869 870 871
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
872
			alias = false;
873 874
			break;
		case IVHD_DEV_ALIAS:
875 876 877 878 879 880 881 882 883 884 885

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

886 887
			devid = e->devid;
			devid_to = e->ext >> 8;
888
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
889
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
890 891 892
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
893 894 895 896 897 898 899 900 901 902 903 904

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

905 906 907 908
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
909
			alias = true;
910 911
			break;
		case IVHD_DEV_EXT_SELECT:
912 913 914 915 916 917 918 919

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

920
			devid = e->devid;
921 922
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
923 924
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
925 926 927 928 929 930 931 932

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

933 934 935
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
936
			alias = false;
937 938
			break;
		case IVHD_DEV_RANGE_END:
939 940 941 942 943 944

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

945 946
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
947
				if (alias) {
948
					amd_iommu_alias_table[dev_i] = devid_to;
949 950 951 952 953
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
954 955
			}
			break;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		case IVHD_DEV_SPECIAL: {
			u8 handle, type;
			const char *var;
			u16 devid;
			int ret;

			handle = e->ext & 0xff;
			devid  = (e->ext >>  8) & 0xffff;
			type   = (e->ext >> 24) & 0xff;

			if (type == IVHD_SPECIAL_IOAPIC)
				var = "IOAPIC";
			else if (type == IVHD_SPECIAL_HPET)
				var = "HPET";
			else
				var = "UNKNOWN";

			DUMP_printk("  DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
				    var, (int)handle,
				    PCI_BUS(devid),
				    PCI_SLOT(devid),
				    PCI_FUNC(devid));

			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
980
			ret = add_special_device(type, handle, devid, false);
981 982 983 984
			if (ret)
				return ret;
			break;
		}
985 986 987 988
		default:
			break;
		}

989
		p += ivhd_entry_length(p);
990
	}
991 992

	return 0;
993 994
}

995
/* Initializes the device->iommu mapping for the driver */
996 997
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
998
	u32 i;
999 1000 1001 1002 1003 1004 1005

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

1006 1007 1008
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
1009
	free_event_buffer(iommu);
1010
	free_ppr_log(iommu);
1011 1012 1013 1014 1015 1016 1017
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

1018
	for_each_iommu_safe(iommu, next) {
1019 1020 1021 1022 1023 1024
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

1025 1026 1027 1028 1029 1030
/*
 * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
 * Workaround:
 *     BIOS should disable L2B micellaneous clock gating by setting
 *     L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
 */
1031
static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	u32 value;

	if ((boot_cpu_data.x86 != 0x15) ||
	    (boot_cpu_data.x86_model < 0x10) ||
	    (boot_cpu_data.x86_model > 0x1f))
		return;

	pci_write_config_dword(iommu->dev, 0xf0, 0x90);
	pci_read_config_dword(iommu->dev, 0xf4, &value);

	if (value & BIT(2))
		return;

	/* Select NB indirect register 0x90 and enable writing */
	pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));

	pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
	pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n",
		dev_name(&iommu->dev->dev));

	/* Clear the enable writing bit */
	pci_write_config_dword(iommu->dev, 0xf0, 0x90);
}

1057 1058 1059 1060 1061
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
1062 1063
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
1064 1065
	int ret;

1066
	spin_lock_init(&iommu->lock);
1067 1068

	/* Add IOMMU to internal data structures */
1069
	list_add_tail(&iommu->list, &amd_iommu_list);
1070 1071 1072 1073 1074 1075 1076 1077 1078
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
1079 1080 1081 1082

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
1083
	iommu->devid   = h->devid;
1084
	iommu->cap_ptr = h->cap_ptr;
1085
	iommu->pci_seg = h->pci_seg;
1086 1087 1088 1089 1090 1091 1092 1093 1094
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

1095 1096 1097 1098
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

1099 1100
	iommu->int_enabled = false;

1101 1102 1103
	ret = init_iommu_from_acpi(iommu, h);
	if (ret)
		return ret;
1104 1105 1106 1107 1108 1109 1110

	/*
	 * Make sure IOMMU is not considered to translate itself. The IVRS
	 * table tells us so, but this is a lie!
	 */
	amd_iommu_rlookup_table[iommu->devid] = NULL;

1111 1112
	init_iommu_devices(iommu);

1113
	return 0;
1114 1115
}

1116 1117 1118 1119
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
1134

1135
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1136 1137 1138 1139 1140 1141 1142
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

1143
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1144 1145
			if (iommu == NULL)
				return -ENOMEM;
1146

1147
			ret = init_iommu_one(iommu, h);
1148 1149
			if (ret)
				return ret;
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static int iommu_init_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
	u32 range, misc, low, high;

	iommu->dev = pci_get_bus_and_slot(PCI_BUS(iommu->devid),
					  iommu->devid & 0xff);
	if (!iommu->dev)
		return -ENODEV;

	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);

	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));

	if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
		amd_iommu_iotlb_sup = false;

	/* read extended feature bits */
	low  = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
	high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);

	iommu->features = ((u64)high << 32) | low;

	if (iommu_feature(iommu, FEATURE_GT)) {
		int glxval;
		u32 pasids;
		u64 shift;

		shift   = iommu->features & FEATURE_PASID_MASK;
		shift >>= FEATURE_PASID_SHIFT;
		pasids  = (1 << shift);

		amd_iommu_max_pasids = min(amd_iommu_max_pasids, pasids);

		glxval   = iommu->features & FEATURE_GLXVAL_MASK;
		glxval >>= FEATURE_GLXVAL_SHIFT;

		if (amd_iommu_max_glx_val == -1)
			amd_iommu_max_glx_val = glxval;
		else
			amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
	}

	if (iommu_feature(iommu, FEATURE_GT) &&
	    iommu_feature(iommu, FEATURE_PPR)) {
		iommu->is_iommu_v2   = true;
		amd_iommu_v2_present = true;
	}

	if (iommu_feature(iommu, FEATURE_PPR)) {
		iommu->ppr_log = alloc_ppr_log(iommu);
		if (!iommu->ppr_log)
			return -ENOMEM;
	}

	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

	if (is_rd890_iommu(iommu->dev)) {
		int i, j;

		iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
				PCI_DEVFN(0, 0));

		/*
		 * Some rd890 systems may not be fully reconfigured by the
		 * BIOS, so it's necessary for us to store this information so
		 * it can be reprogrammed on resume
		 */
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
				&iommu->stored_addr_lo);
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
				&iommu->stored_addr_hi);

		/* Low bit locks writes to configuration space */
		iommu->stored_addr_lo &= ~1;

		for (i = 0; i < 6; i++)
			for (j = 0; j < 0x12; j++)
				iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

		for (i = 0; i < 0x83; i++)
			iommu->stored_l2[i] = iommu_read_l2(iommu, i);
	}

1255 1256
	amd_iommu_erratum_746_workaround(iommu);

1257 1258 1259
	return pci_enable_device(iommu->dev);
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static void print_iommu_info(void)
{
	static const char * const feat_str[] = {
		"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
		"IA", "GA", "HE", "PC"
	};
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		int i;

		pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
			dev_name(&iommu->dev->dev), iommu->cap_ptr);

		if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
			pr_info("AMD-Vi:  Extended features: ");
1276
			for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1277 1278 1279 1280
				if (iommu_feature(iommu, (1ULL << i)))
					pr_cont(" %s", feat_str[i]);
			}
		pr_cont("\n");
1281
		}
1282
	}
1283 1284
	if (irq_remapping_enabled)
		pr_info("AMD-Vi: Interrupt remapping enabled\n");
1285 1286
}

1287
static int __init amd_iommu_init_pci(void)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_pci(iommu);
		if (ret)
			break;
	}

	ret = amd_iommu_init_devices();

1300 1301
	print_iommu_info();

1302 1303 1304
	return ret;
}

1305 1306 1307
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
F
Frank Arnold 已提交
1308
 * in the system. It's a bit challenging because there could be multiple
1309 1310 1311 1312 1313
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1314
static int iommu_setup_msi(struct amd_iommu *iommu)
1315 1316 1317
{
	int r;

1318 1319 1320
	r = pci_enable_msi(iommu->dev);
	if (r)
		return r;
1321

1322 1323 1324 1325 1326
	r = request_threaded_irq(iommu->dev->irq,
				 amd_iommu_int_handler,
				 amd_iommu_int_thread,
				 0, "AMD-Vi",
				 iommu->dev);
1327 1328 1329

	if (r) {
		pci_disable_msi(iommu->dev);
1330
		return r;
1331 1332
	}

1333
	iommu->int_enabled = true;
1334

1335 1336 1337
	return 0;
}

1338
static int iommu_init_msi(struct amd_iommu *iommu)
1339
{
1340 1341
	int ret;

1342
	if (iommu->int_enabled)
1343
		goto enable_faults;
1344

1345
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1346 1347 1348 1349 1350 1351
		ret = iommu_setup_msi(iommu);
	else
		ret = -ENODEV;

	if (ret)
		return ret;
1352

1353 1354
enable_faults:
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1355

1356 1357 1358 1359
	if (iommu->ppr_log != NULL)
		iommu_feature_enable(iommu, CONTROL_PPFINT_EN);

	return 0;
1360 1361
}

1362 1363 1364 1365
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
F
Frank Arnold 已提交
1366
 * gathered (like exclusion and unity mapping ranges).
1367 1368 1369
 *
 ****************************************************************************/

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1380
/* called when we find an exclusion range definition in ACPI */
1381 1382 1383 1384 1385 1386 1387 1388 1389
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1390
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1404
/* called for unity map ACPI definition */
1405 1406
static int __init init_unity_map_range(struct ivmd_header *m)
{
J
Joerg Roedel 已提交
1407
	struct unity_map_entry *e = NULL;
1408
	char *s;
1409 1410 1411 1412 1413 1414 1415

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1416 1417
		kfree(e);
		return 0;
1418
	case ACPI_IVMD_TYPE:
1419
		s = "IVMD_TYPEi\t\t\t";
1420 1421 1422
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1423
		s = "IVMD_TYPE_ALL\t\t";
1424 1425 1426 1427
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1428
		s = "IVMD_TYPE_RANGE\t\t";
1429 1430 1431 1432 1433 1434 1435 1436
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1437 1438 1439 1440 1441 1442 1443
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1444 1445 1446 1447 1448
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1449
/* iterates over all memory definitions we find in the ACPI table */
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1471 1472 1473 1474
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
1475
static void init_device_table_dma(void)
1476
{
1477
	u32 devid;
1478 1479 1480 1481 1482 1483 1484

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static void __init uninit_device_table_dma(void)
{
	u32 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		amd_iommu_dev_table[devid].data[0] = 0ULL;
		amd_iommu_dev_table[devid].data[1] = 0ULL;
	}
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static void init_device_table(void)
{
	u32 devid;

	if (!amd_iommu_irq_remap)
		return;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1528 1529 1530

	/* Set IOTLB invalidation timeout to 1s */
	iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1531 1532
}

1533
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1534
{
1535 1536
	int i, j;
	u32 ioc_feature_control;
1537
	struct pci_dev *pdev = iommu->root_pdev;
1538 1539

	/* RD890 BIOSes may not have completely reconfigured the iommu */
1540
	if (!is_rd890_iommu(iommu->dev) || !pdev)
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1574 1575
}

1576 1577 1578 1579
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1580
static void early_enable_iommus(void)
1581 1582 1583
{
	struct amd_iommu *iommu;

1584
	for_each_iommu(iommu) {
1585
		iommu_disable(iommu);
1586
		iommu_init_flags(iommu);
1587 1588 1589
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1590 1591
		iommu_set_exclusion_range(iommu);
		iommu_enable(iommu);
1592
		iommu_flush_all_caches(iommu);
1593 1594 1595
	}
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static void enable_iommus_v2(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		iommu_enable_ppr_log(iommu);
		iommu_enable_gt(iommu);
	}
}

static void enable_iommus(void)
{
	early_enable_iommus();

	enable_iommus_v2();
}

1613 1614 1615 1616 1617 1618 1619 1620
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1621 1622 1623 1624 1625
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1626
static void amd_iommu_resume(void)
1627
{
1628 1629 1630 1631 1632
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1633 1634
	/* re-load the hardware */
	enable_iommus();
1635 1636

	amd_iommu_enable_interrupts();
1637 1638
}

1639
static int amd_iommu_suspend(void)
1640
{
1641 1642 1643 1644
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1645 1646
}

1647
static struct syscore_ops amd_iommu_syscore_ops = {
1648 1649 1650 1651
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1652 1653
static void __init free_on_init_error(void)
{
1654 1655
	free_pages((unsigned long)irq_lookup_table,
		   get_order(rlookup_table_size));
1656

1657 1658 1659
	if (amd_iommu_irq_cache) {
		kmem_cache_destroy(amd_iommu_irq_cache);
		amd_iommu_irq_cache = NULL;
1660

1661
	}
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));

	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));

	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));

	free_iommu_all();

#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif
}

1684 1685 1686
/* SB IOAPIC is always on this device in AMD systems */
#define IOAPIC_SB_DEVID		((0x00 << 8) | PCI_DEVFN(0x14, 0))

1687 1688
static bool __init check_ioapic_information(void)
{
1689
	bool ret, has_sb_ioapic;
1690 1691
	int idx;

1692 1693
	has_sb_ioapic = false;
	ret           = false;
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	for (idx = 0; idx < nr_ioapics; idx++) {
		int devid, id = mpc_ioapic_id(idx);

		devid = get_ioapic_devid(id);
		if (devid < 0) {
			pr_err(FW_BUG "AMD-Vi: IOAPIC[%d] not in IVRS table\n", id);
			ret = false;
		} else if (devid == IOAPIC_SB_DEVID) {
			has_sb_ioapic = true;
			ret           = true;
1705 1706 1707
		}
	}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	if (!has_sb_ioapic) {
		/*
		 * We expect the SB IOAPIC to be listed in the IVRS
		 * table. The system timer is connected to the SB IOAPIC
		 * and if we don't have it in the list the system will
		 * panic at boot time.  This situation usually happens
		 * when the BIOS is buggy and provides us the wrong
		 * device id for the IOAPIC in the system.
		 */
		pr_err(FW_BUG "AMD-Vi: No southbridge IOAPIC found in IVRS table\n");
	}

	if (!ret)
		pr_err("AMD-Vi: Disabling interrupt remapping due to BIOS Bug(s)\n");

	return ret;
1724 1725
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static void __init free_dma_resources(void)
{
	amd_iommu_uninit_devices();

	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));

	free_unity_maps();
}

1736
/*
1737 1738 1739
 * This is the hardware init function for AMD IOMMU in the system.
 * This function is called either from amd_iommu_init or from the interrupt
 * remapping setup code.
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
1758 1759
 * After everything is set up the IOMMUs are enabled and the necessary
 * hotplug and suspend notifiers are registered.
1760
 */
1761
static int __init early_amd_iommu_init(void)
1762
{
1763 1764 1765
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;
1766 1767
	int i, ret = 0;

1768
	if (!amd_iommu_detected)
1769 1770
		return -ENODEV;

1771 1772 1773 1774 1775 1776 1777 1778 1779
	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return -ENODEV;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return -EINVAL;
	}

1780 1781 1782 1783 1784
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
1785 1786
	ret = find_last_devid_acpi(ivrs_base);
	if (ret)
1787 1788
		goto out;

1789 1790 1791
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1792 1793

	/* Device table - directly used by all IOMMUs */
1794
	ret = -ENOMEM;
1795
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
1807
		goto out;
1808 1809

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1810 1811
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1812 1813
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
1814
		goto out;
1815

1816 1817
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1818 1819
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
1820
		goto out;
1821 1822

	/*
1823
	 * let all alias entries point to itself
1824
	 */
1825
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1826 1827 1828 1829 1830 1831 1832 1833
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1834 1835
	spin_lock_init(&amd_iommu_pd_lock);

1836 1837 1838 1839
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
1840 1841
	ret = init_iommu_all(ivrs_base);
	if (ret)
1842
		goto out;
1843

1844 1845 1846
	if (amd_iommu_irq_remap)
		amd_iommu_irq_remap = check_ioapic_information();

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	if (amd_iommu_irq_remap) {
		/*
		 * Interrupt remapping enabled, create kmem_cache for the
		 * remapping tables.
		 */
		amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
				MAX_IRQS_PER_TABLE * sizeof(u32),
				IRQ_TABLE_ALIGNMENT,
				0, NULL);
		if (!amd_iommu_irq_cache)
			goto out;
1858 1859 1860 1861 1862 1863

		irq_lookup_table = (void *)__get_free_pages(
				GFP_KERNEL | __GFP_ZERO,
				get_order(rlookup_table_size));
		if (!irq_lookup_table)
			goto out;
1864 1865
	}

1866 1867
	ret = init_memory_definitions(ivrs_base);
	if (ret)
1868
		goto out;
1869

1870 1871 1872
	/* init the device table */
	init_device_table();

1873
out:
1874 1875 1876 1877
	/* Don't leak any ACPI memory */
	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
	ivrs_base = NULL;

1878 1879 1880
	return ret;
}

1881
static int amd_iommu_enable_interrupts(void)
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_msi(iommu);
		if (ret)
			goto out;
	}

out:
	return ret;
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
static bool detect_ivrs(void)
{
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;

	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return false;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return false;
	}

	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);

1913 1914 1915
	/* Make sure ACS will be enabled during PCI probe */
	pci_request_acs();

1916 1917 1918
	if (!disable_irq_remap)
		amd_iommu_irq_remap = true;

1919 1920 1921
	return true;
}

1922 1923
static int amd_iommu_init_dma(void)
{
1924
	struct amd_iommu *iommu;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	int ret;

	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();

	if (ret)
		return ret;

1935 1936 1937 1938 1939
	init_device_table_dma();

	for_each_iommu(iommu)
		iommu_flush_all_caches(iommu);

1940 1941 1942 1943 1944 1945 1946
	amd_iommu_init_api();

	amd_iommu_init_notifier();

	return 0;
}

1947
/****************************************************************************
1948
 *
1949 1950 1951 1952 1953
 * AMD IOMMU Initialization State Machine
 *
 ****************************************************************************/

static int __init state_next(void)
1954 1955 1956
{
	int ret = 0;

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	switch (init_state) {
	case IOMMU_START_STATE:
		if (!detect_ivrs()) {
			init_state	= IOMMU_NOT_FOUND;
			ret		= -ENODEV;
		} else {
			init_state	= IOMMU_IVRS_DETECTED;
		}
		break;
	case IOMMU_IVRS_DETECTED:
		ret = early_amd_iommu_init();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
		break;
	case IOMMU_ACPI_FINISHED:
		early_enable_iommus();
		register_syscore_ops(&amd_iommu_syscore_ops);
		x86_platform.iommu_shutdown = disable_iommus;
		init_state = IOMMU_ENABLED;
		break;
	case IOMMU_ENABLED:
		ret = amd_iommu_init_pci();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
		enable_iommus_v2();
		break;
	case IOMMU_PCI_INIT:
		ret = amd_iommu_enable_interrupts();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
		break;
	case IOMMU_INTERRUPTS_EN:
		ret = amd_iommu_init_dma();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
		break;
	case IOMMU_DMA_OPS:
		init_state = IOMMU_INITIALIZED;
		break;
	case IOMMU_INITIALIZED:
		/* Nothing to do */
		break;
	case IOMMU_NOT_FOUND:
	case IOMMU_INIT_ERROR:
		/* Error states => do nothing */
		ret = -EINVAL;
		break;
	default:
		/* Unknown state */
		BUG();
	}
2004

2005 2006
	return ret;
}
2007

2008 2009 2010
static int __init iommu_go_to_state(enum iommu_init_state state)
{
	int ret = 0;
2011

2012 2013 2014 2015 2016 2017
	while (init_state != state) {
		ret = state_next();
		if (init_state == IOMMU_NOT_FOUND ||
		    init_state == IOMMU_INIT_ERROR)
			break;
	}
2018

2019
	return ret;
2020
}
2021

2022 2023 2024 2025 2026
#ifdef CONFIG_IRQ_REMAP
int __init amd_iommu_prepare(void)
{
	return iommu_go_to_state(IOMMU_ACPI_FINISHED);
}
2027

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
int __init amd_iommu_supported(void)
{
	return amd_iommu_irq_remap ? 1 : 0;
}

int __init amd_iommu_enable(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_ENABLED);
	if (ret)
		return ret;
2040

2041
	irq_remapping_enabled = 1;
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	return 0;
}

void amd_iommu_disable(void)
{
	amd_iommu_suspend();
}

int amd_iommu_reenable(int mode)
{
	amd_iommu_resume();

	return 0;
}
2057

2058 2059 2060 2061 2062 2063
int __init amd_iommu_enable_faulting(void)
{
	/* We enable MSI later when PCI is initialized */
	return 0;
}
#endif
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 */
static int __init amd_iommu_init(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_INITIALIZED);
	if (ret) {
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		free_dma_resources();
		if (!irq_remapping_enabled) {
			disable_iommus();
			free_on_init_error();
		} else {
			struct amd_iommu *iommu;

			uninit_device_table_dma();
			for_each_iommu(iommu)
				iommu_flush_all_caches(iommu);
		}
2087 2088 2089
	}

	return ret;
2090 2091
}

2092 2093 2094 2095 2096 2097 2098
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
2099
int __init amd_iommu_detect(void)
2100
{
2101
	int ret;
2102

2103
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
2104
		return -ENODEV;
2105

2106
	if (amd_iommu_disabled)
2107
		return -ENODEV;
2108

2109 2110 2111
	ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
	if (ret)
		return ret;
2112

2113 2114 2115 2116 2117
	amd_iommu_detected = true;
	iommu_detected = 1;
	x86_init.iommu.iommu_init = amd_iommu_init;

	return 0;
2118 2119
}

2120 2121 2122 2123 2124 2125 2126
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

2127 2128 2129 2130 2131 2132 2133
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

2134 2135 2136
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
2137
		if (strncmp(str, "fullflush", 9) == 0)
2138
			amd_iommu_unmap_flush = true;
2139 2140
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
2141 2142
		if (strncmp(str, "force_isolation", 15) == 0)
			amd_iommu_force_isolation = true;
2143 2144 2145 2146 2147
	}

	return 1;
}

2148
__setup("amd_iommu_dump", parse_amd_iommu_dump);
2149
__setup("amd_iommu=", parse_amd_iommu_options);
2150 2151 2152

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
J
Joerg Roedel 已提交
2153 2154
		  NULL,
		  NULL);
2155 2156 2157 2158 2159 2160

bool amd_iommu_v2_supported(void)
{
	return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);