amd_iommu_init.c 49.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <linux/amd-iommu.h>
28
#include <linux/export.h>
29
#include <acpi/acpi.h>
30
#include <asm/pci-direct.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34
#include <asm/iommu_table.h>
35
#include <asm/io_apic.h>
36
#include <asm/irq_remapping.h>
37 38 39

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
40
#include "irq_remapping.h"
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47
60 61 62 63
#define IVHD_DEV_SPECIAL		0x48

#define IVHD_SPECIAL_IOAPIC		1
#define IVHD_SPECIAL_HPET		2
64

J
Joerg Roedel 已提交
65 66 67 68
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
69 70 71 72 73 74 75 76 77 78 79 80 81

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

82 83 84 85 86 87 88 89 90 91 92
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
93 94 95 96 97 98 99 100 101 102 103 104
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

105 106 107 108
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
109 110 111 112 113 114 115
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

116 117 118 119
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
120 121 122 123 124 125 126 127 128 129 130
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

131
bool amd_iommu_dump;
132
bool amd_iommu_irq_remap __read_mostly;
133

134
static bool amd_iommu_detected;
135
static bool __initdata amd_iommu_disabled;
136

137 138
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
139
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
140
					   we find in ACPI */
141
u32 amd_iommu_unmap_flush;		/* if true, flush on every unmap */
142

143
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
144
					   system */
145

146 147 148 149
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

150 151
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
152
bool amd_iommu_iotlb_sup __read_mostly = true;
153

154 155
u32 amd_iommu_max_pasids __read_mostly = ~0;

156 157
bool amd_iommu_v2_present __read_mostly;

158 159
bool amd_iommu_force_isolation __read_mostly;

160 161 162 163 164 165
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

166 167 168 169 170 171
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
172
struct dev_table_entry *amd_iommu_dev_table;
173 174 175 176 177 178

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
179
u16 *amd_iommu_alias_table;
180 181 182 183 184

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
185
struct amd_iommu **amd_iommu_rlookup_table;
186 187

/*
188 189 190 191 192
 * This table is used to find the irq remapping table for a given device id
 * quickly.
 */
struct irq_remap_table **irq_lookup_table;

193
/*
F
Frank Arnold 已提交
194
 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
195 196
 * to know which ones are already in use.
 */
197 198
unsigned long *amd_iommu_pd_alloc_bitmap;

199 200 201
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
enum iommu_init_state {
	IOMMU_START_STATE,
	IOMMU_IVRS_DETECTED,
	IOMMU_ACPI_FINISHED,
	IOMMU_ENABLED,
	IOMMU_PCI_INIT,
	IOMMU_INTERRUPTS_EN,
	IOMMU_DMA_OPS,
	IOMMU_INITIALIZED,
	IOMMU_NOT_FOUND,
	IOMMU_INIT_ERROR,
};

static enum iommu_init_state init_state = IOMMU_START_STATE;

218
static int amd_iommu_enable_interrupts(void);
219
static int __init iommu_go_to_state(enum iommu_init_state state);
220

221 222 223 224 225 226
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

227 228 229
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
230
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
231 232 233 234

	return 1UL << shift;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

268 269 270 271 272 273 274 275
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
276

277 278 279 280
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
281
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

299
/* Programs the physical address of the device table into the IOMMU hardware */
300
static void iommu_set_device_table(struct amd_iommu *iommu)
301
{
302
	u64 entry;
303 304 305 306 307 308 309 310 311

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

312
/* Generic functions to enable/disable certain features of the IOMMU. */
313
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
314 315 316 317 318 319 320 321
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

322
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
323 324 325
{
	u32 ctrl;

326
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
327 328 329 330
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

331 332 333 334 335 336 337 338 339 340
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl &= ~CTRL_INV_TO_MASK;
	ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

341
/* Function to enable the hardware */
342
static void iommu_enable(struct amd_iommu *iommu)
343 344 345 346
{
	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

347
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
348
{
349 350 351 352 353 354 355 356
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
357
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
358 359
}

360 361 362 363
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
J
Joerg Roedel 已提交
364
static u8 __iomem * __init iommu_map_mmio_space(u64 address)
365
{
366 367 368 369
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
370
		return NULL;
371
	}
372

J
Joerg Roedel 已提交
373
	return (u8 __iomem *)ioremap_nocache(address, MMIO_REGION_LENGTH);
374 375 376 377 378 379 380 381 382
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

383 384 385 386 387 388 389 390 391
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

392 393 394 395 396 397 398 399
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

400 401 402 403
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
404 405 406 407 408
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
409
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
410 411 412 413

	return 0;
}

414 415 416 417
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
438
			/* all the above subfield types refer to device ids */
439
			update_last_devid(dev->devid);
440 441 442 443
			break;
		default:
			break;
		}
444
		p += ivhd_entry_length(p);
445 446 447 448 449 450 451
	}

	WARN_ON(p != end);

	return 0;
}

452 453 454 455 456
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
457 458 459 460 461 462 463 464 465 466 467 468
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
469
	if (checksum != 0)
470
		/* ACPI table corrupt */
471
		return -ENODEV;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

492 493
/****************************************************************************
 *
F
Frank Arnold 已提交
494
 * The following functions belong to the code path which parses the ACPI table
495 496 497 498 499 500 501 502 503 504 505
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
506 507
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
508
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
509 510 511 512 513
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

514
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
515

516 517 518
	return cmd_buf;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

533 534 535 536 537 538 539 540 541 542 543
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
544
	entry |= MMIO_CMD_SIZE_512;
545

546
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
547
		    &entry, sizeof(entry));
548

549
	amd_iommu_reset_cmd_buffer(iommu);
550
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
551 552 553 554
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
555
	free_pages((unsigned long)iommu->cmd_buf,
556
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
557 558
}

559 560 561 562 563 564 565 566 567
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

568 569
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

570 571 572 573 574 575 576 577 578
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

579
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
580

581 582 583
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

584 585 586 587
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

588
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
589 590 591 592 593 594 595
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_ppr_log(struct amd_iommu *iommu)
{
	iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(PPR_LOG_SIZE));

	if (iommu->ppr_log == NULL)
		return NULL;

	return iommu->ppr_log;
}

static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
	u64 entry;

	if (iommu->ppr_log == NULL)
		return;

	entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;

	memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
		    &entry, sizeof(entry));

	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
	iommu_feature_enable(iommu, CONTROL_PPR_EN);
}

static void __init free_ppr_log(struct amd_iommu *iommu)
{
	if (iommu->ppr_log == NULL)
		return;

	free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}

636 637 638 639 640 641 642 643
static void iommu_enable_gt(struct amd_iommu *iommu)
{
	if (!iommu_feature(iommu, FEATURE_GT))
		return;

	iommu_feature_enable(iommu, CONTROL_GT_EN);
}

644
/* sets a specific bit in the device table entry. */
645 646
static void set_dev_entry_bit(u16 devid, u8 bit)
{
647 648
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
649

650
	amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
651 652
}

653 654
static int get_dev_entry_bit(u16 devid, u8 bit)
{
655 656
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
657

658
	return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
659 660 661 662 663 664 665 666 667 668 669 670 671 672
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

673 674 675 676 677 678
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

679 680 681 682
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
683 684
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

701 702
	amd_iommu_apply_erratum_63(devid);

703
	set_iommu_for_device(iommu, devid);
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static int add_special_device(u8 type, u8 id, u16 devid)
{
	struct devid_map *entry;
	struct list_head *list;

	if (type != IVHD_SPECIAL_IOAPIC && type != IVHD_SPECIAL_HPET)
		return -EINVAL;

	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return -ENOMEM;

	entry->id    = id;
	entry->devid = devid;

	if (type == IVHD_SPECIAL_IOAPIC)
		list = &ioapic_map;
	else
		list = &hpet_map;

	list_add_tail(&entry->list, list);

	return 0;
}

731
/*
F
Frank Arnold 已提交
732
 * Reads the device exclusion range from ACPI and initializes the IOMMU with
733 734
 * it
 */
735 736 737 738 739 740 741 742
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
743 744 745 746 747
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
748 749 750 751 752 753
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

754 755 756 757
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
758
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
759 760 761 762
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
763 764
	u16 devid = 0, devid_start = 0, devid_to = 0;
	u32 dev_i, ext_flags = 0;
765
	bool alias = false;
766 767 768
	struct ivhd_entry *e;

	/*
769
	 * First save the recommended feature enable bits from ACPI
770
	 */
771
	iommu->acpi_flags = h->flags;
772 773 774 775 776 777 778

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

779

780 781 782 783
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
784 785 786 787 788 789 790 791 792 793 794

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

795 796
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
797 798
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
799 800
			break;
		case IVHD_DEV_SELECT:
801 802 803 804 805 806 807 808

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

809
			devid = e->devid;
810
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
811 812
			break;
		case IVHD_DEV_SELECT_RANGE_START:
813 814 815 816 817 818 819 820

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

821 822 823
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
824
			alias = false;
825 826
			break;
		case IVHD_DEV_ALIAS:
827 828 829 830 831 832 833 834 835 836 837

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

838 839
			devid = e->devid;
			devid_to = e->ext >> 8;
840
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
841
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
842 843 844
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
845 846 847 848 849 850 851 852 853 854 855 856

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

857 858 859 860
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
861
			alias = true;
862 863
			break;
		case IVHD_DEV_EXT_SELECT:
864 865 866 867 868 869 870 871

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

872
			devid = e->devid;
873 874
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
875 876
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
877 878 879 880 881 882 883 884

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

885 886 887
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
888
			alias = false;
889 890
			break;
		case IVHD_DEV_RANGE_END:
891 892 893 894 895 896

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

897 898
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
899
				if (alias) {
900
					amd_iommu_alias_table[dev_i] = devid_to;
901 902 903 904 905
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
906 907
			}
			break;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		case IVHD_DEV_SPECIAL: {
			u8 handle, type;
			const char *var;
			u16 devid;
			int ret;

			handle = e->ext & 0xff;
			devid  = (e->ext >>  8) & 0xffff;
			type   = (e->ext >> 24) & 0xff;

			if (type == IVHD_SPECIAL_IOAPIC)
				var = "IOAPIC";
			else if (type == IVHD_SPECIAL_HPET)
				var = "HPET";
			else
				var = "UNKNOWN";

			DUMP_printk("  DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
				    var, (int)handle,
				    PCI_BUS(devid),
				    PCI_SLOT(devid),
				    PCI_FUNC(devid));

			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
			ret = add_special_device(type, handle, devid);
			if (ret)
				return ret;
			break;
		}
937 938 939 940
		default:
			break;
		}

941
		p += ivhd_entry_length(p);
942
	}
943 944

	return 0;
945 946
}

947
/* Initializes the device->iommu mapping for the driver */
948 949
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
950
	u32 i;
951 952 953 954 955 956 957

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

958 959 960
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
961
	free_event_buffer(iommu);
962
	free_ppr_log(iommu);
963 964 965 966 967 968 969
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

970
	for_each_iommu_safe(iommu, next) {
971 972 973 974 975 976
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

977 978 979 980 981
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
982 983
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
984 985
	int ret;

986
	spin_lock_init(&iommu->lock);
987 988

	/* Add IOMMU to internal data structures */
989
	list_add_tail(&iommu->list, &amd_iommu_list);
990 991 992 993 994 995 996 997 998
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
999 1000 1001 1002

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
1003
	iommu->devid   = h->devid;
1004
	iommu->cap_ptr = h->cap_ptr;
1005
	iommu->pci_seg = h->pci_seg;
1006 1007 1008 1009 1010 1011 1012 1013 1014
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

1015 1016 1017 1018
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

1019 1020
	iommu->int_enabled = false;

1021 1022 1023
	ret = init_iommu_from_acpi(iommu, h);
	if (ret)
		return ret;
1024 1025 1026 1027 1028 1029 1030

	/*
	 * Make sure IOMMU is not considered to translate itself. The IVRS
	 * table tells us so, but this is a lie!
	 */
	amd_iommu_rlookup_table[iommu->devid] = NULL;

1031 1032
	init_iommu_devices(iommu);

1033
	return 0;
1034 1035
}

1036 1037 1038 1039
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
1054

1055
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1056 1057 1058 1059 1060 1061 1062
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

1063
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1064 1065
			if (iommu == NULL)
				return -ENOMEM;
1066

1067
			ret = init_iommu_one(iommu, h);
1068 1069
			if (ret)
				return ret;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static int iommu_init_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
	u32 range, misc, low, high;

	iommu->dev = pci_get_bus_and_slot(PCI_BUS(iommu->devid),
					  iommu->devid & 0xff);
	if (!iommu->dev)
		return -ENODEV;

	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);

	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));

	if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
		amd_iommu_iotlb_sup = false;

	/* read extended feature bits */
	low  = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
	high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);

	iommu->features = ((u64)high << 32) | low;

	if (iommu_feature(iommu, FEATURE_GT)) {
		int glxval;
		u32 pasids;
		u64 shift;

		shift   = iommu->features & FEATURE_PASID_MASK;
		shift >>= FEATURE_PASID_SHIFT;
		pasids  = (1 << shift);

		amd_iommu_max_pasids = min(amd_iommu_max_pasids, pasids);

		glxval   = iommu->features & FEATURE_GLXVAL_MASK;
		glxval >>= FEATURE_GLXVAL_SHIFT;

		if (amd_iommu_max_glx_val == -1)
			amd_iommu_max_glx_val = glxval;
		else
			amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
	}

	if (iommu_feature(iommu, FEATURE_GT) &&
	    iommu_feature(iommu, FEATURE_PPR)) {
		iommu->is_iommu_v2   = true;
		amd_iommu_v2_present = true;
	}

	if (iommu_feature(iommu, FEATURE_PPR)) {
		iommu->ppr_log = alloc_ppr_log(iommu);
		if (!iommu->ppr_log)
			return -ENOMEM;
	}

	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

	if (is_rd890_iommu(iommu->dev)) {
		int i, j;

		iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
				PCI_DEVFN(0, 0));

		/*
		 * Some rd890 systems may not be fully reconfigured by the
		 * BIOS, so it's necessary for us to store this information so
		 * it can be reprogrammed on resume
		 */
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
				&iommu->stored_addr_lo);
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
				&iommu->stored_addr_hi);

		/* Low bit locks writes to configuration space */
		iommu->stored_addr_lo &= ~1;

		for (i = 0; i < 6; i++)
			for (j = 0; j < 0x12; j++)
				iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

		for (i = 0; i < 0x83; i++)
			iommu->stored_l2[i] = iommu_read_l2(iommu, i);
	}

	return pci_enable_device(iommu->dev);
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static void print_iommu_info(void)
{
	static const char * const feat_str[] = {
		"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
		"IA", "GA", "HE", "PC"
	};
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		int i;

		pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
			dev_name(&iommu->dev->dev), iommu->cap_ptr);

		if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
			pr_info("AMD-Vi:  Extended features: ");
1194
			for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1195 1196 1197 1198
				if (iommu_feature(iommu, (1ULL << i)))
					pr_cont(" %s", feat_str[i]);
			}
		pr_cont("\n");
1199
		}
1200
	}
1201 1202
	if (irq_remapping_enabled)
		pr_info("AMD-Vi: Interrupt remapping enabled\n");
1203 1204
}

1205
static int __init amd_iommu_init_pci(void)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_pci(iommu);
		if (ret)
			break;
	}

	ret = amd_iommu_init_devices();

1218 1219
	print_iommu_info();

1220 1221 1222
	return ret;
}

1223 1224 1225
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
F
Frank Arnold 已提交
1226
 * in the system. It's a bit challenging because there could be multiple
1227 1228 1229 1230 1231
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1232
static int iommu_setup_msi(struct amd_iommu *iommu)
1233 1234 1235
{
	int r;

1236 1237 1238
	r = pci_enable_msi(iommu->dev);
	if (r)
		return r;
1239

1240 1241 1242 1243 1244
	r = request_threaded_irq(iommu->dev->irq,
				 amd_iommu_int_handler,
				 amd_iommu_int_thread,
				 0, "AMD-Vi",
				 iommu->dev);
1245 1246 1247

	if (r) {
		pci_disable_msi(iommu->dev);
1248
		return r;
1249 1250
	}

1251
	iommu->int_enabled = true;
1252

1253 1254 1255
	return 0;
}

1256
static int iommu_init_msi(struct amd_iommu *iommu)
1257
{
1258 1259
	int ret;

1260
	if (iommu->int_enabled)
1261
		goto enable_faults;
1262

1263
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1264 1265 1266 1267 1268 1269
		ret = iommu_setup_msi(iommu);
	else
		ret = -ENODEV;

	if (ret)
		return ret;
1270

1271 1272
enable_faults:
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1273

1274 1275 1276 1277
	if (iommu->ppr_log != NULL)
		iommu_feature_enable(iommu, CONTROL_PPFINT_EN);

	return 0;
1278 1279
}

1280 1281 1282 1283
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
F
Frank Arnold 已提交
1284
 * gathered (like exclusion and unity mapping ranges).
1285 1286 1287
 *
 ****************************************************************************/

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1298
/* called when we find an exclusion range definition in ACPI */
1299 1300 1301 1302 1303 1304 1305 1306 1307
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1308
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1322
/* called for unity map ACPI definition */
1323 1324
static int __init init_unity_map_range(struct ivmd_header *m)
{
J
Joerg Roedel 已提交
1325
	struct unity_map_entry *e = NULL;
1326
	char *s;
1327 1328 1329 1330 1331 1332 1333

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1334 1335
		kfree(e);
		return 0;
1336
	case ACPI_IVMD_TYPE:
1337
		s = "IVMD_TYPEi\t\t\t";
1338 1339 1340
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1341
		s = "IVMD_TYPE_ALL\t\t";
1342 1343 1344 1345
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1346
		s = "IVMD_TYPE_RANGE\t\t";
1347 1348 1349 1350 1351 1352 1353 1354
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1355 1356 1357 1358 1359 1360 1361
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1362 1363 1364 1365 1366
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1367
/* iterates over all memory definitions we find in the ACPI table */
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1389 1390 1391 1392
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
1393
static void init_device_table_dma(void)
1394
{
1395
	u32 devid;
1396 1397 1398 1399 1400 1401 1402

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static void __init uninit_device_table_dma(void)
{
	u32 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		amd_iommu_dev_table[devid].data[0] = 0ULL;
		amd_iommu_dev_table[devid].data[1] = 0ULL;
	}
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void init_device_table(void)
{
	u32 devid;

	if (!amd_iommu_irq_remap)
		return;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1446 1447 1448

	/* Set IOTLB invalidation timeout to 1s */
	iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1449 1450
}

1451
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1452
{
1453 1454
	int i, j;
	u32 ioc_feature_control;
1455
	struct pci_dev *pdev = iommu->root_pdev;
1456 1457

	/* RD890 BIOSes may not have completely reconfigured the iommu */
1458
	if (!is_rd890_iommu(iommu->dev) || !pdev)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1492 1493
}

1494 1495 1496 1497
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1498
static void early_enable_iommus(void)
1499 1500 1501
{
	struct amd_iommu *iommu;

1502
	for_each_iommu(iommu) {
1503
		iommu_disable(iommu);
1504
		iommu_init_flags(iommu);
1505 1506 1507
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1508 1509
		iommu_set_exclusion_range(iommu);
		iommu_enable(iommu);
1510
		iommu_flush_all_caches(iommu);
1511 1512 1513
	}
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static void enable_iommus_v2(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		iommu_enable_ppr_log(iommu);
		iommu_enable_gt(iommu);
	}
}

static void enable_iommus(void)
{
	early_enable_iommus();

	enable_iommus_v2();
}

1531 1532 1533 1534 1535 1536 1537 1538
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1539 1540 1541 1542 1543
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1544
static void amd_iommu_resume(void)
1545
{
1546 1547 1548 1549 1550
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1551 1552
	/* re-load the hardware */
	enable_iommus();
1553 1554

	amd_iommu_enable_interrupts();
1555 1556
}

1557
static int amd_iommu_suspend(void)
1558
{
1559 1560 1561 1562
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1563 1564
}

1565
static struct syscore_ops amd_iommu_syscore_ops = {
1566 1567 1568 1569
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1570 1571
static void __init free_on_init_error(void)
{
1572 1573
	free_pages((unsigned long)irq_lookup_table,
		   get_order(rlookup_table_size));
1574

1575 1576 1577
	if (amd_iommu_irq_cache) {
		kmem_cache_destroy(amd_iommu_irq_cache);
		amd_iommu_irq_cache = NULL;
1578

1579
	}
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));

	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));

	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));

	free_iommu_all();

#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif
}

1602 1603 1604
/* SB IOAPIC is always on this device in AMD systems */
#define IOAPIC_SB_DEVID		((0x00 << 8) | PCI_DEVFN(0x14, 0))

1605 1606
static bool __init check_ioapic_information(void)
{
1607
	bool ret, has_sb_ioapic;
1608 1609
	int idx;

1610 1611
	has_sb_ioapic = false;
	ret           = false;
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	for (idx = 0; idx < nr_ioapics; idx++) {
		int devid, id = mpc_ioapic_id(idx);

		devid = get_ioapic_devid(id);
		if (devid < 0) {
			pr_err(FW_BUG "AMD-Vi: IOAPIC[%d] not in IVRS table\n", id);
			ret = false;
		} else if (devid == IOAPIC_SB_DEVID) {
			has_sb_ioapic = true;
			ret           = true;
1623 1624 1625
		}
	}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	if (!has_sb_ioapic) {
		/*
		 * We expect the SB IOAPIC to be listed in the IVRS
		 * table. The system timer is connected to the SB IOAPIC
		 * and if we don't have it in the list the system will
		 * panic at boot time.  This situation usually happens
		 * when the BIOS is buggy and provides us the wrong
		 * device id for the IOAPIC in the system.
		 */
		pr_err(FW_BUG "AMD-Vi: No southbridge IOAPIC found in IVRS table\n");
	}

	if (!ret)
		pr_err("AMD-Vi: Disabling interrupt remapping due to BIOS Bug(s)\n");

	return ret;
1642 1643
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static void __init free_dma_resources(void)
{
	amd_iommu_uninit_devices();

	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));

	free_unity_maps();
}

1654
/*
1655 1656 1657
 * This is the hardware init function for AMD IOMMU in the system.
 * This function is called either from amd_iommu_init or from the interrupt
 * remapping setup code.
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
1676 1677
 * After everything is set up the IOMMUs are enabled and the necessary
 * hotplug and suspend notifiers are registered.
1678
 */
1679
static int __init early_amd_iommu_init(void)
1680
{
1681 1682 1683
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;
1684 1685
	int i, ret = 0;

1686
	if (!amd_iommu_detected)
1687 1688
		return -ENODEV;

1689 1690 1691 1692 1693 1694 1695 1696 1697
	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return -ENODEV;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return -EINVAL;
	}

1698 1699 1700 1701 1702
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
1703 1704
	ret = find_last_devid_acpi(ivrs_base);
	if (ret)
1705 1706
		goto out;

1707 1708 1709
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1710 1711

	/* Device table - directly used by all IOMMUs */
1712
	ret = -ENOMEM;
1713
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
1725
		goto out;
1726 1727

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1728 1729
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1730 1731
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
1732
		goto out;
1733

1734 1735
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1736 1737
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
1738
		goto out;
1739 1740

	/*
1741
	 * let all alias entries point to itself
1742
	 */
1743
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1744 1745 1746 1747 1748 1749 1750 1751
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1752 1753
	spin_lock_init(&amd_iommu_pd_lock);

1754 1755 1756 1757
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
1758 1759
	ret = init_iommu_all(ivrs_base);
	if (ret)
1760
		goto out;
1761

1762 1763 1764
	if (amd_iommu_irq_remap)
		amd_iommu_irq_remap = check_ioapic_information();

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	if (amd_iommu_irq_remap) {
		/*
		 * Interrupt remapping enabled, create kmem_cache for the
		 * remapping tables.
		 */
		amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
				MAX_IRQS_PER_TABLE * sizeof(u32),
				IRQ_TABLE_ALIGNMENT,
				0, NULL);
		if (!amd_iommu_irq_cache)
			goto out;
1776 1777 1778 1779 1780 1781

		irq_lookup_table = (void *)__get_free_pages(
				GFP_KERNEL | __GFP_ZERO,
				get_order(rlookup_table_size));
		if (!irq_lookup_table)
			goto out;
1782 1783
	}

1784 1785
	ret = init_memory_definitions(ivrs_base);
	if (ret)
1786
		goto out;
1787

1788 1789 1790
	/* init the device table */
	init_device_table();

1791
out:
1792 1793 1794 1795
	/* Don't leak any ACPI memory */
	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
	ivrs_base = NULL;

1796 1797 1798
	return ret;
}

1799
static int amd_iommu_enable_interrupts(void)
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_msi(iommu);
		if (ret)
			goto out;
	}

out:
	return ret;
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static bool detect_ivrs(void)
{
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;

	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return false;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return false;
	}

	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);

1831 1832 1833
	/* Make sure ACS will be enabled during PCI probe */
	pci_request_acs();

1834 1835 1836
	if (!disable_irq_remap)
		amd_iommu_irq_remap = true;

1837 1838 1839
	return true;
}

1840 1841
static int amd_iommu_init_dma(void)
{
1842
	struct amd_iommu *iommu;
1843 1844
	int ret;

1845 1846 1847 1848 1849
	init_device_table_dma();

	for_each_iommu(iommu)
		iommu_flush_all_caches(iommu);

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();

	if (ret)
		return ret;

	amd_iommu_init_api();

	amd_iommu_init_notifier();

	return 0;
}

1865
/****************************************************************************
1866
 *
1867 1868 1869 1870 1871
 * AMD IOMMU Initialization State Machine
 *
 ****************************************************************************/

static int __init state_next(void)
1872 1873 1874
{
	int ret = 0;

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	switch (init_state) {
	case IOMMU_START_STATE:
		if (!detect_ivrs()) {
			init_state	= IOMMU_NOT_FOUND;
			ret		= -ENODEV;
		} else {
			init_state	= IOMMU_IVRS_DETECTED;
		}
		break;
	case IOMMU_IVRS_DETECTED:
		ret = early_amd_iommu_init();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
		break;
	case IOMMU_ACPI_FINISHED:
		early_enable_iommus();
		register_syscore_ops(&amd_iommu_syscore_ops);
		x86_platform.iommu_shutdown = disable_iommus;
		init_state = IOMMU_ENABLED;
		break;
	case IOMMU_ENABLED:
		ret = amd_iommu_init_pci();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
		enable_iommus_v2();
		break;
	case IOMMU_PCI_INIT:
		ret = amd_iommu_enable_interrupts();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
		break;
	case IOMMU_INTERRUPTS_EN:
		ret = amd_iommu_init_dma();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
		break;
	case IOMMU_DMA_OPS:
		init_state = IOMMU_INITIALIZED;
		break;
	case IOMMU_INITIALIZED:
		/* Nothing to do */
		break;
	case IOMMU_NOT_FOUND:
	case IOMMU_INIT_ERROR:
		/* Error states => do nothing */
		ret = -EINVAL;
		break;
	default:
		/* Unknown state */
		BUG();
	}
1922

1923 1924
	return ret;
}
1925

1926 1927 1928
static int __init iommu_go_to_state(enum iommu_init_state state)
{
	int ret = 0;
1929

1930 1931 1932 1933 1934 1935
	while (init_state != state) {
		ret = state_next();
		if (init_state == IOMMU_NOT_FOUND ||
		    init_state == IOMMU_INIT_ERROR)
			break;
	}
1936

1937
	return ret;
1938
}
1939

1940 1941 1942 1943 1944
#ifdef CONFIG_IRQ_REMAP
int __init amd_iommu_prepare(void)
{
	return iommu_go_to_state(IOMMU_ACPI_FINISHED);
}
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
int __init amd_iommu_supported(void)
{
	return amd_iommu_irq_remap ? 1 : 0;
}

int __init amd_iommu_enable(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_ENABLED);
	if (ret)
		return ret;
1958

1959
	irq_remapping_enabled = 1;
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	return 0;
}

void amd_iommu_disable(void)
{
	amd_iommu_suspend();
}

int amd_iommu_reenable(int mode)
{
	amd_iommu_resume();

	return 0;
}
1975

1976 1977 1978 1979 1980 1981
int __init amd_iommu_enable_faulting(void)
{
	/* We enable MSI later when PCI is initialized */
	return 0;
}
#endif
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 */
static int __init amd_iommu_init(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_INITIALIZED);
	if (ret) {
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
		free_dma_resources();
		if (!irq_remapping_enabled) {
			disable_iommus();
			free_on_init_error();
		} else {
			struct amd_iommu *iommu;

			uninit_device_table_dma();
			for_each_iommu(iommu)
				iommu_flush_all_caches(iommu);
		}
2005 2006 2007
	}

	return ret;
2008 2009
}

2010 2011 2012 2013 2014 2015 2016
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
2017
int __init amd_iommu_detect(void)
2018
{
2019
	int ret;
2020

2021
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
2022
		return -ENODEV;
2023

2024
	if (amd_iommu_disabled)
2025
		return -ENODEV;
2026

2027 2028 2029
	ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
	if (ret)
		return ret;
2030

2031 2032 2033 2034 2035
	amd_iommu_detected = true;
	iommu_detected = 1;
	x86_init.iommu.iommu_init = amd_iommu_init;

	return 0;
2036 2037
}

2038 2039 2040 2041 2042 2043 2044
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

2045 2046 2047 2048 2049 2050 2051
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

2052 2053 2054
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
2055
		if (strncmp(str, "fullflush", 9) == 0)
2056
			amd_iommu_unmap_flush = true;
2057 2058
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
2059 2060
		if (strncmp(str, "force_isolation", 15) == 0)
			amd_iommu_force_isolation = true;
2061 2062 2063 2064 2065
	}

	return 1;
}

2066
__setup("amd_iommu_dump", parse_amd_iommu_dump);
2067
__setup("amd_iommu=", parse_amd_iommu_options);
2068 2069 2070

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
J
Joerg Roedel 已提交
2071 2072
		  NULL,
		  NULL);
2073 2074 2075 2076 2077 2078

bool amd_iommu_v2_supported(void)
{
	return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);