amd_iommu_init.c 46.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <linux/amd-iommu.h>
28
#include <linux/export.h>
29 30
#include <linux/acpi.h>
#include <acpi/acpi.h>
31
#include <asm/pci-direct.h>
32
#include <asm/iommu.h>
33
#include <asm/gart.h>
34
#include <asm/x86_init.h>
35
#include <asm/iommu_table.h>
36 37 38

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
39
#include "irq_remapping.h"
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47
59 60 61 62
#define IVHD_DEV_SPECIAL		0x48

#define IVHD_SPECIAL_IOAPIC		1
#define IVHD_SPECIAL_HPET		2
63

J
Joerg Roedel 已提交
64 65 66 67
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
68 69 70 71 72 73 74 75 76 77 78 79 80

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

81 82 83 84 85 86 87 88 89 90 91
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
92 93 94 95 96 97 98 99 100 101 102 103
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

104 105 106 107
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
108 109 110 111 112 113 114
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

115 116 117 118
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
119 120 121 122 123 124 125 126 127 128 129
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

130
bool amd_iommu_dump;
131
bool amd_iommu_irq_remap __read_mostly;
132

133
static bool amd_iommu_detected;
134
static bool __initdata amd_iommu_disabled;
135

136 137
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
138
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
139
					   we find in ACPI */
140
u32 amd_iommu_unmap_flush;		/* if true, flush on every unmap */
141

142
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
143
					   system */
144

145 146 147 148
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

149 150
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
151
bool amd_iommu_iotlb_sup __read_mostly = true;
152

153 154
u32 amd_iommu_max_pasids __read_mostly = ~0;

155 156
bool amd_iommu_v2_present __read_mostly;

157 158
bool amd_iommu_force_isolation __read_mostly;

159 160 161 162 163 164
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

165 166 167 168 169 170
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
171
struct dev_table_entry *amd_iommu_dev_table;
172 173 174 175 176 177

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
178
u16 *amd_iommu_alias_table;
179 180 181 182 183

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
184
struct amd_iommu **amd_iommu_rlookup_table;
185

186 187 188 189 190 191
/*
 * This table is used to find the irq remapping table for a given device id
 * quickly.
 */
struct irq_remap_table **irq_lookup_table;

192 193 194 195
/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
196 197
unsigned long *amd_iommu_pd_alloc_bitmap;

198 199 200
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
enum iommu_init_state {
	IOMMU_START_STATE,
	IOMMU_IVRS_DETECTED,
	IOMMU_ACPI_FINISHED,
	IOMMU_ENABLED,
	IOMMU_PCI_INIT,
	IOMMU_INTERRUPTS_EN,
	IOMMU_DMA_OPS,
	IOMMU_INITIALIZED,
	IOMMU_NOT_FOUND,
	IOMMU_INIT_ERROR,
};

static enum iommu_init_state init_state = IOMMU_START_STATE;

217
static int amd_iommu_enable_interrupts(void);
218
static int __init iommu_go_to_state(enum iommu_init_state state);
219

220 221 222 223 224 225
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

226 227 228
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
229
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
230 231 232 233

	return 1UL << shift;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

267 268 269 270 271 272 273 274
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
275

276 277 278 279
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
280
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

298
/* Programs the physical address of the device table into the IOMMU hardware */
299
static void iommu_set_device_table(struct amd_iommu *iommu)
300
{
301
	u64 entry;
302 303 304 305 306 307 308 309 310

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

311
/* Generic functions to enable/disable certain features of the IOMMU. */
312
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
313 314 315 316 317 318 319 320
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

321
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
322 323 324
{
	u32 ctrl;

325
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
326 327 328 329
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

330 331 332 333 334 335 336 337 338 339
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl &= ~CTRL_INV_TO_MASK;
	ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

340
/* Function to enable the hardware */
341
static void iommu_enable(struct amd_iommu *iommu)
342 343 344 345
{
	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

346
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
347
{
348 349 350 351 352 353 354 355
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
356
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
357 358
}

359 360 361 362
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
J
Joerg Roedel 已提交
363
static u8 __iomem * __init iommu_map_mmio_space(u64 address)
364
{
365 366 367 368
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
369
		return NULL;
370
	}
371

J
Joerg Roedel 已提交
372
	return (u8 __iomem *)ioremap_nocache(address, MMIO_REGION_LENGTH);
373 374 375 376 377 378 379 380 381
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

382 383 384 385 386 387 388 389 390
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

391 392 393 394 395 396 397 398
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

399 400 401 402
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
403 404 405 406 407
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
408
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
409 410 411 412

	return 0;
}

413 414 415 416
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
437
			/* all the above subfield types refer to device ids */
438
			update_last_devid(dev->devid);
439 440 441 442
			break;
		default:
			break;
		}
443
		p += ivhd_entry_length(p);
444 445 446 447 448 449 450
	}

	WARN_ON(p != end);

	return 0;
}

451 452 453 454 455
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
456 457 458 459 460 461 462 463 464 465 466 467
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
468
	if (checksum != 0)
469
		/* ACPI table corrupt */
470
		return -ENODEV;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
505 506
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
507
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
508 509 510 511 512
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

513
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
514

515 516 517
	return cmd_buf;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

532 533 534 535 536 537 538 539 540 541 542
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
543
	entry |= MMIO_CMD_SIZE_512;
544

545
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
546
		    &entry, sizeof(entry));
547

548
	amd_iommu_reset_cmd_buffer(iommu);
549
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
550 551 552 553
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
554
	free_pages((unsigned long)iommu->cmd_buf,
555
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
556 557
}

558 559 560 561 562 563 564 565 566
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

567 568
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

569 570 571 572 573 574 575 576 577
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

578
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
579

580 581 582
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

583 584 585 586
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

587
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
588 589 590 591 592 593 594
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_ppr_log(struct amd_iommu *iommu)
{
	iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(PPR_LOG_SIZE));

	if (iommu->ppr_log == NULL)
		return NULL;

	return iommu->ppr_log;
}

static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
	u64 entry;

	if (iommu->ppr_log == NULL)
		return;

	entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;

	memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
		    &entry, sizeof(entry));

	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
	iommu_feature_enable(iommu, CONTROL_PPR_EN);
}

static void __init free_ppr_log(struct amd_iommu *iommu)
{
	if (iommu->ppr_log == NULL)
		return;

	free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}

635 636 637 638 639 640 641 642
static void iommu_enable_gt(struct amd_iommu *iommu)
{
	if (!iommu_feature(iommu, FEATURE_GT))
		return;

	iommu_feature_enable(iommu, CONTROL_GT_EN);
}

643
/* sets a specific bit in the device table entry. */
644 645
static void set_dev_entry_bit(u16 devid, u8 bit)
{
646 647
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
648

649
	amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
650 651
}

652 653
static int get_dev_entry_bit(u16 devid, u8 bit)
{
654 655
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
656

657
	return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
658 659 660 661 662 663 664 665 666 667 668 669 670 671
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

672 673 674 675 676 677
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

678 679 680 681
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
682 683
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

700 701
	amd_iommu_apply_erratum_63(devid);

702
	set_iommu_for_device(iommu, devid);
703 704
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
static int add_special_device(u8 type, u8 id, u16 devid)
{
	struct devid_map *entry;
	struct list_head *list;

	if (type != IVHD_SPECIAL_IOAPIC && type != IVHD_SPECIAL_HPET)
		return -EINVAL;

	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return -ENOMEM;

	entry->id    = id;
	entry->devid = devid;

	if (type == IVHD_SPECIAL_IOAPIC)
		list = &ioapic_map;
	else
		list = &hpet_map;

	list_add_tail(&entry->list, list);

	return 0;
}

730 731 732 733
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
734 735 736 737 738 739 740 741
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
742 743 744 745 746
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
747 748 749 750 751 752
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

753 754 755 756
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
757
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
758 759 760 761
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
762 763
	u16 devid = 0, devid_start = 0, devid_to = 0;
	u32 dev_i, ext_flags = 0;
764
	bool alias = false;
765 766 767
	struct ivhd_entry *e;

	/*
768
	 * First save the recommended feature enable bits from ACPI
769
	 */
770
	iommu->acpi_flags = h->flags;
771 772 773 774 775 776 777

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

778

779 780 781 782
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
783 784 785 786 787 788 789 790 791 792 793

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

794 795
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
796 797
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
798 799
			break;
		case IVHD_DEV_SELECT:
800 801 802 803 804 805 806 807

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

808
			devid = e->devid;
809
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
810 811
			break;
		case IVHD_DEV_SELECT_RANGE_START:
812 813 814 815 816 817 818 819

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

820 821 822
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
823
			alias = false;
824 825
			break;
		case IVHD_DEV_ALIAS:
826 827 828 829 830 831 832 833 834 835 836

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

837 838
			devid = e->devid;
			devid_to = e->ext >> 8;
839
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
840
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
841 842 843
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
844 845 846 847 848 849 850 851 852 853 854 855

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

856 857 858 859
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
860
			alias = true;
861 862
			break;
		case IVHD_DEV_EXT_SELECT:
863 864 865 866 867 868 869 870

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

871
			devid = e->devid;
872 873
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
874 875
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
876 877 878 879 880 881 882 883

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

884 885 886
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
887
			alias = false;
888 889
			break;
		case IVHD_DEV_RANGE_END:
890 891 892 893 894 895

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

896 897
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
898
				if (alias) {
899
					amd_iommu_alias_table[dev_i] = devid_to;
900 901 902 903 904
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
905 906
			}
			break;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
		case IVHD_DEV_SPECIAL: {
			u8 handle, type;
			const char *var;
			u16 devid;
			int ret;

			handle = e->ext & 0xff;
			devid  = (e->ext >>  8) & 0xffff;
			type   = (e->ext >> 24) & 0xff;

			if (type == IVHD_SPECIAL_IOAPIC)
				var = "IOAPIC";
			else if (type == IVHD_SPECIAL_HPET)
				var = "HPET";
			else
				var = "UNKNOWN";

			DUMP_printk("  DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
				    var, (int)handle,
				    PCI_BUS(devid),
				    PCI_SLOT(devid),
				    PCI_FUNC(devid));

			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
			ret = add_special_device(type, handle, devid);
			if (ret)
				return ret;
			break;
		}
936 937 938 939
		default:
			break;
		}

940
		p += ivhd_entry_length(p);
941
	}
942 943

	return 0;
944 945
}

946
/* Initializes the device->iommu mapping for the driver */
947 948
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
949
	u32 i;
950 951 952 953 954 955 956

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

957 958 959
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
960
	free_event_buffer(iommu);
961
	free_ppr_log(iommu);
962 963 964 965 966 967 968
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

969
	for_each_iommu_safe(iommu, next) {
970 971 972 973 974 975
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

976 977 978 979 980
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
981 982
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
983 984
	int ret;

985
	spin_lock_init(&iommu->lock);
986 987

	/* Add IOMMU to internal data structures */
988
	list_add_tail(&iommu->list, &amd_iommu_list);
989 990 991 992 993 994 995 996 997
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
998 999 1000 1001

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
1002
	iommu->devid   = h->devid;
1003
	iommu->cap_ptr = h->cap_ptr;
1004
	iommu->pci_seg = h->pci_seg;
1005 1006 1007 1008 1009 1010 1011 1012 1013
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

1014 1015 1016 1017
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

1018 1019
	iommu->int_enabled = false;

1020 1021 1022
	ret = init_iommu_from_acpi(iommu, h);
	if (ret)
		return ret;
1023 1024
	init_iommu_devices(iommu);

1025
	return 0;
1026 1027
}

1028 1029 1030 1031
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
1046

1047
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1048 1049 1050 1051 1052 1053 1054
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

1055
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1056 1057
			if (iommu == NULL)
				return -ENOMEM;
1058

1059
			ret = init_iommu_one(iommu, h);
1060 1061
			if (ret)
				return ret;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static int iommu_init_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
	u32 range, misc, low, high;

	iommu->dev = pci_get_bus_and_slot(PCI_BUS(iommu->devid),
					  iommu->devid & 0xff);
	if (!iommu->dev)
		return -ENODEV;

	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);

	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));

	if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
		amd_iommu_iotlb_sup = false;

	/* read extended feature bits */
	low  = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
	high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);

	iommu->features = ((u64)high << 32) | low;

	if (iommu_feature(iommu, FEATURE_GT)) {
		int glxval;
		u32 pasids;
		u64 shift;

		shift   = iommu->features & FEATURE_PASID_MASK;
		shift >>= FEATURE_PASID_SHIFT;
		pasids  = (1 << shift);

		amd_iommu_max_pasids = min(amd_iommu_max_pasids, pasids);

		glxval   = iommu->features & FEATURE_GLXVAL_MASK;
		glxval >>= FEATURE_GLXVAL_SHIFT;

		if (amd_iommu_max_glx_val == -1)
			amd_iommu_max_glx_val = glxval;
		else
			amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
	}

	if (iommu_feature(iommu, FEATURE_GT) &&
	    iommu_feature(iommu, FEATURE_PPR)) {
		iommu->is_iommu_v2   = true;
		amd_iommu_v2_present = true;
	}

	if (iommu_feature(iommu, FEATURE_PPR)) {
		iommu->ppr_log = alloc_ppr_log(iommu);
		if (!iommu->ppr_log)
			return -ENOMEM;
	}

	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

	if (is_rd890_iommu(iommu->dev)) {
		int i, j;

		iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
				PCI_DEVFN(0, 0));

		/*
		 * Some rd890 systems may not be fully reconfigured by the
		 * BIOS, so it's necessary for us to store this information so
		 * it can be reprogrammed on resume
		 */
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
				&iommu->stored_addr_lo);
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
				&iommu->stored_addr_hi);

		/* Low bit locks writes to configuration space */
		iommu->stored_addr_lo &= ~1;

		for (i = 0; i < 6; i++)
			for (j = 0; j < 0x12; j++)
				iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

		for (i = 0; i < 0x83; i++)
			iommu->stored_l2[i] = iommu_read_l2(iommu, i);
	}

	return pci_enable_device(iommu->dev);
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static void print_iommu_info(void)
{
	static const char * const feat_str[] = {
		"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
		"IA", "GA", "HE", "PC"
	};
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		int i;

		pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
			dev_name(&iommu->dev->dev), iommu->cap_ptr);

		if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
			pr_info("AMD-Vi:  Extended features: ");
1186
			for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1187 1188 1189 1190 1191 1192 1193 1194
				if (iommu_feature(iommu, (1ULL << i)))
					pr_cont(" %s", feat_str[i]);
			}
		}
		pr_cont("\n");
	}
}

1195
static int __init amd_iommu_init_pci(void)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_pci(iommu);
		if (ret)
			break;
	}

	ret = amd_iommu_init_devices();

1208 1209
	print_iommu_info();

1210 1211 1212
	return ret;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1222
static int iommu_setup_msi(struct amd_iommu *iommu)
1223 1224 1225
{
	int r;

1226 1227 1228
	r = pci_enable_msi(iommu->dev);
	if (r)
		return r;
1229

1230 1231 1232 1233 1234
	r = request_threaded_irq(iommu->dev->irq,
				 amd_iommu_int_handler,
				 amd_iommu_int_thread,
				 0, "AMD-Vi",
				 iommu->dev);
1235 1236 1237

	if (r) {
		pci_disable_msi(iommu->dev);
1238
		return r;
1239 1240
	}

1241
	iommu->int_enabled = true;
1242

1243 1244 1245
	return 0;
}

1246
static int iommu_init_msi(struct amd_iommu *iommu)
1247
{
1248 1249
	int ret;

1250
	if (iommu->int_enabled)
1251
		goto enable_faults;
1252

1253
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1254 1255 1256 1257 1258 1259
		ret = iommu_setup_msi(iommu);
	else
		ret = -ENODEV;

	if (ret)
		return ret;
1260

1261 1262
enable_faults:
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1263

1264 1265 1266 1267
	if (iommu->ppr_log != NULL)
		iommu_feature_enable(iommu, CONTROL_PPFINT_EN);

	return 0;
1268 1269
}

1270 1271 1272 1273 1274 1275 1276 1277
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1288
/* called when we find an exclusion range definition in ACPI */
1289 1290 1291 1292 1293 1294 1295 1296 1297
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1298
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1312
/* called for unity map ACPI definition */
1313 1314
static int __init init_unity_map_range(struct ivmd_header *m)
{
J
Joerg Roedel 已提交
1315
	struct unity_map_entry *e = NULL;
1316
	char *s;
1317 1318 1319 1320 1321 1322 1323

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1324 1325
		kfree(e);
		return 0;
1326
	case ACPI_IVMD_TYPE:
1327
		s = "IVMD_TYPEi\t\t\t";
1328 1329 1330
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1331
		s = "IVMD_TYPE_ALL\t\t";
1332 1333 1334 1335
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1336
		s = "IVMD_TYPE_RANGE\t\t";
1337 1338 1339 1340 1341 1342 1343 1344
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1345 1346 1347 1348 1349 1350 1351
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1352 1353 1354 1355 1356
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1357
/* iterates over all memory definitions we find in the ACPI table */
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1379 1380 1381 1382 1383 1384
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
1385
	u32 devid;
1386 1387 1388 1389 1390 1391 1392

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1415 1416 1417

	/* Set IOTLB invalidation timeout to 1s */
	iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1418 1419
}

1420
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1421
{
1422 1423
	int i, j;
	u32 ioc_feature_control;
1424
	struct pci_dev *pdev = iommu->root_pdev;
1425 1426

	/* RD890 BIOSes may not have completely reconfigured the iommu */
1427
	if (!is_rd890_iommu(iommu->dev) || !pdev)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1461 1462
}

1463 1464 1465 1466
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1467
static void early_enable_iommus(void)
1468 1469 1470
{
	struct amd_iommu *iommu;

1471
	for_each_iommu(iommu) {
1472
		iommu_disable(iommu);
1473
		iommu_init_flags(iommu);
1474 1475 1476
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1477 1478
		iommu_set_exclusion_range(iommu);
		iommu_enable(iommu);
1479
		iommu_flush_all_caches(iommu);
1480 1481 1482
	}
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static void enable_iommus_v2(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		iommu_enable_ppr_log(iommu);
		iommu_enable_gt(iommu);
	}
}

static void enable_iommus(void)
{
	early_enable_iommus();

	enable_iommus_v2();
}

1500 1501 1502 1503 1504 1505 1506 1507
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1508 1509 1510 1511 1512
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1513
static void amd_iommu_resume(void)
1514
{
1515 1516 1517 1518 1519
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1520 1521
	/* re-load the hardware */
	enable_iommus();
1522 1523

	amd_iommu_enable_interrupts();
1524 1525
}

1526
static int amd_iommu_suspend(void)
1527
{
1528 1529 1530 1531
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1532 1533
}

1534
static struct syscore_ops amd_iommu_syscore_ops = {
1535 1536 1537 1538
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1539 1540
static void __init free_on_init_error(void)
{
1541 1542 1543
	free_pages((unsigned long)irq_lookup_table,
		   get_order(rlookup_table_size));

1544 1545 1546
	if (amd_iommu_irq_cache) {
		kmem_cache_destroy(amd_iommu_irq_cache);
		amd_iommu_irq_cache = NULL;
1547

1548 1549
	}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	amd_iommu_uninit_devices();

	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));

	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));

	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));

	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));

	free_iommu_all();

	free_unity_maps();

#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif
}

1578
/*
1579 1580 1581
 * This is the hardware init function for AMD IOMMU in the system.
 * This function is called either from amd_iommu_init or from the interrupt
 * remapping setup code.
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
1600 1601
 * After everything is set up the IOMMUs are enabled and the necessary
 * hotplug and suspend notifiers are registered.
1602
 */
1603
static int __init early_amd_iommu_init(void)
1604
{
1605 1606 1607
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;
1608 1609
	int i, ret = 0;

1610
	if (!amd_iommu_detected)
1611 1612
		return -ENODEV;

1613 1614 1615 1616 1617 1618 1619 1620 1621
	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return -ENODEV;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return -EINVAL;
	}

1622 1623 1624 1625 1626
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
1627 1628
	ret = find_last_devid_acpi(ivrs_base);
	if (ret)
1629 1630
		goto out;

1631 1632 1633
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1634 1635

	/* Device table - directly used by all IOMMUs */
1636
	ret = -ENOMEM;
1637
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
1649
		goto out;
1650 1651

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1652 1653
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1654 1655
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
1656
		goto out;
1657

1658 1659
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1660 1661
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
1662
		goto out;
1663

1664 1665 1666
	/* init the device table */
	init_device_table();

1667
	/*
1668
	 * let all alias entries point to itself
1669
	 */
1670
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1671 1672 1673 1674 1675 1676 1677 1678
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1679 1680
	spin_lock_init(&amd_iommu_pd_lock);

1681 1682 1683 1684
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
1685 1686
	ret = init_iommu_all(ivrs_base);
	if (ret)
1687
		goto out;
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	if (amd_iommu_irq_remap) {
		/*
		 * Interrupt remapping enabled, create kmem_cache for the
		 * remapping tables.
		 */
		amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
				MAX_IRQS_PER_TABLE * sizeof(u32),
				IRQ_TABLE_ALIGNMENT,
				0, NULL);
		if (!amd_iommu_irq_cache)
			goto out;
1700 1701 1702 1703 1704 1705

		irq_lookup_table = (void *)__get_free_pages(
				GFP_KERNEL | __GFP_ZERO,
				get_order(rlookup_table_size));
		if (!irq_lookup_table)
			goto out;
1706 1707
	}

1708 1709
	ret = init_memory_definitions(ivrs_base);
	if (ret)
1710
		goto out;
1711

1712
out:
1713 1714 1715 1716
	/* Don't leak any ACPI memory */
	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
	ivrs_base = NULL;

1717 1718 1719
	return ret;
}

1720
static int amd_iommu_enable_interrupts(void)
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_msi(iommu);
		if (ret)
			goto out;
	}

out:
	return ret;
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static bool detect_ivrs(void)
{
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;

	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return false;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return false;
	}

	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);

1752 1753 1754
	/* Make sure ACS will be enabled during PCI probe */
	pci_request_acs();

1755 1756 1757
	if (!disable_irq_remap)
		amd_iommu_irq_remap = true;

1758 1759 1760
	return true;
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static int amd_iommu_init_dma(void)
{
	int ret;

	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();

	if (ret)
		return ret;

	amd_iommu_init_api();

	amd_iommu_init_notifier();

	return 0;
}

1780
/****************************************************************************
1781
 *
1782 1783 1784 1785 1786
 * AMD IOMMU Initialization State Machine
 *
 ****************************************************************************/

static int __init state_next(void)
1787 1788 1789
{
	int ret = 0;

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	switch (init_state) {
	case IOMMU_START_STATE:
		if (!detect_ivrs()) {
			init_state	= IOMMU_NOT_FOUND;
			ret		= -ENODEV;
		} else {
			init_state	= IOMMU_IVRS_DETECTED;
		}
		break;
	case IOMMU_IVRS_DETECTED:
		ret = early_amd_iommu_init();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
		break;
	case IOMMU_ACPI_FINISHED:
		early_enable_iommus();
		register_syscore_ops(&amd_iommu_syscore_ops);
		x86_platform.iommu_shutdown = disable_iommus;
		init_state = IOMMU_ENABLED;
		break;
	case IOMMU_ENABLED:
		ret = amd_iommu_init_pci();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
		enable_iommus_v2();
		break;
	case IOMMU_PCI_INIT:
		ret = amd_iommu_enable_interrupts();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
		break;
	case IOMMU_INTERRUPTS_EN:
		ret = amd_iommu_init_dma();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
		break;
	case IOMMU_DMA_OPS:
		init_state = IOMMU_INITIALIZED;
		break;
	case IOMMU_INITIALIZED:
		/* Nothing to do */
		break;
	case IOMMU_NOT_FOUND:
	case IOMMU_INIT_ERROR:
		/* Error states => do nothing */
		ret = -EINVAL;
		break;
	default:
		/* Unknown state */
		BUG();
	}
1837

1838 1839
	return ret;
}
1840

1841 1842 1843
static int __init iommu_go_to_state(enum iommu_init_state state)
{
	int ret = 0;
1844

1845 1846 1847 1848 1849 1850
	while (init_state != state) {
		ret = state_next();
		if (init_state == IOMMU_NOT_FOUND ||
		    init_state == IOMMU_INIT_ERROR)
			break;
	}
1851

1852
	return ret;
1853
}
1854

1855 1856


1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 */
static int __init amd_iommu_init(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_INITIALIZED);
	if (ret) {
		disable_iommus();
		free_on_init_error();
	}

	return ret;
1873 1874
}

1875 1876 1877 1878 1879 1880 1881
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1882
int __init amd_iommu_detect(void)
1883
{
1884
	int ret;
1885

1886
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1887
		return -ENODEV;
1888

1889
	if (amd_iommu_disabled)
1890
		return -ENODEV;
1891

1892 1893 1894
	ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
	if (ret)
		return ret;
1895

1896 1897 1898 1899 1900
	amd_iommu_detected = true;
	iommu_detected = 1;
	x86_init.iommu.iommu_init = amd_iommu_init;

	return 0;
1901 1902
}

1903 1904 1905 1906 1907 1908 1909
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1910 1911 1912 1913 1914 1915 1916
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

1917 1918 1919
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1920
		if (strncmp(str, "fullflush", 9) == 0)
1921
			amd_iommu_unmap_flush = true;
1922 1923
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
1924 1925
		if (strncmp(str, "force_isolation", 15) == 0)
			amd_iommu_force_isolation = true;
1926 1927 1928 1929 1930
	}

	return 1;
}

1931
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1932
__setup("amd_iommu=", parse_amd_iommu_options);
1933 1934 1935

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
J
Joerg Roedel 已提交
1936 1937
		  NULL,
		  NULL);
1938 1939 1940 1941 1942 1943

bool amd_iommu_v2_supported(void)
{
	return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);