arm.c 31.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35 36 37 38

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 57
static unsigned long hyp_default_vectors;

58 59 60
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 64
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
65
static DEFINE_SPINLOCK(kvm_vmid_lock);
66

67 68
static bool vgic_present;

69 70
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

71 72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76 77 78 79 80 81 82 83
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
84
	return __this_cpu_read(kvm_arm_running_vcpu);
85 86 87 88 89
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
90
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 92 93 94
{
	return &kvm_arm_running_vcpu;
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


111 112 113 114
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
115 116
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
117
	int ret, cpu;
118

119 120 121
	if (type)
		return -EINVAL;

122 123 124 125 126 127 128
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

129 130 131 132
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

133
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 135 136
	if (ret)
		goto out_free_stage2_pgd;

137
	kvm_vgic_early_init(kvm);
138 139
	kvm_timer_init(kvm);

140 141 142
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

143
	/* The maximum number of VCPUs is limited by the host's GIC model */
144 145
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146

147 148 149 150
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
151 152
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
153
	return ret;
154 155
}

156 157 158 159 160 161 162 163 164 165
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

166 167 168 169 170 171
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181 182
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

183 184 185 186 187 188
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
189 190

	kvm_vgic_destroy(kvm);
191 192
}

193
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 195 196
{
	int r;
	switch (ext) {
197
	case KVM_CAP_IRQCHIP:
198 199
		r = vgic_present;
		break;
200
	case KVM_CAP_IOEVENTFD:
201
	case KVM_CAP_DEVICE_CTRL:
202 203 204 205
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
206
	case KVM_CAP_ARM_PSCI:
207
	case KVM_CAP_ARM_PSCI_0_2:
208
	case KVM_CAP_READONLY_MEM:
209
	case KVM_CAP_MP_STATE:
210 211 212 213 214
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
215 216
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
217
		break;
218 219 220 221 222 223 224
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
225
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

243 244 245 246 247
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

248 249 250 251 252
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

253 254 255 256 257 258 259 260 261 262
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

263
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
264 265 266
	if (err)
		goto vcpu_uninit;

267
	return vcpu;
268 269
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
270 271 272 273 274 275
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

276
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
277
{
278
	kvm_vgic_vcpu_early_init(vcpu);
279 280 281 282
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
283
	kvm_mmu_free_memory_caches(vcpu);
284
	kvm_timer_vcpu_terminate(vcpu);
285
	kvm_vgic_vcpu_destroy(vcpu);
286
	kvm_pmu_vcpu_destroy(vcpu);
287
	kvm_vcpu_uninit(vcpu);
288
	kmem_cache_free(kvm_vcpu_cache, vcpu);
289 290 291 292 293 294 295 296 297
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
298
	return kvm_timer_should_fire(vcpu);
299 300
}

301 302 303 304 305 306 307 308 309 310
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

311 312
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
313 314
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
315
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
316

317 318 319
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

320 321
	kvm_arm_reset_debug_ptr(vcpu);

322 323 324 325 326
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
327 328 329 330 331 332 333 334 335 336 337 338 339
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

340
	vcpu->cpu = cpu;
341
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
342

343
	kvm_arm_set_running_vcpu(vcpu);
344 345 346 347
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
348 349 350 351 352 353 354
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

355
	kvm_arm_set_running_vcpu(NULL);
356
	kvm_timer_vcpu_put(vcpu);
357 358 359 360 361
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
362
	if (vcpu->arch.power_off)
363 364 365 366 367
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
368 369 370 371 372
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
373 374
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
375
		vcpu->arch.power_off = false;
376 377
		break;
	case KVM_MP_STATE_STOPPED:
378
		vcpu->arch.power_off = true;
379 380 381 382 383 384
		break;
	default:
		return -EINVAL;
	}

	return 0;
385 386
}

387 388 389 390 391 392 393
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
394 395
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
396
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
397
		&& !v->arch.power_off && !v->arch.pause);
398 399
}

400 401 402 403 404 405 406
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
407
	preempt_disable();
408
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
409
	preempt_enable();
410 411 412 413
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
414
 * @kvm: The VM's VMID to check
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
479
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
480 481

	/* update vttbr to be used with the new vmid */
482
	pgd_phys = virt_to_phys(kvm->arch.pgd);
483
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
484
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
485
	kvm->arch.vttbr = pgd_phys | vmid;
486 487 488 489 490 491

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
492
	struct kvm *kvm = vcpu->kvm;
493
	int ret = 0;
494

495 496 497 498
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
499

500
	/*
501 502
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
503
	 */
504
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
505
		ret = kvm_vgic_map_resources(kvm);
506 507 508 509
		if (ret)
			return ret;
	}

510 511 512 513 514 515
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
516
		ret = kvm_timer_enable(vcpu);
517

518
	return ret;
519 520
}

521 522 523 524 525
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

526
void kvm_arm_halt_guest(struct kvm *kvm)
527 528 529 530 531 532
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
533
	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
534 535
}

536 537 538 539 540 541 542
void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu->arch.pause = true;
	kvm_vcpu_kick(vcpu);
}

void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
543 544 545 546 547 548 549 550
{
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);

	vcpu->arch.pause = false;
	swake_up(wq);
}

void kvm_arm_resume_guest(struct kvm *kvm)
551 552 553 554
{
	int i;
	struct kvm_vcpu *vcpu;

555 556
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arm_resume_vcpu(vcpu);
557 558
}

559
static void vcpu_sleep(struct kvm_vcpu *vcpu)
560
{
561
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
562

563
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
564
				       (!vcpu->arch.pause)));
565 566
}

567 568 569 570 571
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

572 573 574 575 576 577 578 579 580 581 582
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
583 584
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
585 586 587
	int ret;
	sigset_t sigsaved;

588
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
589 590 591 592 593 594
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
595 596 597 598 599 600
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

601 602 603 604 605 606 607 608 609 610 611 612 613
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

614
		if (vcpu->arch.power_off || vcpu->arch.pause)
615
			vcpu_sleep(vcpu);
616

617 618 619 620 621
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
622
		preempt_disable();
623
		kvm_pmu_flush_hwstate(vcpu);
624
		kvm_timer_flush_hwstate(vcpu);
625 626
		kvm_vgic_flush_hwstate(vcpu);

627 628 629 630 631 632 633 634 635 636
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

637
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
638
			vcpu->arch.power_off || vcpu->arch.pause) {
639
			local_irq_enable();
640
			kvm_pmu_sync_hwstate(vcpu);
641
			kvm_timer_sync_hwstate(vcpu);
642
			kvm_vgic_sync_hwstate(vcpu);
643
			preempt_enable();
644 645 646
			continue;
		}

647 648
		kvm_arm_setup_debug(vcpu);

649 650 651 652
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
653
		guest_enter_irqoff();
654 655 656 657 658
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
659
		vcpu->stat.exits++;
660 661 662 663
		/*
		 * Back from guest
		 *************************************************************/

664 665
		kvm_arm_clear_debug(vcpu);

666 667 668 669 670 671 672 673 674 675 676 677 678
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
679
		 * We do local_irq_enable() before calling guest_exit() so
680 681
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
682
		 * preemption after calling guest_exit() so that if we get
683 684 685
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
686
		guest_exit();
687
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
688

689
		/*
690 691
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
692 693
		 * interrupt line.
		 */
694
		kvm_pmu_sync_hwstate(vcpu);
695 696
		kvm_timer_sync_hwstate(vcpu);

697
		kvm_vgic_sync_hwstate(vcpu);
698 699 700

		preempt_enable();

701 702 703 704 705 706
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
707 708
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

742 743
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
744 745 746 747 748 749 750 751 752 753 754 755 756
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

757 758 759 760
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
761

762 763
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
764

765 766 767
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
786

787 788 789 790 791
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

792
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
793 794 795 796 797 798
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


843 844 845 846 847 848 849 850 851
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

852 853 854 855 856 857 858
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

859 860
	vcpu_reset_hcr(vcpu);

861
	/*
862
	 * Handle the "start in power-off" case.
863
	 */
864
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
865
		vcpu->arch.power_off = true;
866
	else
867
		vcpu->arch.power_off = false;
868 869 870 871

	return 0;
}

872 873 874 875 876 877 878
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
879
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
880 881 882 883 884 885 886 887 888 889 890 891 892
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
893
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
894 895 896 897 898 899 900 901 902 903 904 905 906
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
907
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
908 909 910 911 912 913
		break;
	}

	return ret;
}

914 915 916 917 918
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
919
	struct kvm_device_attr attr;
920 921 922 923 924 925 926 927

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

928
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
929 930 931 932
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
933 934 935 936

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

937 938 939 940 941 942 943 944 945 946 947 948
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

949 950 951
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

952 953 954 955 956 957 958 959 960 961
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
977 978 979 980 981
	default:
		return -EINVAL;
	}
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1001 1002
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1015 1016
}

1017 1018 1019
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1020 1021 1022 1023 1024 1025 1026 1027 1028
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1029 1030
		if (!vgic_present)
			return -ENXIO;
1031
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1032 1033 1034
	default:
		return -ENODEV;
	}
1035 1036
}

1037 1038 1039
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1040 1041 1042 1043
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1044
	case KVM_CREATE_IRQCHIP: {
1045
		int ret;
1046 1047
		if (!vgic_present)
			return -ENXIO;
1048 1049 1050 1051
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1052
	}
1053 1054 1055 1056 1057 1058 1059
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1073 1074 1075
	default:
		return -EINVAL;
	}
1076 1077
}

1078
static void cpu_init_hyp_mode(void *dummy)
1079
{
1080
	phys_addr_t pgd_ptr;
1081 1082 1083 1084 1085
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1086
	__hyp_set_vectors(kvm_get_idmap_vector());
1087

1088
	pgd_ptr = kvm_mmu_get_httbr();
1089
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1090
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1091
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1092

M
Marc Zyngier 已提交
1093
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1094
	__cpu_init_stage2();
1095 1096

	kvm_arm_init_debug();
1097 1098
}

1099 1100 1101 1102
static void cpu_hyp_reinit(void)
{
	if (is_kernel_in_hyp_mode()) {
		/*
1103
		 * __cpu_init_stage2() is safe to call even if the PM
1104 1105
		 * event was cancelled before the CPU was reset.
		 */
1106
		__cpu_init_stage2();
1107 1108 1109 1110 1111 1112
	} else {
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
	}
}

1113
static void cpu_hyp_reset(void)
1114
{
M
Marc Zyngier 已提交
1115
	if (!is_kernel_in_hyp_mode())
M
Marc Zyngier 已提交
1116 1117
		__cpu_reset_hyp_mode(hyp_default_vectors,
				     kvm_get_idmap_start());
1118 1119 1120 1121 1122
}

static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1123
		cpu_hyp_reinit();
1124
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1125
	}
1126
}
1127

1128 1129 1130 1131
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1132 1133
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1146

1147 1148 1149 1150 1151
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1167
		return NOTIFY_OK;
1168 1169 1170 1171
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1172

1173 1174 1175 1176 1177
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1188 1189 1190 1191
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1192 1193 1194 1195
#else
static inline void hyp_cpu_pm_init(void)
{
}
1196 1197 1198
static inline void hyp_cpu_pm_exit(void)
{
}
1199 1200
#endif

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1214 1215 1216 1217
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1218 1219 1220 1221 1222
	return 0;
}

static int init_subsystems(void)
{
1223
	int err = 0;
1224

1225
	/*
1226
	 * Enable hardware so that subsystem initialisation can access EL2.
1227
	 */
1228
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1229 1230 1231 1232 1233 1234

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1246
		err = 0;
1247 1248
		break;
	default:
1249
		goto out;
1250 1251 1252 1253 1254 1255 1256
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1257
		goto out;
1258 1259 1260 1261

	kvm_perf_init();
	kvm_coproc_table_init();

1262 1263 1264 1265
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1278
	hyp_cpu_pm_exit();
1279 1280 1281 1282 1283 1284 1285 1286
}

static int init_vhe_mode(void)
{
	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1317
			goto out_err;
1318 1319 1320 1321 1322 1323 1324 1325
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1326
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1327
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1328 1329
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1330
		goto out_err;
1331 1332
	}

1333
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1334
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1335 1336
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1337 1338 1339 1340 1341 1342 1343
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1344
		goto out_err;
1345 1346
	}

1347 1348 1349 1350 1351
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1352 1353
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1354 1355 1356

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1357
			goto out_err;
1358 1359 1360 1361
		}
	}

	for_each_possible_cpu(cpu) {
1362
		kvm_cpu_context_t *cpu_ctxt;
1363

1364
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1365
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1366 1367

		if (err) {
1368
			kvm_err("Cannot map host CPU state: %d\n", err);
1369
			goto out_err;
1370 1371 1372 1373
		}
	}

	kvm_info("Hyp mode initialized successfully\n");
1374

1375
	return 0;
1376

1377
out_err:
1378
	teardown_hyp_mode();
1379 1380 1381 1382
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1383 1384 1385 1386 1387
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1401 1402 1403
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1404 1405
int kvm_arch_init(void *opaque)
{
1406
	int err;
1407
	int ret, cpu;
1408 1409 1410 1411 1412 1413

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1414 1415 1416 1417 1418 1419
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1420 1421
	}

1422
	err = init_common_resources();
1423
	if (err)
1424
		return err;
1425

1426 1427 1428 1429 1430
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1431
		goto out_err;
1432

1433 1434 1435
	err = init_subsystems();
	if (err)
		goto out_hyp;
1436

1437
	return 0;
1438 1439 1440

out_hyp:
	teardown_hyp_mode();
1441
out_err:
1442
	teardown_common_resources();
1443
	return err;
1444 1445 1446 1447 1448
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1449
	kvm_perf_teardown();
1450 1451 1452 1453 1454 1455 1456 1457 1458
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);