chip.c 97.2 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32 33
#include "mv88e6xxx.h"

34
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35
{
36 37
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
38 39 40 41
		dump_stack();
	}
}

42 43 44 45 46 47 48 49 50 51
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
52
 */
53

54
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 56
			      int addr, int reg, u16 *val)
{
57
	if (!chip->smi_ops)
58 59
		return -EOPNOTSUPP;

60
	return chip->smi_ops->read(chip, addr, reg, val);
61 62
}

63
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 65
			       int addr, int reg, u16 val)
{
66
	if (!chip->smi_ops)
67 68
		return -EOPNOTSUPP;

69
	return chip->smi_ops->write(chip, addr, reg, val);
70 71
}

72
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 74 75 76
					  int addr, int reg, u16 *val)
{
	int ret;

77
	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 79 80 81 82 83 84 85
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

86
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 88 89 90
					   int addr, int reg, u16 val)
{
	int ret;

91
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 93 94 95 96 97 98 99 100 101 102
	if (ret < 0)
		return ret;

	return 0;
}

static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

103
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 105 106 107 108
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
109
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 111 112
		if (ret < 0)
			return ret;

113
		if ((ret & SMI_CMD_BUSY) == 0)
114 115 116 117 118 119
			return 0;
	}

	return -ETIMEDOUT;
}

120
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121
					 int addr, int reg, u16 *val)
122 123 124
{
	int ret;

125
	/* Wait for the bus to become free. */
126
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 128 129
	if (ret < 0)
		return ret;

130
	/* Transmit the read command. */
131
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 134 135
	if (ret < 0)
		return ret;

136
	/* Wait for the read command to complete. */
137
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 139 140
	if (ret < 0)
		return ret;

141
	/* Read the data. */
142
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 144 145
	if (ret < 0)
		return ret;

146
	*val = ret & 0xffff;
147

148
	return 0;
149 150
}

151
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152
					  int addr, int reg, u16 val)
153 154 155
{
	int ret;

156
	/* Wait for the bus to become free. */
157
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Transmit the data to write. */
162
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Transmit the write command. */
167
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 170 171
	if (ret < 0)
		return ret;

172
	/* Wait for the write command to complete. */
173
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 175 176 177 178 179
	if (ret < 0)
		return ret;

	return 0;
}

180 181 182 183 184
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

185
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 187 188 189
			  int addr, int reg, u16 *val)
{
	int err;

190
	assert_reg_lock(chip);
191

192
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 194 195
	if (err)
		return err;

196
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 198 199 200 201
		addr, reg, *val);

	return 0;
}

202
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203
			   int addr, int reg, u16 val)
204
{
205 206
	int err;

207
	assert_reg_lock(chip);
208

209
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 211 212
	if (err)
		return err;

213
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 215
		addr, reg, val);

216 217 218
	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->read(chip, addr, reg, val);
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->write(chip, addr, reg, val);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

309 310 311
static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
			  u16 mask)
{
312
	int i;
313

314
	for (i = 0; i < 16; i++) {
315 316 317 318 319 320 321 322 323 324 325 326 327
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

328
	dev_err(chip->dev, "Timeout while waiting for switch\n");
329 330 331
	return -ETIMEDOUT;
}

332 333 334 335 336
/* Indirect write to single pointer-data register with an Update bit */
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
			    u16 update)
{
	u16 val;
337
	int err;
338 339

	/* Wait until the previous operation is completed */
340 341 342
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
343 344 345 346 347 348 349

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

350
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
351 352 353 354
{
	u16 val;
	int err;

355
	err = mv88e6xxx_read(chip, addr, reg, &val);
356 357 358 359 360 361
	if (err)
		return err;

	return val;
}

362
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
363 364
				int reg, u16 val)
{
365
	return mv88e6xxx_write(chip, addr, reg, val);
366 367
}

368
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
369 370
{
	int ret;
371
	int i;
372

373
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
374 375 376
	if (ret < 0)
		return ret;

377
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
378
				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
379 380
	if (ret)
		return ret;
381

382
	for (i = 0; i < 16; i++) {
383
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
384 385 386
		if (ret < 0)
			return ret;

387
		usleep_range(1000, 2000);
388 389
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
390
			return 0;
391 392 393 394 395
	}

	return -ETIMEDOUT;
}

396
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
397
{
398
	int ret, err, i;
399

400
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
401 402 403
	if (ret < 0)
		return ret;

404
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
405
				   ret | GLOBAL_CONTROL_PPU_ENABLE);
406 407
	if (err)
		return err;
408

409
	for (i = 0; i < 16; i++) {
410
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
411 412 413
		if (ret < 0)
			return ret;

414
		usleep_range(1000, 2000);
415 416
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
417
			return 0;
418 419 420 421 422 423 424
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
425
	struct mv88e6xxx_chip *chip;
426

427
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
428

429
	mutex_lock(&chip->reg_lock);
430

431 432 433 434
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
435
	}
436

437
	mutex_unlock(&chip->reg_lock);
438 439 440 441
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
442
	struct mv88e6xxx_chip *chip = (void *)_ps;
443

444
	schedule_work(&chip->ppu_work);
445 446
}

447
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
448 449 450
{
	int ret;

451
	mutex_lock(&chip->ppu_mutex);
452

453
	/* If the PHY polling unit is enabled, disable it so that
454 455 456 457
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
458 459
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
460
		if (ret < 0) {
461
			mutex_unlock(&chip->ppu_mutex);
462 463
			return ret;
		}
464
		chip->ppu_disabled = 1;
465
	} else {
466
		del_timer(&chip->ppu_timer);
467
		ret = 0;
468 469 470 471 472
	}

	return ret;
}

473
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
474
{
475
	/* Schedule a timer to re-enable the PHY polling unit. */
476 477
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
478 479
}

480
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
481
{
482 483 484 485 486
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
487 488
}

489 490 491 492 493
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

494 495
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
496
{
497
	int err;
498

499 500 501
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
502
		mv88e6xxx_ppu_access_put(chip);
503 504
	}

505
	return err;
506 507
}

508 509
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
510
{
511
	int err;
512

513 514 515
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
516
		mv88e6xxx_ppu_access_put(chip);
517 518
	}

519
	return err;
520 521
}

522 523 524 525 526
static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
	.read = mv88e6xxx_phy_ppu_read,
	.write = mv88e6xxx_phy_ppu_write,
};

527
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
528
{
529
	return chip->info->family == MV88E6XXX_FAMILY_6065;
530 531
}

532
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
533
{
534
	return chip->info->family == MV88E6XXX_FAMILY_6095;
535 536
}

537
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
538
{
539
	return chip->info->family == MV88E6XXX_FAMILY_6097;
540 541
}

542
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
543
{
544
	return chip->info->family == MV88E6XXX_FAMILY_6165;
545 546
}

547
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
548
{
549
	return chip->info->family == MV88E6XXX_FAMILY_6185;
550 551
}

552
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
553
{
554
	return chip->info->family == MV88E6XXX_FAMILY_6320;
555 556
}

557
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
558
{
559
	return chip->info->family == MV88E6XXX_FAMILY_6351;
560 561
}

562
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
563
{
564
	return chip->info->family == MV88E6XXX_FAMILY_6352;
565 566
}

567
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
568
{
569
	return chip->info->num_databases;
570 571
}

572
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
573 574
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
575 576
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
577 578 579 580 581
		return true;

	return false;
}

582 583 584 585
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
586 587
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
588
{
589
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
590 591
	u32 reg;
	int ret;
592 593 594 595

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

596
	mutex_lock(&chip->reg_lock);
597

598
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
599 600 601 602 603 604 605 606 607 608 609
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
610
		reg |= PORT_PCS_CTRL_LINK_UP;
611

612
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

634 635
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
	    (port >= chip->info->num_ports - 2)) {
636 637 638 639 640 641 642 643
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
644
	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
645 646

out:
647
	mutex_unlock(&chip->reg_lock);
648 649
}

650
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
651 652 653 654 655
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
656
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
657
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
658 659 660 661 662 663
			return 0;
	}

	return -ETIMEDOUT;
}

664
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
665 666 667
{
	int ret;

668
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
669 670
		port = (port + 1) << 5;

671
	/* Snapshot the hardware statistics counters for this port. */
672
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
673 674 675 676
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
677

678
	/* Wait for the snapshotting to complete. */
679
	ret = _mv88e6xxx_stats_wait(chip);
680 681 682 683 684 685
	if (ret < 0)
		return ret;

	return 0;
}

686
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
687
				  int stat, u32 *val)
688 689 690 691 692 693
{
	u32 _val;
	int ret;

	*val = 0;

694
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
695 696
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
697 698 699
	if (ret < 0)
		return;

700
	ret = _mv88e6xxx_stats_wait(chip);
701 702 703
	if (ret < 0)
		return;

704
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
705 706 707 708 709
	if (ret < 0)
		return;

	_val = ret << 16;

710
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
711 712 713 714 715 716
	if (ret < 0)
		return;

	*val = _val | ret;
}

717
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
777 778
};

779
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
780
			       struct mv88e6xxx_hw_stat *stat)
781
{
782 783
	switch (stat->type) {
	case BANK0:
784
		return true;
785
	case BANK1:
786
		return mv88e6xxx_6320_family(chip);
787
	case PORT:
788 789 790 791 792 793
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
794
	}
795
	return false;
796 797
}

798
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
799
					    struct mv88e6xxx_hw_stat *s,
800 801 802 803 804 805 806
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

807 808
	switch (s->type) {
	case PORT:
809
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
810 811 812 813 814
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
815
			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
816
						  s->reg + 1);
817 818 819 820
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
821 822 823
		break;
	case BANK0:
	case BANK1:
824
		_mv88e6xxx_stats_read(chip, s->reg, &low);
825
		if (s->sizeof_stat == 8)
826
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
827 828 829 830 831
	}
	value = (((u64)high) << 16) | low;
	return value;
}

832 833
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
834
{
835
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
836 837
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
838

839 840
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
841
		if (mv88e6xxx_has_stat(chip, stat)) {
842 843 844 845
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
846
	}
847 848
}

849
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
850
{
851
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
852 853 854 855 856
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
857
		if (mv88e6xxx_has_stat(chip, stat))
858 859 860
			j++;
	}
	return j;
861 862
}

863 864
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
865
{
866
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
867 868 869 870
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

871
	mutex_lock(&chip->reg_lock);
872

873
	ret = _mv88e6xxx_stats_snapshot(chip, port);
874
	if (ret < 0) {
875
		mutex_unlock(&chip->reg_lock);
876 877 878 879
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
880 881
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
882 883 884 885
			j++;
		}
	}

886
	mutex_unlock(&chip->reg_lock);
887 888
}

889
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
890 891 892 893
{
	return 32 * sizeof(u16);
}

894 895
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
896
{
897
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
898 899 900 901 902 903 904
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

905
	mutex_lock(&chip->reg_lock);
906

907 908 909
	for (i = 0; i < 32; i++) {
		int ret;

910
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
911 912 913
		if (ret >= 0)
			p[i] = ret;
	}
914

915
	mutex_unlock(&chip->reg_lock);
916 917
}

918
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
919
{
920 921
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
			      GLOBAL_ATU_OP_BUSY);
922 923
}

924 925
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
926
{
927
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
928 929
	u16 reg;
	int err;
930

931
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
932 933
		return -EOPNOTSUPP;

934
	mutex_lock(&chip->reg_lock);
935

936 937
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
938
		goto out;
939 940 941 942

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

943 944
	err = mv88e6xxx_read(chip, REG_PORT(port), PORT_STATUS, &reg);
	if (err)
945
		goto out;
946

947
	e->eee_active = !!(reg & PORT_STATUS_EEE);
948
out:
949
	mutex_unlock(&chip->reg_lock);
950 951

	return err;
952 953
}

954 955
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
956
{
957
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
958 959
	u16 reg;
	int err;
960

961
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
962 963
		return -EOPNOTSUPP;

964
	mutex_lock(&chip->reg_lock);
965

966 967
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
968 969
		goto out;

970
	reg &= ~0x0300;
971 972 973 974 975
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

976
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
977
out:
978
	mutex_unlock(&chip->reg_lock);
979

980
	return err;
981 982
}

983
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
984 985 986
{
	int ret;

987 988 989
	if (mv88e6xxx_has_fid_reg(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
					   fid);
990 991
		if (ret < 0)
			return ret;
992
	} else if (mv88e6xxx_num_databases(chip) == 256) {
993
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
994
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
995 996 997
		if (ret < 0)
			return ret;

998
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
999 1000 1001 1002 1003 1004 1005
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1006 1007
	}

1008
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1009 1010 1011
	if (ret < 0)
		return ret;

1012
	return _mv88e6xxx_atu_wait(chip);
1013 1014
}

1015
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1035
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1036 1037
}

1038
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1039 1040
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1041
{
1042 1043
	int op;
	int err;
1044

1045
	err = _mv88e6xxx_atu_wait(chip);
1046 1047
	if (err)
		return err;
1048

1049
	err = _mv88e6xxx_atu_data_write(chip, entry);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1061
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1062 1063
}

1064
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1065
				u16 fid, bool static_too)
1066 1067 1068 1069 1070
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1071

1072
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1073 1074
}

1075
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1076
			       int from_port, int to_port, bool static_too)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1090
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1091 1092
}

1093
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1094
				 int port, bool static_too)
1095 1096
{
	/* Destination port 0xF means remove the entries */
1097
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1098 1099
}

1100 1101 1102 1103 1104 1105 1106
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1107
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1108
				 u8 state)
1109
{
1110
	struct dsa_switch *ds = chip->ds;
1111
	int reg, ret = 0;
1112 1113
	u8 oldstate;

1114
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1115 1116
	if (reg < 0)
		return reg;
1117

1118
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1119

1120 1121 1122 1123 1124
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1125
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1126 1127 1128
		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
		    (state == PORT_CONTROL_STATE_DISABLED ||
		     state == PORT_CONTROL_STATE_BLOCKING)) {
1129
			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1130
			if (ret)
1131
				return ret;
1132
		}
1133

1134
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1135
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1136
					   reg);
1137 1138 1139
		if (ret)
			return ret;

1140
		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1141 1142
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1143 1144 1145 1146 1147
	}

	return ret;
}

1148
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1149
{
1150 1151 1152
	struct net_device *bridge = chip->ports[port].bridge_dev;
	const u16 mask = (1 << chip->info->num_ports) - 1;
	struct dsa_switch *ds = chip->ds;
1153
	u16 output_ports = 0;
1154
	int reg;
1155 1156 1157 1158 1159 1160
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1161
		for (i = 0; i < chip->info->num_ports; ++i) {
1162
			/* allow sending frames to every group member */
1163
			if (bridge && chip->ports[i].bridge_dev == bridge)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1174

1175
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1176 1177
	if (reg < 0)
		return reg;
1178

1179 1180
	reg &= ~mask;
	reg |= output_ports & mask;
1181

1182
	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1183 1184
}

1185 1186
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1187
{
1188
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1189
	int stp_state;
1190
	int err;
1191 1192 1193

	switch (state) {
	case BR_STATE_DISABLED:
1194
		stp_state = PORT_CONTROL_STATE_DISABLED;
1195 1196 1197
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1198
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1199 1200
		break;
	case BR_STATE_LEARNING:
1201
		stp_state = PORT_CONTROL_STATE_LEARNING;
1202 1203 1204
		break;
	case BR_STATE_FORWARDING:
	default:
1205
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1206 1207 1208
		break;
	}

1209 1210 1211
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1212 1213

	if (err)
1214 1215
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1216
			   mv88e6xxx_port_state_names[stp_state]);
1217 1218
}

1219
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1220
				u16 *new, u16 *old)
1221
{
1222
	struct dsa_switch *ds = chip->ds;
1223
	u16 pvid;
1224 1225
	int ret;

1226
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1227 1228 1229
	if (ret < 0)
		return ret;

1230 1231 1232 1233 1234 1235
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

1236
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1237 1238 1239 1240
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

1241 1242
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1243 1244 1245 1246
	}

	if (old)
		*old = pvid;
1247 1248 1249 1250

	return 0;
}

1251
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1252
				    int port, u16 *pvid)
1253
{
1254
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1255 1256
}

1257
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1258
				    int port, u16 pvid)
1259
{
1260
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1261 1262
}

1263
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1264
{
1265 1266
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
			      GLOBAL_VTU_OP_BUSY);
1267 1268
}

1269
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1270 1271 1272
{
	int ret;

1273
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1274 1275 1276
	if (ret < 0)
		return ret;

1277
	return _mv88e6xxx_vtu_wait(chip);
1278 1279
}

1280
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1281 1282 1283
{
	int ret;

1284
	ret = _mv88e6xxx_vtu_wait(chip);
1285 1286 1287
	if (ret < 0)
		return ret;

1288
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1289 1290
}

1291
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1292 1293 1294 1295 1296 1297 1298 1299
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
1300
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1301 1302 1303 1304 1305 1306 1307
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1308
	for (i = 0; i < chip->info->num_ports; ++i) {
1309 1310 1311 1312 1313 1314 1315 1316 1317
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1318
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1319 1320
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1321
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1322 1323
}

1324
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1325 1326
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1327
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1328 1329
}

1330
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1331 1332 1333 1334 1335 1336 1337
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
	int i;
	int ret;

1338
	for (i = 0; i < chip->info->num_ports; ++i) {
1339 1340 1341 1342 1343 1344 1345
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1346
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1347 1348 1349 1350 1351 1352 1353 1354
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1355
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1356 1357
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1358
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1359 1360
}

1361
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1362 1363
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1364
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1365 1366
}

1367
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1368
{
1369
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1370 1371 1372
				    vid & GLOBAL_VTU_VID_MASK);
}

1373
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1374 1375 1376 1377 1378
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1379
	ret = _mv88e6xxx_vtu_wait(chip);
1380 1381 1382
	if (ret < 0)
		return ret;

1383
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1384 1385 1386
	if (ret < 0)
		return ret;

1387
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1388 1389 1390 1391 1392 1393 1394
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1395
		ret = mv88e6xxx_vtu_data_read(chip, &next);
1396 1397 1398
		if (ret < 0)
			return ret;

1399 1400
		if (mv88e6xxx_has_fid_reg(chip)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1401 1402 1403 1404 1405
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1406
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1407 1408 1409
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1410
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1411 1412 1413 1414 1415 1416
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1417
		}
1418

1419 1420
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1433 1434 1435
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1436
{
1437
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1438 1439 1440 1441
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

1442
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1443 1444
		return -EOPNOTSUPP;

1445
	mutex_lock(&chip->reg_lock);
1446

1447
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1448 1449 1450
	if (err)
		goto unlock;

1451
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1452 1453 1454 1455
	if (err)
		goto unlock;

	do {
1456
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1467 1468
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1483
	mutex_unlock(&chip->reg_lock);
1484 1485 1486 1487

	return err;
}

1488
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1489 1490
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1491
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1492 1493 1494
	u16 reg = 0;
	int ret;

1495
	ret = _mv88e6xxx_vtu_wait(chip);
1496 1497 1498 1499 1500 1501 1502
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1503
	ret = mv88e6xxx_vtu_data_write(chip, entry);
1504 1505 1506
	if (ret < 0)
		return ret;

1507
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1508
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1509 1510
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
					   reg);
1511 1512
		if (ret < 0)
			return ret;
1513
	}
1514

1515
	if (mv88e6xxx_has_fid_reg(chip)) {
1516
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1517 1518
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
					   reg);
1519 1520
		if (ret < 0)
			return ret;
1521
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1522 1523 1524 1525 1526
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1527 1528 1529 1530 1531
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1532
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1533 1534 1535
	if (ret < 0)
		return ret;

1536
	return _mv88e6xxx_vtu_cmd(chip, op);
1537 1538
}

1539
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1540 1541 1542 1543 1544
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1545
	ret = _mv88e6xxx_vtu_wait(chip);
1546 1547 1548
	if (ret < 0)
		return ret;

1549
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1550 1551 1552 1553
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

1554
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1555 1556 1557
	if (ret < 0)
		return ret;

1558
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1559 1560 1561 1562 1563
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

1564
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1565 1566 1567 1568 1569 1570
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1571
		ret = mv88e6xxx_stu_data_read(chip, &next);
1572 1573 1574 1575 1576 1577 1578 1579
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

1580
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1581 1582 1583 1584 1585
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

1586
	ret = _mv88e6xxx_vtu_wait(chip);
1587 1588 1589 1590 1591 1592 1593
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1594
	ret = mv88e6xxx_stu_data_write(chip, entry);
1595 1596 1597 1598 1599
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1600
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1601 1602 1603 1604
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1605
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1606 1607 1608
	if (ret < 0)
		return ret;

1609
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1610 1611
}

1612
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1613
			       u16 *new, u16 *old)
1614
{
1615
	struct dsa_switch *ds = chip->ds;
1616
	u16 upper_mask;
1617 1618 1619
	u16 fid;
	int ret;

1620
	if (mv88e6xxx_num_databases(chip) == 4096)
1621
		upper_mask = 0xff;
1622
	else if (mv88e6xxx_num_databases(chip) == 256)
1623
		upper_mask = 0xf;
1624 1625 1626
	else
		return -EOPNOTSUPP;

1627
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1628
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1629 1630 1631 1632 1633 1634 1635 1636 1637
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

1638
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1639 1640 1641 1642 1643 1644
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1645
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1646 1647 1648
	if (ret < 0)
		return ret;

1649
	fid |= (ret & upper_mask) << 4;
1650 1651

	if (new) {
1652 1653
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1654

1655
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1656 1657 1658 1659
					   ret);
		if (ret < 0)
			return ret;

1660 1661
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1662 1663 1664 1665 1666 1667 1668 1669
	}

	if (old)
		*old = fid;

	return 0;
}

1670
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1671
				   int port, u16 *fid)
1672
{
1673
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1674 1675
}

1676
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1677
				   int port, u16 fid)
1678
{
1679
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1680 1681
}

1682
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1683 1684 1685
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1686
	int i, err;
1687 1688 1689

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1690
	/* Set every FID bit used by the (un)bridged ports */
1691 1692
	for (i = 0; i < chip->info->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1693 1694 1695 1696 1697 1698
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1699
	/* Set every FID bit used by the VLAN entries */
1700
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1701 1702 1703 1704
	if (err)
		return err;

	do {
1705
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1719
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1720 1721 1722
		return -ENOSPC;

	/* Clear the database */
1723
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1724 1725
}

1726
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1727
			      struct mv88e6xxx_vtu_stu_entry *entry)
1728
{
1729
	struct dsa_switch *ds = chip->ds;
1730 1731 1732 1733
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1734 1735
	int i, err;

1736
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1737 1738
	if (err)
		return err;
1739

1740
	/* exclude all ports except the CPU and DSA ports */
1741
	for (i = 0; i < chip->info->num_ports; ++i)
1742 1743 1744
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1745

1746 1747
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1748 1749 1750 1751 1752 1753 1754
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1755
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1756 1757 1758 1759 1760 1761 1762 1763
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1764
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1765 1766 1767 1768 1769 1770 1771 1772 1773
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1774
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1775 1776 1777 1778 1779 1780 1781
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

1782
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1783 1784 1785
	if (err)
		return err;

1786
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1797
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1798 1799 1800 1801 1802
	}

	return err;
}

1803 1804 1805
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
1806
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1807 1808 1809 1810 1811 1812
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1813
	mutex_lock(&chip->reg_lock);
1814

1815
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1816 1817 1818 1819
	if (err)
		goto unlock;

	do {
1820
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1821 1822 1823 1824 1825 1826 1827 1828 1829
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1830
		for (i = 0; i < chip->info->num_ports; ++i) {
1831 1832 1833 1834 1835 1836 1837
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1838 1839
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1840 1841
				break; /* same bridge, check next VLAN */

1842
			netdev_warn(ds->ports[port].netdev,
1843 1844
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1845
				    netdev_name(chip->ports[i].bridge_dev));
1846 1847 1848 1849 1850 1851
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1852
	mutex_unlock(&chip->reg_lock);
1853 1854 1855 1856

	return err;
}

1857 1858 1859 1860 1861 1862 1863
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1864 1865
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1866
{
1867
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1868 1869 1870 1871
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

1872
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1873 1874
		return -EOPNOTSUPP;

1875
	mutex_lock(&chip->reg_lock);
1876

1877
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1878 1879 1880 1881 1882
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1883 1884 1885
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1886

1887
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1888 1889 1890 1891
					   ret);
		if (ret < 0)
			goto unlock;

1892
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1893 1894 1895
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1896

1897
	ret = 0;
1898
unlock:
1899
	mutex_unlock(&chip->reg_lock);
1900 1901 1902 1903

	return ret;
}

1904 1905 1906 1907
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1908
{
1909
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1910 1911
	int err;

1912
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1913 1914
		return -EOPNOTSUPP;

1915 1916 1917 1918 1919 1920 1921 1922
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1923 1924 1925 1926 1927 1928
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1929
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1930
				    u16 vid, bool untagged)
1931 1932 1933 1934
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1935
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1936
	if (err)
1937
		return err;
1938 1939 1940 1941 1942

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1943
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1944 1945
}

1946 1947 1948
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1949
{
1950
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1951 1952 1953 1954
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1955
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1956 1957
		return;

1958
	mutex_lock(&chip->reg_lock);
1959

1960
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1961
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1962 1963
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1964
				   vid, untagged ? 'u' : 't');
1965

1966
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1967
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1968
			   vlan->vid_end);
1969

1970
	mutex_unlock(&chip->reg_lock);
1971 1972
}

1973
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1974
				    int port, u16 vid)
1975
{
1976
	struct dsa_switch *ds = chip->ds;
1977 1978 1979
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1980
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1981
	if (err)
1982
		return err;
1983

1984 1985
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1986
		return -EOPNOTSUPP;
1987 1988 1989 1990

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1991
	vlan.valid = false;
1992
	for (i = 0; i < chip->info->num_ports; ++i) {
1993
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1994 1995 1996
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1997
			vlan.valid = true;
1998 1999 2000 2001
			break;
		}
	}

2002
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2003 2004 2005
	if (err)
		return err;

2006
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2007 2008
}

2009 2010
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
2011
{
2012
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2013 2014 2015
	u16 pvid, vid;
	int err = 0;

2016
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2017 2018
		return -EOPNOTSUPP;

2019
	mutex_lock(&chip->reg_lock);
2020

2021
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2022 2023 2024
	if (err)
		goto unlock;

2025
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2026
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2027 2028 2029 2030
		if (err)
			goto unlock;

		if (vid == pvid) {
2031
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2032 2033 2034 2035 2036
			if (err)
				goto unlock;
		}
	}

2037
unlock:
2038
	mutex_unlock(&chip->reg_lock);
2039 2040 2041 2042

	return err;
}

2043
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2044
				    const unsigned char *addr)
2045 2046 2047 2048
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2049
		ret = _mv88e6xxx_reg_write(
2050
			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2051
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2052 2053 2054 2055 2056 2057 2058
		if (ret < 0)
			return ret;
	}

	return 0;
}

2059
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2060
				   unsigned char *addr)
2061 2062 2063 2064
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2065
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2066
					  GLOBAL_ATU_MAC_01 + i);
2067 2068 2069 2070 2071 2072 2073 2074 2075
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2076
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2077
			       struct mv88e6xxx_atu_entry *entry)
2078
{
2079 2080
	int ret;

2081
	ret = _mv88e6xxx_atu_wait(chip);
2082 2083 2084
	if (ret < 0)
		return ret;

2085
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2086 2087 2088
	if (ret < 0)
		return ret;

2089
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2090
	if (ret < 0)
2091 2092
		return ret;

2093
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2094
}
2095

2096
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2097 2098 2099 2100
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2101 2102 2103
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2104 2105
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2106
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2107
	else
2108
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2109 2110
	if (err)
		return err;
2111

2112
	entry.fid = vlan.fid;
2113 2114 2115 2116 2117 2118 2119
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

2120
	return _mv88e6xxx_atu_load(chip, &entry);
2121 2122
}

2123 2124 2125
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2126 2127 2128 2129 2130 2131 2132
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2133 2134 2135
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2136
{
2137
	int state = is_multicast_ether_addr(fdb->addr) ?
2138 2139
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2140
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2141

2142 2143
	mutex_lock(&chip->reg_lock);
	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2144 2145
		netdev_err(ds->ports[port].netdev,
			   "failed to load MAC address\n");
2146
	mutex_unlock(&chip->reg_lock);
2147 2148
}

2149 2150
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2151
{
2152
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2153 2154
	int ret;

2155 2156
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2157
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2158
	mutex_unlock(&chip->reg_lock);
2159 2160 2161 2162

	return ret;
}

2163
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2164
				  struct mv88e6xxx_atu_entry *entry)
2165
{
2166 2167 2168 2169
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2170

2171
	ret = _mv88e6xxx_atu_wait(chip);
2172 2173
	if (ret < 0)
		return ret;
2174

2175
	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2176 2177
	if (ret < 0)
		return ret;
2178

2179
	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2180 2181
	if (ret < 0)
		return ret;
2182

2183
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2184 2185
	if (ret < 0)
		return ret;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2203

2204
	*entry = next;
2205 2206 2207
	return 0;
}

2208
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2209
					u16 fid, u16 vid, int port,
2210 2211 2212 2213 2214 2215 2216 2217
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2218
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2219 2220 2221 2222
	if (err)
		return err;

	do {
2223
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2249 2250 2251
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
2252
{
2253
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2254 2255 2256
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2257
	u16 fid;
2258 2259
	int err;

2260
	mutex_lock(&chip->reg_lock);
2261

2262
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2263
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2264 2265 2266
	if (err)
		goto unlock;

2267
	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2268 2269 2270
	if (err)
		goto unlock;

2271
	/* Dump VLANs' Filtering Information Databases */
2272
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2273 2274 2275 2276
	if (err)
		goto unlock;

	do {
2277
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2278
		if (err)
2279
			break;
2280 2281 2282 2283

		if (!vlan.valid)
			break;

2284 2285
		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
						   port, fdb, cb);
2286
		if (err)
2287
			break;
2288 2289 2290
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
2291
	mutex_unlock(&chip->reg_lock);
2292 2293 2294 2295

	return err;
}

2296 2297
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2298
{
2299
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2300
	int i, err = 0;
2301

2302
	mutex_lock(&chip->reg_lock);
2303

2304
	/* Assign the bridge and remap each port's VLANTable */
2305
	chip->ports[port].bridge_dev = bridge;
2306

2307 2308 2309
	for (i = 0; i < chip->info->num_ports; ++i) {
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2310 2311 2312 2313 2314
			if (err)
				break;
		}
	}

2315
	mutex_unlock(&chip->reg_lock);
2316

2317
	return err;
2318 2319
}

2320
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2321
{
2322 2323
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	struct net_device *bridge = chip->ports[port].bridge_dev;
2324
	int i;
2325

2326
	mutex_lock(&chip->reg_lock);
2327

2328
	/* Unassign the bridge and remap each port's VLANTable */
2329
	chip->ports[port].bridge_dev = NULL;
2330

2331 2332 2333
	for (i = 0; i < chip->info->num_ports; ++i)
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2334 2335
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2336

2337
	mutex_unlock(&chip->reg_lock);
2338 2339
}

2340
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2341
{
2342
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2343
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2344
	struct gpio_desc *gpiod = chip->reset;
2345 2346 2347 2348 2349
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
2350 2351
	for (i = 0; i < chip->info->num_ports; i++) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2352 2353 2354
		if (ret < 0)
			return ret;

2355
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
					   ret & 0xfffc);
		if (ret)
			return ret;
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2377
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2378
	else
2379
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2380 2381 2382 2383 2384 2385
	if (ret)
		return ret;

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2386
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		if (ret < 0)
			return ret;

		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		ret = -ETIMEDOUT;
	else
		ret = 0;

	return ret;
}

2402
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2403
{
2404 2405
	u16 val;
	int err;
2406

2407 2408 2409 2410
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2411

2412 2413 2414
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2415 2416
	}

2417
	return err;
2418 2419
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
			       int reg, u16 *val)
{
	int addr = chip->info->port_base_addr + port;

	if (port >= chip->info->num_ports)
		return -EINVAL;

	return mv88e6xxx_read(chip, addr, reg, val);
}

2431
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2432
{
2433
	struct dsa_switch *ds = chip->ds;
2434
	int ret;
2435
	u16 reg;
2436

2437 2438 2439 2440
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2441 2442 2443 2444 2445 2446
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2447
		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2448
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2449
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2450 2451 2452 2453
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2454
			if (mv88e6xxx_6065_family(chip))
2455 2456 2457 2458 2459 2460 2461
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2462
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2463 2464
					   PORT_PCS_CTRL, reg);
		if (ret)
2465
			return ret;
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2483 2484 2485 2486
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2487 2488 2489 2490
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2491
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2492
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2493
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2494 2495
		else
			reg |= PORT_CONTROL_DSA_TAG;
2496 2497
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2498
	}
2499
	if (dsa_is_dsa_port(ds, port)) {
2500 2501
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2502
			reg |= PORT_CONTROL_DSA_TAG;
2503 2504 2505 2506 2507
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2508
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2509 2510
		}

2511 2512 2513 2514 2515
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2516
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2517 2518
					   PORT_CONTROL, reg);
		if (ret)
2519
			return ret;
2520 2521
	}

2522 2523 2524
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2525
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2526
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2527
		if (ret < 0)
2528
			return ret;
2529 2530 2531 2532
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
2533
			ret = mv88e6xxx_serdes_power_on(chip);
2534
			if (ret < 0)
2535
				return ret;
2536 2537 2538
		}
	}

2539
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2540
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2541 2542 2543
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2544 2545
	 */
	reg = 0;
2546 2547 2548 2549
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2550 2551
		reg = PORT_CONTROL_2_MAP_DA;

2552 2553
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2554 2555
		reg |= PORT_CONTROL_2_JUMBO_10240;

2556
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2557 2558 2559 2560 2561 2562 2563 2564 2565
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2566
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2567

2568
	if (reg) {
2569
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2570 2571
					   PORT_CONTROL_2, reg);
		if (ret)
2572
			return ret;
2573 2574 2575 2576 2577 2578 2579
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2580
	reg = 1 << port;
2581 2582
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2583
		reg = 0;
2584

2585 2586
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
				   reg);
2587
	if (ret)
2588
		return ret;
2589 2590

	/* Egress rate control 2: disable egress rate control. */
2591
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2592 2593
				   0x0000);
	if (ret)
2594
		return ret;
2595

2596 2597 2598
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2599 2600 2601 2602
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2603
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2604 2605
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
2606
			return ret;
2607 2608 2609 2610 2611

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2612
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2613 2614 2615 2616
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2617
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2618 2619
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
2620
			return ret;
2621 2622 2623 2624

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2625 2626 2627 2628 2629 2630 2631
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
			ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
						   PORT_ETH_TYPE, ETH_P_EDSA);
			if (ret)
				return ret;
		}

2632 2633 2634
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2635
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2636 2637
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
2638
			return ret;
2639 2640 2641 2642

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2643
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2644 2645
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
2646
			return ret;
2647 2648
	}

2649
	/* Rate Control: disable ingress rate limiting. */
2650 2651 2652 2653
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2654 2655
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
2656
			return ret;
2657 2658 2659 2660 2661
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0000);
		if (ret)
			return ret;
2662 2663
	}

2664 2665
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2666
	 */
2667 2668
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
				   0x0000);
2669
	if (ret)
2670
		return ret;
2671

2672
	/* Port based VLAN map: give each port the same default address
2673 2674
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2675
	 */
2676
	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2677
	if (ret)
2678
		return ret;
2679

2680
	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2681
	if (ret)
2682
		return ret;
2683 2684 2685 2686

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2687
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2688
				   0x0000);
2689 2690
	if (ret)
		return ret;
2691 2692 2693 2694

	return 0;
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
			      (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
			      (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
			       (addr[4] << 8) | addr[5]);
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2753
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2754
{
2755
	struct dsa_switch *ds = chip->ds;
2756
	u32 upstream_port = dsa_upstream_port(ds);
2757
	u16 reg;
2758
	int err;
2759

2760 2761 2762 2763
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
2764 2765
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2766 2767
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2768
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2769 2770 2771
	if (err)
		return err;

2772 2773 2774 2775 2776 2777
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2778 2779
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
				   reg);
2780 2781 2782
	if (err)
		return err;

2783
	/* Disable remote management, and set the switch's DSA device number. */
2784
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2785 2786 2787 2788 2789
				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				   (ds->index & 0x1f));
	if (err)
		return err;

2790 2791 2792 2793 2794
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2795 2796 2797 2798
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2799 2800
	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2801
	if (err)
2802
		return err;
2803

2804 2805
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2806 2807 2808 2809 2810 2811 2812
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2813
	/* Configure the IP ToS mapping registers. */
2814
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2815
	if (err)
2816
		return err;
2817
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2818
	if (err)
2819
		return err;
2820
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2821
	if (err)
2822
		return err;
2823
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2824
	if (err)
2825
		return err;
2826
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2827
	if (err)
2828
		return err;
2829
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2830
	if (err)
2831
		return err;
2832
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2833
	if (err)
2834
		return err;
2835
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2836
	if (err)
2837
		return err;
2838 2839

	/* Configure the IEEE 802.1p priority mapping register. */
2840
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2841
	if (err)
2842
		return err;
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	/* Clear the statistics counters for all ports */
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
					     int target, int port)
{
	u16 val = (target << 8) | (port & 0xf);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
}

static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
{
	int target, port;
	int err;

	/* Initialize the routing port to the 32 possible target devices */
	for (target = 0; target < 32; ++target) {
		port = 0xf;

		if (target < DSA_MAX_SWITCHES) {
			port = chip->ds->rtable[target];
			if (port == DSA_RTABLE_NONE)
				port = 0xf;
		}

		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
		if (err)
			break;
	}

	return err;
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
					 bool hask, u16 mask)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (num << 12) | (mask & port_mask);

	if (hask)
		val |= GLOBAL2_TRUNK_MASK_HASK;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
}

static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
					    u16 map)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (id << 11) | (map & port_mask);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
}

static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	int i, err;

	/* Clear all eight possible Trunk Mask vectors */
	for (i = 0; i < 8; ++i) {
		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
		if (err)
			return err;
	}

	/* Clear all sixteen possible Trunk ID routing vectors */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
		if (err)
			return err;
	}

	return 0;
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
{
	int port, err;

	/* Init all Ingress Rate Limit resources of all ports */
	for (port = 0; port < chip->info->num_ports; ++port) {
		/* XXX newer chips (like 88E6390) have different 2-bit ops */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
				      (port << 8));
		if (err)
			break;

		/* Wait for the operation to complete */
2946 2947
		err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				     GLOBAL2_IRL_CMD_BUSY);
2948 2949 2950 2951 2952 2953 2954
		if (err)
			break;
	}

	return err;
}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
/* Indirect write to the Switch MAC/WoL/WoF register */
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
					 unsigned int pointer, u8 data)
{
	u16 val = (pointer << 8) | data;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
}

static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int i, err;

	for (i = 0; i < 6; i++) {
		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
		if (err)
			break;
	}

	return err;
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
				  u8 data)
{
	u16 val = (pointer << 8) | (data & 0x7);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
}

static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
{
	int i, err;

	/* Clear all sixteen possible Priority Override entries */
	for (i = 0; i < 16; i++) {
		err = mv88e6xxx_g2_pot_write(chip, i, 0);
		if (err)
			break;
	}

	return err;
}

2999 3000
static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
{
3001 3002 3003
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
			      GLOBAL2_EEPROM_CMD_BUSY |
			      GLOBAL2_EEPROM_CMD_RUNNING);
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
}

static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_wait(chip);
}

static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
				      u8 addr, u16 *data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
}

static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
				       u8 addr, u16 data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
}

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
{
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
			      GLOBAL2_SMI_PHY_CMD_BUSY);
}

static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_wait(chip);
}

static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
}

static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
}

3102 3103 3104 3105 3106
static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
	.read = mv88e6xxx_g2_smi_phy_read,
	.write = mv88e6xxx_g2_smi_phy_write,
};

3107 3108
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
{
3109
	u16 reg;
3110 3111
	int err;

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:2x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
				      0xffff);
		if (err)
			return err;
	}

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:0x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
				      0xffff);
		if (err)
			return err;
	}
3131 3132 3133 3134 3135 3136

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
3137 3138 3139 3140 3141
	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3142
	if (err)
3143
		return err;
3144 3145

	/* Program the DSA routing table. */
3146 3147 3148
	err = mv88e6xxx_g2_set_device_mapping(chip);
	if (err)
		return err;
3149

3150 3151 3152 3153
	/* Clear all trunk masks and mapping. */
	err = mv88e6xxx_g2_clear_trunk(chip);
	if (err)
		return err;
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
		/* Disable ingress rate limiting by resetting all per port
		 * ingress rate limit resources to their initial state.
		 */
		err = mv88e6xxx_g2_clear_irl(chip);
			if (err)
				return err;
	}

3164 3165 3166 3167
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
		/* Initialize Cross-chip Port VLAN Table to reset defaults */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3168
		if (err)
3169
			return err;
3170
	}
3171

3172
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3173
		/* Clear the priority override table. */
3174 3175 3176
		err = mv88e6xxx_g2_clear_pot(chip);
		if (err)
			return err;
3177 3178
	}

3179
	return 0;
3180 3181
}

3182
static int mv88e6xxx_setup(struct dsa_switch *ds)
3183
{
3184
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3185
	int err;
3186 3187
	int i;

3188 3189
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
3190

3191
	mutex_lock(&chip->reg_lock);
3192

3193
	err = mv88e6xxx_switch_reset(chip);
3194 3195 3196
	if (err)
		goto unlock;

3197 3198 3199 3200 3201 3202 3203 3204 3205
	/* Setup Switch Port Registers */
	for (i = 0; i < chip->info->num_ports; i++) {
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
3206 3207 3208
	if (err)
		goto unlock;

3209 3210 3211
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3212 3213 3214
		if (err)
			goto unlock;
	}
3215

3216
unlock:
3217
	mutex_unlock(&chip->reg_lock);
3218

3219
	return err;
3220 3221
}

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

3240
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3241
{
3242
	struct mv88e6xxx_chip *chip = bus->priv;
3243 3244
	u16 val;
	int err;
3245

3246
	if (phy >= chip->info->num_ports)
3247
		return 0xffff;
3248

3249
	mutex_lock(&chip->reg_lock);
3250
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3251
	mutex_unlock(&chip->reg_lock);
3252 3253

	return err ? err : val;
3254 3255
}

3256
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3257
{
3258
	struct mv88e6xxx_chip *chip = bus->priv;
3259
	int err;
3260

3261
	if (phy >= chip->info->num_ports)
3262
		return 0xffff;
3263

3264
	mutex_lock(&chip->reg_lock);
3265
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
3266
	mutex_unlock(&chip->reg_lock);
3267 3268

	return err;
3269 3270
}

3271
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3272 3273 3274 3275 3276 3277 3278
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
3279
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3280

3281
	bus = devm_mdiobus_alloc(chip->dev);
3282 3283 3284
	if (!bus)
		return -ENOMEM;

3285
	bus->priv = (void *)chip;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3296
	bus->parent = chip->dev;
3297

3298 3299
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3300 3301 3302
	else
		err = mdiobus_register(bus);
	if (err) {
3303
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3304 3305
		goto out;
	}
3306
	chip->mdio_bus = bus;
3307 3308 3309 3310

	return 0;

out:
3311 3312
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3313 3314 3315 3316

	return err;
}

3317
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3318 3319

{
3320
	struct mii_bus *bus = chip->mdio_bus;
3321 3322 3323

	mdiobus_unregister(bus);

3324 3325
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3326 3327
}

3328 3329 3330 3331
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
3332
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3333
	u16 val;
3334 3335 3336 3337
	int ret;

	*temp = 0;

3338
	mutex_lock(&chip->reg_lock);
3339

3340
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3341 3342 3343 3344
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3345
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3346 3347 3348
	if (ret < 0)
		goto error;

3349
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3350 3351 3352 3353 3354 3355
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3356 3357
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
3358 3359 3360
		goto error;

	/* Disable temperature sensor */
3361
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3362 3363 3364 3365 3366 3367
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3368
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3369
	mutex_unlock(&chip->reg_lock);
3370 3371 3372 3373 3374
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
3375 3376
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3377
	u16 val;
3378 3379 3380 3381
	int ret;

	*temp = 0;

3382 3383 3384
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3385 3386 3387
	if (ret < 0)
		return ret;

3388
	*temp = (val & 0xff) - 25;
3389 3390 3391 3392

	return 0;
}

3393
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3394
{
3395
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3396

3397
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3398 3399
		return -EOPNOTSUPP;

3400
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3401 3402 3403 3404 3405
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3406
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3407
{
3408 3409
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3410
	u16 val;
3411 3412
	int ret;

3413
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3414 3415 3416 3417
		return -EOPNOTSUPP;

	*temp = 0;

3418 3419 3420
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3421 3422 3423
	if (ret < 0)
		return ret;

3424
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3425 3426 3427 3428

	return 0;
}

3429
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3430
{
3431 3432
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3433 3434
	u16 val;
	int err;
3435

3436
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3437 3438
		return -EOPNOTSUPP;

3439 3440 3441 3442
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3443
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3444 3445 3446 3447 3448 3449
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3450 3451
}

3452
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3453
{
3454 3455
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3456
	u16 val;
3457 3458
	int ret;

3459
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3460 3461 3462 3463
		return -EOPNOTSUPP;

	*alarm = false;

3464 3465 3466
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3467 3468 3469
	if (ret < 0)
		return ret;

3470
	*alarm = !!(val & 0x40);
3471 3472 3473 3474 3475

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = (val >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;
		*data++ = (val >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	/* Ensure the RO WriteEn bit is set */
	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
	if (err)
		return err;

	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
		return -EROFS;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (*data++ << 8) | (val & 0xff);

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		val = *data++;
		val |= *data++ << 8;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (val & 0xff00) | *data++;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	return err;
}

3643 3644 3645 3646 3647 3648 3649
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3650
		.port_base_addr = 0x10,
3651
		.age_time_coeff = 15000,
3652 3653 3654 3655 3656 3657 3658 3659 3660
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3661
		.port_base_addr = 0x10,
3662
		.age_time_coeff = 15000,
3663 3664 3665 3666 3667 3668 3669 3670 3671
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3672
		.port_base_addr = 0x10,
3673
		.age_time_coeff = 15000,
3674 3675 3676 3677 3678 3679 3680 3681 3682
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3683
		.port_base_addr = 0x10,
3684
		.age_time_coeff = 15000,
3685 3686 3687 3688 3689 3690 3691 3692 3693
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3694
		.port_base_addr = 0x10,
3695
		.age_time_coeff = 15000,
3696 3697 3698 3699 3700 3701 3702 3703 3704
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3705
		.port_base_addr = 0x10,
3706
		.age_time_coeff = 15000,
3707 3708 3709 3710 3711 3712 3713 3714 3715
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3716
		.port_base_addr = 0x10,
3717
		.age_time_coeff = 15000,
3718 3719 3720 3721 3722 3723 3724 3725 3726
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3727
		.port_base_addr = 0x10,
3728
		.age_time_coeff = 15000,
3729 3730 3731 3732 3733 3734 3735 3736 3737
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3738
		.port_base_addr = 0x10,
3739
		.age_time_coeff = 15000,
3740 3741 3742 3743 3744 3745 3746 3747 3748
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3749
		.port_base_addr = 0x10,
3750
		.age_time_coeff = 15000,
3751 3752 3753 3754 3755 3756 3757 3758 3759
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3760
		.port_base_addr = 0x10,
3761
		.age_time_coeff = 15000,
3762 3763 3764 3765 3766 3767 3768 3769 3770
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3771
		.port_base_addr = 0x10,
3772
		.age_time_coeff = 15000,
3773 3774 3775 3776 3777 3778 3779 3780 3781
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3782
		.port_base_addr = 0x10,
3783
		.age_time_coeff = 15000,
3784 3785 3786 3787 3788 3789 3790 3791 3792
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3793
		.port_base_addr = 0x10,
3794
		.age_time_coeff = 15000,
3795 3796 3797 3798 3799 3800 3801 3802 3803
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3804
		.port_base_addr = 0x10,
3805
		.age_time_coeff = 15000,
3806 3807 3808 3809 3810 3811 3812 3813 3814
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3815
		.port_base_addr = 0x10,
3816
		.age_time_coeff = 15000,
3817 3818 3819 3820 3821 3822 3823 3824 3825
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3826
		.port_base_addr = 0x10,
3827
		.age_time_coeff = 15000,
3828 3829 3830 3831
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},
};

3832
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3833
{
3834
	int i;
3835

3836 3837 3838
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3839 3840 3841 3842

	return NULL;
}

3843
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3844 3845
{
	const struct mv88e6xxx_info *info;
3846 3847 3848
	unsigned int prod_num, rev;
	u16 id;
	int err;
3849

3850 3851 3852 3853 3854
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3855 3856 3857 3858 3859 3860 3861 3862

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3863
	/* Update the compatible info with the probed one */
3864
	chip->info = info;
3865

3866 3867
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3868 3869 3870 3871

	return 0;
}

3872
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3873
{
3874
	struct mv88e6xxx_chip *chip;
3875

3876 3877
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3878 3879
		return NULL;

3880
	chip->dev = dev;
3881

3882
	mutex_init(&chip->reg_lock);
3883

3884
	return chip;
3885 3886
}

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
	.read = mv88e6xxx_read,
	.write = mv88e6xxx_write,
};

static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
		chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
	} else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
		chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
		mv88e6xxx_ppu_state_init(chip);
	} else {
		chip->phy_ops = &mv88e6xxx_phy_ops;
	}
}

3904 3905 3906 3907 3908 3909 3910
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
		mv88e6xxx_ppu_state_destroy(chip);
	}
}

3911
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3912 3913 3914 3915 3916 3917
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3918
	if (sw_addr == 0)
3919
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3920
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3921
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3922 3923 3924
	else
		return -EINVAL;

3925 3926
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3927 3928 3929 3930

	return 0;
}

3931 3932
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
3933 3934 3935 3936 3937 3938
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3939 3940
}

3941 3942 3943
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3944
{
3945
	struct mv88e6xxx_chip *chip;
3946
	struct mii_bus *bus;
3947
	int err;
3948

3949
	bus = dsa_host_dev_to_mii_bus(host_dev);
3950 3951 3952
	if (!bus)
		return NULL;

3953 3954
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3955 3956
		return NULL;

3957
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3958
	chip->info = &mv88e6xxx_table[MV88E6085];
3959

3960
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3961 3962 3963
	if (err)
		goto free;

3964
	err = mv88e6xxx_detect(chip);
3965
	if (err)
3966
		goto free;
3967

3968 3969
	mv88e6xxx_phy_init(chip);

3970
	err = mv88e6xxx_mdio_register(chip, NULL);
3971
	if (err)
3972
		goto free;
3973

3974
	*priv = chip;
3975

3976
	return chip->info->name;
3977
free:
3978
	devm_kfree(dsa_dev, chip);
3979 3980

	return NULL;
3981 3982
}

3983
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3984
	.probe			= mv88e6xxx_drv_probe,
3985
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
4000
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
4001 4002 4003 4004
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
4005
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
};

4020
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4021 4022
				     struct device_node *np)
{
4023
	struct device *dev = chip->dev;
4024 4025 4026 4027 4028 4029 4030
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4031
	ds->priv = chip;
4032
	ds->ops = &mv88e6xxx_switch_ops;
4033 4034 4035 4036 4037 4038

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4039
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4040
{
4041
	dsa_unregister_switch(chip->ds);
4042 4043
}

4044
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4045
{
4046
	struct device *dev = &mdiodev->dev;
4047
	struct device_node *np = dev->of_node;
4048
	const struct mv88e6xxx_info *compat_info;
4049
	struct mv88e6xxx_chip *chip;
4050
	u32 eeprom_len;
4051
	int err;
4052

4053 4054 4055 4056
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4057 4058
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4059 4060
		return -ENOMEM;

4061
	chip->info = compat_info;
4062

4063
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4064 4065
	if (err)
		return err;
4066

4067
	err = mv88e6xxx_detect(chip);
4068 4069
	if (err)
		return err;
4070

4071 4072
	mv88e6xxx_phy_init(chip);

4073 4074 4075
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
4076

4077
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4078
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4079
		chip->eeprom_len = eeprom_len;
4080

4081
	err = mv88e6xxx_mdio_register(chip, np);
4082 4083 4084
	if (err)
		return err;

4085
	err = mv88e6xxx_register_switch(chip, np);
4086
	if (err) {
4087
		mv88e6xxx_mdio_unregister(chip);
4088 4089 4090
		return err;
	}

4091 4092
	return 0;
}
4093 4094 4095 4096

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4097
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4098

4099
	mv88e6xxx_phy_destroy(chip);
4100 4101
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4102 4103 4104
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4105 4106 4107 4108
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
4125
	register_switch_driver(&mv88e6xxx_switch_ops);
4126 4127
	return mdio_driver_register(&mv88e6xxx_driver);
}
4128 4129 4130 4131
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4132
	mdio_driver_unregister(&mv88e6xxx_driver);
4133
	unregister_switch_driver(&mv88e6xxx_switch_ops);
4134 4135
}
module_exit(mv88e6xxx_cleanup);
4136 4137 4138 4139

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");