chip.c 97.1 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32 33
#include "mv88e6xxx.h"

34
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35
{
36 37
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
38 39 40 41
		dump_stack();
	}
}

42 43 44 45 46 47 48 49 50 51
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
52
 */
53

54
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 56
			      int addr, int reg, u16 *val)
{
57
	if (!chip->smi_ops)
58 59
		return -EOPNOTSUPP;

60
	return chip->smi_ops->read(chip, addr, reg, val);
61 62
}

63
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 65
			       int addr, int reg, u16 val)
{
66
	if (!chip->smi_ops)
67 68
		return -EOPNOTSUPP;

69
	return chip->smi_ops->write(chip, addr, reg, val);
70 71
}

72
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 74 75 76
					  int addr, int reg, u16 *val)
{
	int ret;

77
	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 79 80 81 82 83 84 85
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

86
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 88 89 90
					   int addr, int reg, u16 val)
{
	int ret;

91
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 93 94 95 96 97 98 99 100 101 102
	if (ret < 0)
		return ret;

	return 0;
}

static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

103
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 105 106 107 108
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
109
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 111 112
		if (ret < 0)
			return ret;

113
		if ((ret & SMI_CMD_BUSY) == 0)
114 115 116 117 118 119
			return 0;
	}

	return -ETIMEDOUT;
}

120
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121
					 int addr, int reg, u16 *val)
122 123 124
{
	int ret;

125
	/* Wait for the bus to become free. */
126
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 128 129
	if (ret < 0)
		return ret;

130
	/* Transmit the read command. */
131
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 134 135
	if (ret < 0)
		return ret;

136
	/* Wait for the read command to complete. */
137
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 139 140
	if (ret < 0)
		return ret;

141
	/* Read the data. */
142
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 144 145
	if (ret < 0)
		return ret;

146
	*val = ret & 0xffff;
147

148
	return 0;
149 150
}

151
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152
					  int addr, int reg, u16 val)
153 154 155
{
	int ret;

156
	/* Wait for the bus to become free. */
157
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Transmit the data to write. */
162
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Transmit the write command. */
167
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 170 171
	if (ret < 0)
		return ret;

172
	/* Wait for the write command to complete. */
173
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 175 176 177 178 179
	if (ret < 0)
		return ret;

	return 0;
}

180 181 182 183 184
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

185
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 187 188 189
			  int addr, int reg, u16 *val)
{
	int err;

190
	assert_reg_lock(chip);
191

192
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 194 195
	if (err)
		return err;

196
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 198 199 200 201
		addr, reg, *val);

	return 0;
}

202
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203
			   int addr, int reg, u16 val)
204
{
205 206
	int err;

207
	assert_reg_lock(chip);
208

209
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 211 212
	if (err)
		return err;

213
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 215
		addr, reg, val);

216 217 218
	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
			  u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

	return -ETIMEDOUT;
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/* Indirect write to single pointer-data register with an Update bit */
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
			    u16 update)
{
	u16 val;
	int i, err;

	/* Wait until the previous operation is completed */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & BIT(15)))
			break;
	}

	if (i == 16)
		return -ETIMEDOUT;

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

267
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
268 269 270 271
{
	u16 val;
	int err;

272
	err = mv88e6xxx_read(chip, addr, reg, &val);
273 274 275 276 277 278
	if (err)
		return err;

	return val;
}

279
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
280 281
				int reg, u16 val)
{
282
	return mv88e6xxx_write(chip, addr, reg, val);
283 284
}

285
static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
286
				      int addr, int regnum)
287 288
{
	if (addr >= 0)
289
		return _mv88e6xxx_reg_read(chip, addr, regnum);
290 291 292
	return 0xffff;
}

293
static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
294
				       int addr, int regnum, u16 val)
295 296
{
	if (addr >= 0)
297
		return _mv88e6xxx_reg_write(chip, addr, regnum, val);
298 299 300
	return 0;
}

301
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
302 303
{
	int ret;
304
	unsigned long timeout;
305

306
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
307 308 309
	if (ret < 0)
		return ret;

310
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
311
				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
312 313
	if (ret)
		return ret;
314

315 316
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
317
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
318 319 320
		if (ret < 0)
			return ret;

321
		usleep_range(1000, 2000);
322 323
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
324
			return 0;
325 326 327 328 329
	}

	return -ETIMEDOUT;
}

330
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
331
{
332
	int ret, err;
333
	unsigned long timeout;
334

335
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
336 337 338
	if (ret < 0)
		return ret;

339
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
340
				   ret | GLOBAL_CONTROL_PPU_ENABLE);
341 342
	if (err)
		return err;
343

344 345
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
346
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
347 348 349
		if (ret < 0)
			return ret;

350
		usleep_range(1000, 2000);
351 352
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
353
			return 0;
354 355 356 357 358 359 360
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
361
	struct mv88e6xxx_chip *chip;
362

363
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
364

365
	mutex_lock(&chip->reg_lock);
366

367 368 369 370
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
371
	}
372

373
	mutex_unlock(&chip->reg_lock);
374 375 376 377
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
378
	struct mv88e6xxx_chip *chip = (void *)_ps;
379

380
	schedule_work(&chip->ppu_work);
381 382
}

383
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
384 385 386
{
	int ret;

387
	mutex_lock(&chip->ppu_mutex);
388

389
	/* If the PHY polling unit is enabled, disable it so that
390 391 392 393
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
394 395
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
396
		if (ret < 0) {
397
			mutex_unlock(&chip->ppu_mutex);
398 399
			return ret;
		}
400
		chip->ppu_disabled = 1;
401
	} else {
402
		del_timer(&chip->ppu_timer);
403
		ret = 0;
404 405 406 407 408
	}

	return ret;
}

409
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
410
{
411
	/* Schedule a timer to re-enable the PHY polling unit. */
412 413
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
414 415
}

416
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
417
{
418 419 420 421 422
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
423 424
}

425
static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr,
426
				   int regnum)
427 428 429
{
	int ret;

430
	ret = mv88e6xxx_ppu_access_get(chip);
431
	if (ret >= 0) {
432 433
		ret = _mv88e6xxx_reg_read(chip, addr, regnum);
		mv88e6xxx_ppu_access_put(chip);
434 435 436 437 438
	}

	return ret;
}

439
static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr,
440
				    int regnum, u16 val)
441 442 443
{
	int ret;

444
	ret = mv88e6xxx_ppu_access_get(chip);
445
	if (ret >= 0) {
446 447
		ret = _mv88e6xxx_reg_write(chip, addr, regnum, val);
		mv88e6xxx_ppu_access_put(chip);
448 449 450 451 452
	}

	return ret;
}

453
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
454
{
455
	return chip->info->family == MV88E6XXX_FAMILY_6065;
456 457
}

458
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
459
{
460
	return chip->info->family == MV88E6XXX_FAMILY_6095;
461 462
}

463
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
464
{
465
	return chip->info->family == MV88E6XXX_FAMILY_6097;
466 467
}

468
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
469
{
470
	return chip->info->family == MV88E6XXX_FAMILY_6165;
471 472
}

473
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
474
{
475
	return chip->info->family == MV88E6XXX_FAMILY_6185;
476 477
}

478
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
479
{
480
	return chip->info->family == MV88E6XXX_FAMILY_6320;
481 482
}

483
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
484
{
485
	return chip->info->family == MV88E6XXX_FAMILY_6351;
486 487
}

488
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
489
{
490
	return chip->info->family == MV88E6XXX_FAMILY_6352;
491 492
}

493
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
494
{
495
	return chip->info->num_databases;
496 497
}

498
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
499 500
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
501 502
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
503 504 505 506 507
		return true;

	return false;
}

508 509 510 511
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
512 513
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
514
{
515
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
516 517
	u32 reg;
	int ret;
518 519 520 521

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

522
	mutex_lock(&chip->reg_lock);
523

524
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
525 526 527 528 529 530 531 532 533 534 535
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
536
		reg |= PORT_PCS_CTRL_LINK_UP;
537

538
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

560 561
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
	    (port >= chip->info->num_ports - 2)) {
562 563 564 565 566 567 568 569
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
570
	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
571 572

out:
573
	mutex_unlock(&chip->reg_lock);
574 575
}

576
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
577 578 579 580 581
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
582
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
583
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
584 585 586 587 588 589
			return 0;
	}

	return -ETIMEDOUT;
}

590
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
591 592 593
{
	int ret;

594
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
595 596
		port = (port + 1) << 5;

597
	/* Snapshot the hardware statistics counters for this port. */
598
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
599 600 601 602
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
603

604
	/* Wait for the snapshotting to complete. */
605
	ret = _mv88e6xxx_stats_wait(chip);
606 607 608 609 610 611
	if (ret < 0)
		return ret;

	return 0;
}

612
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
613
				  int stat, u32 *val)
614 615 616 617 618 619
{
	u32 _val;
	int ret;

	*val = 0;

620
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
621 622
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
623 624 625
	if (ret < 0)
		return;

626
	ret = _mv88e6xxx_stats_wait(chip);
627 628 629
	if (ret < 0)
		return;

630
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
631 632 633 634 635
	if (ret < 0)
		return;

	_val = ret << 16;

636
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
637 638 639 640 641 642
	if (ret < 0)
		return;

	*val = _val | ret;
}

643
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
703 704
};

705
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
706
			       struct mv88e6xxx_hw_stat *stat)
707
{
708 709
	switch (stat->type) {
	case BANK0:
710
		return true;
711
	case BANK1:
712
		return mv88e6xxx_6320_family(chip);
713
	case PORT:
714 715 716 717 718 719
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
720
	}
721
	return false;
722 723
}

724
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
725
					    struct mv88e6xxx_hw_stat *s,
726 727 728 729 730 731 732
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

733 734
	switch (s->type) {
	case PORT:
735
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
736 737 738 739 740
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
741
			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
742
						  s->reg + 1);
743 744 745 746
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
747 748 749
		break;
	case BANK0:
	case BANK1:
750
		_mv88e6xxx_stats_read(chip, s->reg, &low);
751
		if (s->sizeof_stat == 8)
752
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
753 754 755 756 757
	}
	value = (((u64)high) << 16) | low;
	return value;
}

758 759
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
760
{
761
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
762 763
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
764

765 766
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
767
		if (mv88e6xxx_has_stat(chip, stat)) {
768 769 770 771
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
772
	}
773 774
}

775
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
776
{
777
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
778 779 780 781 782
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
783
		if (mv88e6xxx_has_stat(chip, stat))
784 785 786
			j++;
	}
	return j;
787 788
}

789 790
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
791
{
792
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
793 794 795 796
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

797
	mutex_lock(&chip->reg_lock);
798

799
	ret = _mv88e6xxx_stats_snapshot(chip, port);
800
	if (ret < 0) {
801
		mutex_unlock(&chip->reg_lock);
802 803 804 805
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
806 807
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
808 809 810 811
			j++;
		}
	}

812
	mutex_unlock(&chip->reg_lock);
813 814
}

815
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
816 817 818 819
{
	return 32 * sizeof(u16);
}

820 821
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
822
{
823
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
824 825 826 827 828 829 830
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

831
	mutex_lock(&chip->reg_lock);
832

833 834 835
	for (i = 0; i < 32; i++) {
		int ret;

836
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
837 838 839
		if (ret >= 0)
			p[i] = ret;
	}
840

841
	mutex_unlock(&chip->reg_lock);
842 843
}

844
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
845
{
846 847
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
			      GLOBAL_ATU_OP_BUSY);
848 849
}

850 851 852 853 854
static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val);
static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val);

855
static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
856
					int addr, int regnum)
857
{
858 859
	u16 val;
	int err;
860

861 862 863
	err = mv88e6xxx_g2_smi_phy_read(chip, addr, regnum, &val);
	if (err)
		return err;
864

865
	return val;
866 867
}

868
static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
869
					 int addr, int regnum, u16 val)
870
{
871
	return mv88e6xxx_g2_smi_phy_write(chip, addr, regnum, val);
872 873
}

874 875
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
876
{
877
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
878 879
	int reg;

880
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
881 882
		return -EOPNOTSUPP;

883
	mutex_lock(&chip->reg_lock);
884

885
	reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
886
	if (reg < 0)
887
		goto out;
888 889 890 891

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

892
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
893
	if (reg < 0)
894
		goto out;
895

896
	e->eee_active = !!(reg & PORT_STATUS_EEE);
897
	reg = 0;
898

899
out:
900
	mutex_unlock(&chip->reg_lock);
901
	return reg;
902 903
}

904 905
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
906
{
907
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
908
	int reg;
909 910
	int ret;

911
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
912 913
		return -EOPNOTSUPP;

914
	mutex_lock(&chip->reg_lock);
915

916
	ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
917 918 919 920 921 922 923 924 925
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

926
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
927
out:
928
	mutex_unlock(&chip->reg_lock);
929 930

	return ret;
931 932
}

933
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
934 935 936
{
	int ret;

937 938 939
	if (mv88e6xxx_has_fid_reg(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
					   fid);
940 941
		if (ret < 0)
			return ret;
942
	} else if (mv88e6xxx_num_databases(chip) == 256) {
943
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
944
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
945 946 947
		if (ret < 0)
			return ret;

948
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
949 950 951 952 953 954 955
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
956 957
	}

958
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
959 960 961
	if (ret < 0)
		return ret;

962
	return _mv88e6xxx_atu_wait(chip);
963 964
}

965
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

985
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
986 987
}

988
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
989 990
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
991
{
992 993
	int op;
	int err;
994

995
	err = _mv88e6xxx_atu_wait(chip);
996 997
	if (err)
		return err;
998

999
	err = _mv88e6xxx_atu_data_write(chip, entry);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1011
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1012 1013
}

1014
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1015
				u16 fid, bool static_too)
1016 1017 1018 1019 1020
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1021

1022
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1023 1024
}

1025
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1026
			       int from_port, int to_port, bool static_too)
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1040
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1041 1042
}

1043
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1044
				 int port, bool static_too)
1045 1046
{
	/* Destination port 0xF means remove the entries */
1047
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1048 1049
}

1050 1051 1052 1053 1054 1055 1056
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1057
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1058
				 u8 state)
1059
{
1060
	struct dsa_switch *ds = chip->ds;
1061
	int reg, ret = 0;
1062 1063
	u8 oldstate;

1064
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1065 1066
	if (reg < 0)
		return reg;
1067

1068
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1069

1070 1071 1072 1073 1074
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1075
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1076 1077 1078
		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
		    (state == PORT_CONTROL_STATE_DISABLED ||
		     state == PORT_CONTROL_STATE_BLOCKING)) {
1079
			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1080
			if (ret)
1081
				return ret;
1082
		}
1083

1084
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1085
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1086
					   reg);
1087 1088 1089
		if (ret)
			return ret;

1090
		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1091 1092
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1093 1094 1095 1096 1097
	}

	return ret;
}

1098
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1099
{
1100 1101 1102
	struct net_device *bridge = chip->ports[port].bridge_dev;
	const u16 mask = (1 << chip->info->num_ports) - 1;
	struct dsa_switch *ds = chip->ds;
1103
	u16 output_ports = 0;
1104
	int reg;
1105 1106 1107 1108 1109 1110
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1111
		for (i = 0; i < chip->info->num_ports; ++i) {
1112
			/* allow sending frames to every group member */
1113
			if (bridge && chip->ports[i].bridge_dev == bridge)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1124

1125
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1126 1127
	if (reg < 0)
		return reg;
1128

1129 1130
	reg &= ~mask;
	reg |= output_ports & mask;
1131

1132
	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1133 1134
}

1135 1136
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1137
{
1138
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1139
	int stp_state;
1140
	int err;
1141 1142 1143

	switch (state) {
	case BR_STATE_DISABLED:
1144
		stp_state = PORT_CONTROL_STATE_DISABLED;
1145 1146 1147
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1148
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1149 1150
		break;
	case BR_STATE_LEARNING:
1151
		stp_state = PORT_CONTROL_STATE_LEARNING;
1152 1153 1154
		break;
	case BR_STATE_FORWARDING:
	default:
1155
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1156 1157 1158
		break;
	}

1159 1160 1161
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1162 1163

	if (err)
1164 1165
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1166
			   mv88e6xxx_port_state_names[stp_state]);
1167 1168
}

1169
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1170
				u16 *new, u16 *old)
1171
{
1172
	struct dsa_switch *ds = chip->ds;
1173
	u16 pvid;
1174 1175
	int ret;

1176
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1177 1178 1179
	if (ret < 0)
		return ret;

1180 1181 1182 1183 1184 1185
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

1186
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1187 1188 1189 1190
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

1191 1192
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1193 1194 1195 1196
	}

	if (old)
		*old = pvid;
1197 1198 1199 1200

	return 0;
}

1201
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1202
				    int port, u16 *pvid)
1203
{
1204
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1205 1206
}

1207
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1208
				    int port, u16 pvid)
1209
{
1210
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1211 1212
}

1213
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1214
{
1215 1216
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
			      GLOBAL_VTU_OP_BUSY);
1217 1218
}

1219
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1220 1221 1222
{
	int ret;

1223
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1224 1225 1226
	if (ret < 0)
		return ret;

1227
	return _mv88e6xxx_vtu_wait(chip);
1228 1229
}

1230
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1231 1232 1233
{
	int ret;

1234
	ret = _mv88e6xxx_vtu_wait(chip);
1235 1236 1237
	if (ret < 0)
		return ret;

1238
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1239 1240
}

1241
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1242 1243 1244 1245 1246 1247 1248 1249
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
1250
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1251 1252 1253 1254 1255 1256 1257
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1258
	for (i = 0; i < chip->info->num_ports; ++i) {
1259 1260 1261 1262 1263 1264 1265 1266 1267
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1268
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1269 1270
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1271
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1272 1273
}

1274
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1275 1276
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1277
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1278 1279
}

1280
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1281 1282 1283 1284 1285 1286 1287
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
	int i;
	int ret;

1288
	for (i = 0; i < chip->info->num_ports; ++i) {
1289 1290 1291 1292 1293 1294 1295
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1296
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1297 1298 1299 1300 1301 1302 1303 1304
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1305
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1306 1307
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1308
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1309 1310
}

1311
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1312 1313
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1314
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1315 1316
}

1317
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1318
{
1319
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1320 1321 1322
				    vid & GLOBAL_VTU_VID_MASK);
}

1323
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1324 1325 1326 1327 1328
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1329
	ret = _mv88e6xxx_vtu_wait(chip);
1330 1331 1332
	if (ret < 0)
		return ret;

1333
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1334 1335 1336
	if (ret < 0)
		return ret;

1337
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1338 1339 1340 1341 1342 1343 1344
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1345
		ret = mv88e6xxx_vtu_data_read(chip, &next);
1346 1347 1348
		if (ret < 0)
			return ret;

1349 1350
		if (mv88e6xxx_has_fid_reg(chip)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1351 1352 1353 1354 1355
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1356
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1357 1358 1359
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1360
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1361 1362 1363 1364 1365 1366
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1367
		}
1368

1369 1370
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1383 1384 1385
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1386
{
1387
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1388 1389 1390 1391
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

1392
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1393 1394
		return -EOPNOTSUPP;

1395
	mutex_lock(&chip->reg_lock);
1396

1397
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1398 1399 1400
	if (err)
		goto unlock;

1401
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1402 1403 1404 1405
	if (err)
		goto unlock;

	do {
1406
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1417 1418
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1433
	mutex_unlock(&chip->reg_lock);
1434 1435 1436 1437

	return err;
}

1438
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1439 1440
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1441
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1442 1443 1444
	u16 reg = 0;
	int ret;

1445
	ret = _mv88e6xxx_vtu_wait(chip);
1446 1447 1448 1449 1450 1451 1452
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1453
	ret = mv88e6xxx_vtu_data_write(chip, entry);
1454 1455 1456
	if (ret < 0)
		return ret;

1457
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1458
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1459 1460
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
					   reg);
1461 1462
		if (ret < 0)
			return ret;
1463
	}
1464

1465
	if (mv88e6xxx_has_fid_reg(chip)) {
1466
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1467 1468
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
					   reg);
1469 1470
		if (ret < 0)
			return ret;
1471
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1472 1473 1474 1475 1476
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1477 1478 1479 1480 1481
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1482
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1483 1484 1485
	if (ret < 0)
		return ret;

1486
	return _mv88e6xxx_vtu_cmd(chip, op);
1487 1488
}

1489
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1490 1491 1492 1493 1494
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1495
	ret = _mv88e6xxx_vtu_wait(chip);
1496 1497 1498
	if (ret < 0)
		return ret;

1499
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1500 1501 1502 1503
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

1504
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1505 1506 1507
	if (ret < 0)
		return ret;

1508
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1509 1510 1511 1512 1513
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

1514
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1515 1516 1517 1518 1519 1520
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1521
		ret = mv88e6xxx_stu_data_read(chip, &next);
1522 1523 1524 1525 1526 1527 1528 1529
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

1530
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1531 1532 1533 1534 1535
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

1536
	ret = _mv88e6xxx_vtu_wait(chip);
1537 1538 1539 1540 1541 1542 1543
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1544
	ret = mv88e6xxx_stu_data_write(chip, entry);
1545 1546 1547 1548 1549
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1550
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1551 1552 1553 1554
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1555
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1556 1557 1558
	if (ret < 0)
		return ret;

1559
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1560 1561
}

1562
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1563
			       u16 *new, u16 *old)
1564
{
1565
	struct dsa_switch *ds = chip->ds;
1566
	u16 upper_mask;
1567 1568 1569
	u16 fid;
	int ret;

1570
	if (mv88e6xxx_num_databases(chip) == 4096)
1571
		upper_mask = 0xff;
1572
	else if (mv88e6xxx_num_databases(chip) == 256)
1573
		upper_mask = 0xf;
1574 1575 1576
	else
		return -EOPNOTSUPP;

1577
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1578
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1579 1580 1581 1582 1583 1584 1585 1586 1587
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

1588
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1589 1590 1591 1592 1593 1594
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1595
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1596 1597 1598
	if (ret < 0)
		return ret;

1599
	fid |= (ret & upper_mask) << 4;
1600 1601

	if (new) {
1602 1603
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1604

1605
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1606 1607 1608 1609
					   ret);
		if (ret < 0)
			return ret;

1610 1611
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1612 1613 1614 1615 1616 1617 1618 1619
	}

	if (old)
		*old = fid;

	return 0;
}

1620
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1621
				   int port, u16 *fid)
1622
{
1623
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1624 1625
}

1626
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1627
				   int port, u16 fid)
1628
{
1629
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1630 1631
}

1632
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1633 1634 1635
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1636
	int i, err;
1637 1638 1639

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1640
	/* Set every FID bit used by the (un)bridged ports */
1641 1642
	for (i = 0; i < chip->info->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1643 1644 1645 1646 1647 1648
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1649
	/* Set every FID bit used by the VLAN entries */
1650
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1651 1652 1653 1654
	if (err)
		return err;

	do {
1655
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1669
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1670 1671 1672
		return -ENOSPC;

	/* Clear the database */
1673
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1674 1675
}

1676
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1677
			      struct mv88e6xxx_vtu_stu_entry *entry)
1678
{
1679
	struct dsa_switch *ds = chip->ds;
1680 1681 1682 1683
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1684 1685
	int i, err;

1686
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1687 1688
	if (err)
		return err;
1689

1690
	/* exclude all ports except the CPU and DSA ports */
1691
	for (i = 0; i < chip->info->num_ports; ++i)
1692 1693 1694
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1695

1696 1697
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1698 1699 1700 1701 1702 1703 1704
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1705
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1706 1707 1708 1709 1710 1711 1712 1713
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1714
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1715 1716 1717 1718 1719 1720 1721 1722 1723
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1724
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1725 1726 1727 1728 1729 1730 1731
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

1732
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1733 1734 1735
	if (err)
		return err;

1736
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1747
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1748 1749 1750 1751 1752
	}

	return err;
}

1753 1754 1755
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
1756
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1757 1758 1759 1760 1761 1762
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1763
	mutex_lock(&chip->reg_lock);
1764

1765
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1766 1767 1768 1769
	if (err)
		goto unlock;

	do {
1770
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1771 1772 1773 1774 1775 1776 1777 1778 1779
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1780
		for (i = 0; i < chip->info->num_ports; ++i) {
1781 1782 1783 1784 1785 1786 1787
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1788 1789
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1790 1791
				break; /* same bridge, check next VLAN */

1792
			netdev_warn(ds->ports[port].netdev,
1793 1794
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1795
				    netdev_name(chip->ports[i].bridge_dev));
1796 1797 1798 1799 1800 1801
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1802
	mutex_unlock(&chip->reg_lock);
1803 1804 1805 1806

	return err;
}

1807 1808 1809 1810 1811 1812 1813
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1814 1815
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1816
{
1817
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1818 1819 1820 1821
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

1822
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1823 1824
		return -EOPNOTSUPP;

1825
	mutex_lock(&chip->reg_lock);
1826

1827
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1828 1829 1830 1831 1832
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1833 1834 1835
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1836

1837
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1838 1839 1840 1841
					   ret);
		if (ret < 0)
			goto unlock;

1842
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1843 1844 1845
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1846

1847
	ret = 0;
1848
unlock:
1849
	mutex_unlock(&chip->reg_lock);
1850 1851 1852 1853

	return ret;
}

1854 1855 1856 1857
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1858
{
1859
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1860 1861
	int err;

1862
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1863 1864
		return -EOPNOTSUPP;

1865 1866 1867 1868 1869 1870 1871 1872
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1873 1874 1875 1876 1877 1878
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1879
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1880
				    u16 vid, bool untagged)
1881 1882 1883 1884
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1885
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1886
	if (err)
1887
		return err;
1888 1889 1890 1891 1892

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1893
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1894 1895
}

1896 1897 1898
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1899
{
1900
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1901 1902 1903 1904
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1905
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1906 1907
		return;

1908
	mutex_lock(&chip->reg_lock);
1909

1910
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1911
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1912 1913
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1914
				   vid, untagged ? 'u' : 't');
1915

1916
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1917
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1918
			   vlan->vid_end);
1919

1920
	mutex_unlock(&chip->reg_lock);
1921 1922
}

1923
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1924
				    int port, u16 vid)
1925
{
1926
	struct dsa_switch *ds = chip->ds;
1927 1928 1929
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1930
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1931
	if (err)
1932
		return err;
1933

1934 1935
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1936
		return -EOPNOTSUPP;
1937 1938 1939 1940

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1941
	vlan.valid = false;
1942
	for (i = 0; i < chip->info->num_ports; ++i) {
1943
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1944 1945 1946
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1947
			vlan.valid = true;
1948 1949 1950 1951
			break;
		}
	}

1952
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1953 1954 1955
	if (err)
		return err;

1956
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1957 1958
}

1959 1960
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
1961
{
1962
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1963 1964 1965
	u16 pvid, vid;
	int err = 0;

1966
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1967 1968
		return -EOPNOTSUPP;

1969
	mutex_lock(&chip->reg_lock);
1970

1971
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1972 1973 1974
	if (err)
		goto unlock;

1975
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1976
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1977 1978 1979 1980
		if (err)
			goto unlock;

		if (vid == pvid) {
1981
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
1982 1983 1984 1985 1986
			if (err)
				goto unlock;
		}
	}

1987
unlock:
1988
	mutex_unlock(&chip->reg_lock);
1989 1990 1991 1992

	return err;
}

1993
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
1994
				    const unsigned char *addr)
1995 1996 1997 1998
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1999
		ret = _mv88e6xxx_reg_write(
2000
			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2001
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2002 2003 2004 2005 2006 2007 2008
		if (ret < 0)
			return ret;
	}

	return 0;
}

2009
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2010
				   unsigned char *addr)
2011 2012 2013 2014
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2015
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2016
					  GLOBAL_ATU_MAC_01 + i);
2017 2018 2019 2020 2021 2022 2023 2024 2025
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2026
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2027
			       struct mv88e6xxx_atu_entry *entry)
2028
{
2029 2030
	int ret;

2031
	ret = _mv88e6xxx_atu_wait(chip);
2032 2033 2034
	if (ret < 0)
		return ret;

2035
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2036 2037 2038
	if (ret < 0)
		return ret;

2039
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2040
	if (ret < 0)
2041 2042
		return ret;

2043
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2044
}
2045

2046
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2047 2048 2049 2050
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2051 2052 2053
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2054 2055
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2056
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2057
	else
2058
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2059 2060
	if (err)
		return err;
2061

2062
	entry.fid = vlan.fid;
2063 2064 2065 2066 2067 2068 2069
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

2070
	return _mv88e6xxx_atu_load(chip, &entry);
2071 2072
}

2073 2074 2075
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2076 2077 2078 2079 2080 2081 2082
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2083 2084 2085
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2086
{
2087
	int state = is_multicast_ether_addr(fdb->addr) ?
2088 2089
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2090
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2091

2092 2093
	mutex_lock(&chip->reg_lock);
	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2094 2095
		netdev_err(ds->ports[port].netdev,
			   "failed to load MAC address\n");
2096
	mutex_unlock(&chip->reg_lock);
2097 2098
}

2099 2100
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2101
{
2102
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2103 2104
	int ret;

2105 2106
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2107
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2108
	mutex_unlock(&chip->reg_lock);
2109 2110 2111 2112

	return ret;
}

2113
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2114
				  struct mv88e6xxx_atu_entry *entry)
2115
{
2116 2117 2118 2119
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2120

2121
	ret = _mv88e6xxx_atu_wait(chip);
2122 2123
	if (ret < 0)
		return ret;
2124

2125
	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2126 2127
	if (ret < 0)
		return ret;
2128

2129
	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2130 2131
	if (ret < 0)
		return ret;
2132

2133
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2134 2135
	if (ret < 0)
		return ret;
2136

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2153

2154
	*entry = next;
2155 2156 2157
	return 0;
}

2158
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2159
					u16 fid, u16 vid, int port,
2160 2161 2162 2163 2164 2165 2166 2167
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2168
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2169 2170 2171 2172
	if (err)
		return err;

	do {
2173
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2199 2200 2201
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
2202
{
2203
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2204 2205 2206
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2207
	u16 fid;
2208 2209
	int err;

2210
	mutex_lock(&chip->reg_lock);
2211

2212
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2213
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2214 2215 2216
	if (err)
		goto unlock;

2217
	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2218 2219 2220
	if (err)
		goto unlock;

2221
	/* Dump VLANs' Filtering Information Databases */
2222
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2223 2224 2225 2226
	if (err)
		goto unlock;

	do {
2227
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2228
		if (err)
2229
			break;
2230 2231 2232 2233

		if (!vlan.valid)
			break;

2234 2235
		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
						   port, fdb, cb);
2236
		if (err)
2237
			break;
2238 2239 2240
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
2241
	mutex_unlock(&chip->reg_lock);
2242 2243 2244 2245

	return err;
}

2246 2247
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2248
{
2249
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2250
	int i, err = 0;
2251

2252
	mutex_lock(&chip->reg_lock);
2253

2254
	/* Assign the bridge and remap each port's VLANTable */
2255
	chip->ports[port].bridge_dev = bridge;
2256

2257 2258 2259
	for (i = 0; i < chip->info->num_ports; ++i) {
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2260 2261 2262 2263 2264
			if (err)
				break;
		}
	}

2265
	mutex_unlock(&chip->reg_lock);
2266

2267
	return err;
2268 2269
}

2270
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2271
{
2272 2273
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	struct net_device *bridge = chip->ports[port].bridge_dev;
2274
	int i;
2275

2276
	mutex_lock(&chip->reg_lock);
2277

2278
	/* Unassign the bridge and remap each port's VLANTable */
2279
	chip->ports[port].bridge_dev = NULL;
2280

2281 2282 2283
	for (i = 0; i < chip->info->num_ports; ++i)
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2284 2285
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2286

2287
	mutex_unlock(&chip->reg_lock);
2288 2289
}

2290
static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
2291
				      int port, int page, int reg, int val)
2292 2293 2294
{
	int ret;

2295
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2296 2297 2298
	if (ret < 0)
		goto restore_page_0;

2299
	ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
2300
restore_page_0:
2301
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2302 2303 2304 2305

	return ret;
}

2306
static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
2307
				     int port, int page, int reg)
2308 2309 2310
{
	int ret;

2311
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2312 2313 2314
	if (ret < 0)
		goto restore_page_0;

2315
	ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
2316
restore_page_0:
2317
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2318 2319 2320 2321

	return ret;
}

2322
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2323
{
2324
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2325
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2326
	struct gpio_desc *gpiod = chip->reset;
2327 2328 2329 2330 2331
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
2332 2333
	for (i = 0; i < chip->info->num_ports; i++) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2334 2335 2336
		if (ret < 0)
			return ret;

2337
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
					   ret & 0xfffc);
		if (ret)
			return ret;
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2359
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2360
	else
2361
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2362 2363 2364 2365 2366 2367
	if (ret)
		return ret;

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2368
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		if (ret < 0)
			return ret;

		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		ret = -ETIMEDOUT;
	else
		ret = 0;

	return ret;
}

2384
static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
2385 2386 2387
{
	int ret;

2388
	ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
2389
					PAGE_FIBER_SERDES, MII_BMCR);
2390 2391 2392 2393 2394
	if (ret < 0)
		return ret;

	if (ret & BMCR_PDOWN) {
		ret &= ~BMCR_PDOWN;
2395
		ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
2396 2397
						 PAGE_FIBER_SERDES, MII_BMCR,
						 ret);
2398 2399 2400 2401 2402
	}

	return ret;
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
			       int reg, u16 *val)
{
	int addr = chip->info->port_base_addr + port;

	if (port >= chip->info->num_ports)
		return -EINVAL;

	return mv88e6xxx_read(chip, addr, reg, val);
}

2414
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2415
{
2416
	struct dsa_switch *ds = chip->ds;
2417
	int ret;
2418
	u16 reg;
2419

2420 2421 2422 2423
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2424 2425 2426 2427 2428 2429
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2430
		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2431
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2432
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2433 2434 2435 2436
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2437
			if (mv88e6xxx_6065_family(chip))
2438 2439 2440 2441 2442 2443 2444
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2445
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2446 2447
					   PORT_PCS_CTRL, reg);
		if (ret)
2448
			return ret;
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2466 2467 2468 2469
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2470 2471 2472 2473
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2474
		if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2475
			reg |= PORT_CONTROL_DSA_TAG;
2476 2477 2478 2479 2480
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2481 2482
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
				PORT_CONTROL_FORWARD_UNKNOWN |
2483
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2484 2485
		}

2486 2487 2488 2489 2490 2491 2492 2493
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6065_family(chip) ||
		    mv88e6xxx_6185_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2494
			reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2495 2496
		}
	}
2497
	if (dsa_is_dsa_port(ds, port)) {
2498 2499
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2500
			reg |= PORT_CONTROL_DSA_TAG;
2501 2502 2503 2504 2505
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2506
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2507 2508
		}

2509 2510 2511 2512 2513
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2514
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2515 2516
					   PORT_CONTROL, reg);
		if (ret)
2517
			return ret;
2518 2519
	}

2520 2521 2522
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2523 2524
	if (mv88e6xxx_6352_family(chip)) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2525
		if (ret < 0)
2526
			return ret;
2527 2528 2529 2530
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
2531
			ret = mv88e6xxx_power_on_serdes(chip);
2532
			if (ret < 0)
2533
				return ret;
2534 2535 2536
		}
	}

2537
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2538
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2539 2540 2541
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2542 2543
	 */
	reg = 0;
2544 2545 2546 2547
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2548 2549
		reg = PORT_CONTROL_2_MAP_DA;

2550 2551
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2552 2553
		reg |= PORT_CONTROL_2_JUMBO_10240;

2554
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2555 2556 2557 2558 2559 2560 2561 2562 2563
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2564
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2565

2566
	if (reg) {
2567
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2568 2569
					   PORT_CONTROL_2, reg);
		if (ret)
2570
			return ret;
2571 2572 2573 2574 2575 2576 2577
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2578
	reg = 1 << port;
2579 2580
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2581
		reg = 0;
2582

2583 2584
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
				   reg);
2585
	if (ret)
2586
		return ret;
2587 2588

	/* Egress rate control 2: disable egress rate control. */
2589
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2590 2591
				   0x0000);
	if (ret)
2592
		return ret;
2593

2594 2595 2596
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2597 2598 2599 2600
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2601
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2602 2603
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
2604
			return ret;
2605 2606 2607 2608 2609

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2610
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2611 2612 2613 2614
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2615
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2616 2617
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
2618
			return ret;
2619 2620 2621 2622

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2623
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2624 2625
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
2626
			return ret;
2627 2628 2629
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2630
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2631 2632
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
2633
			return ret;
2634 2635 2636 2637

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2638
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2639 2640
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
2641
			return ret;
2642 2643
	}

2644 2645 2646 2647
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2648
		/* Rate Control: disable ingress rate limiting. */
2649
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2650 2651
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
2652
			return ret;
2653 2654
	}

2655 2656
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2657
	 */
2658 2659
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
				   0x0000);
2660
	if (ret)
2661
		return ret;
2662

2663
	/* Port based VLAN map: give each port the same default address
2664 2665
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2666
	 */
2667
	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2668
	if (ret)
2669
		return ret;
2670

2671
	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2672
	if (ret)
2673
		return ret;
2674 2675 2676 2677

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2678
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2679
				   0x0000);
2680 2681
	if (ret)
		return ret;
2682 2683 2684 2685

	return 0;
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
			      (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
			      (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
			       (addr[4] << 8) | addr[5]);
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2744
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2745
{
2746
	struct dsa_switch *ds = chip->ds;
2747
	u32 upstream_port = dsa_upstream_port(ds);
2748
	u16 reg;
2749
	int err;
2750

2751 2752 2753 2754
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
2755 2756
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2757 2758
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2759
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2760 2761 2762
	if (err)
		return err;

2763 2764 2765 2766 2767 2768
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2769 2770
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
				   reg);
2771 2772 2773
	if (err)
		return err;

2774
	/* Disable remote management, and set the switch's DSA device number. */
2775
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2776 2777 2778 2779 2780
				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				   (ds->index & 0x1f));
	if (err)
		return err;

2781 2782 2783 2784 2785
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2786 2787 2788 2789
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2790 2791
	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2792
	if (err)
2793
		return err;
2794

2795 2796
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2797 2798 2799 2800 2801 2802 2803
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2804
	/* Configure the IP ToS mapping registers. */
2805
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2806
	if (err)
2807
		return err;
2808
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2809
	if (err)
2810
		return err;
2811
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2812
	if (err)
2813
		return err;
2814
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2815
	if (err)
2816
		return err;
2817
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2818
	if (err)
2819
		return err;
2820
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2821
	if (err)
2822
		return err;
2823
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2824
	if (err)
2825
		return err;
2826
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2827
	if (err)
2828
		return err;
2829 2830

	/* Configure the IEEE 802.1p priority mapping register. */
2831
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2832
	if (err)
2833
		return err;
2834

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	/* Clear the statistics counters for all ports */
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
					     int target, int port)
{
	u16 val = (target << 8) | (port & 0xf);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
}

static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
{
	int target, port;
	int err;

	/* Initialize the routing port to the 32 possible target devices */
	for (target = 0; target < 32; ++target) {
		port = 0xf;

		if (target < DSA_MAX_SWITCHES) {
			port = chip->ds->rtable[target];
			if (port == DSA_RTABLE_NONE)
				port = 0xf;
		}

		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
		if (err)
			break;
	}

	return err;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
					 bool hask, u16 mask)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (num << 12) | (mask & port_mask);

	if (hask)
		val |= GLOBAL2_TRUNK_MASK_HASK;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
}

static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
					    u16 map)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (id << 11) | (map & port_mask);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
}

static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	int i, err;

	/* Clear all eight possible Trunk Mask vectors */
	for (i = 0; i < 8; ++i) {
		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
		if (err)
			return err;
	}

	/* Clear all sixteen possible Trunk ID routing vectors */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
		if (err)
			return err;
	}

	return 0;
}

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
{
	int port, err;

	/* Init all Ingress Rate Limit resources of all ports */
	for (port = 0; port < chip->info->num_ports; ++port) {
		/* XXX newer chips (like 88E6390) have different 2-bit ops */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
				      (port << 8));
		if (err)
			break;

		/* Wait for the operation to complete */
2937 2938
		err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				     GLOBAL2_IRL_CMD_BUSY);
2939 2940 2941 2942 2943 2944 2945
		if (err)
			break;
	}

	return err;
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/* Indirect write to the Switch MAC/WoL/WoF register */
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
					 unsigned int pointer, u8 data)
{
	u16 val = (pointer << 8) | data;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
}

static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int i, err;

	for (i = 0; i < 6; i++) {
		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
		if (err)
			break;
	}

	return err;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
				  u8 data)
{
	u16 val = (pointer << 8) | (data & 0x7);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
}

static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
{
	int i, err;

	/* Clear all sixteen possible Priority Override entries */
	for (i = 0; i < 16; i++) {
		err = mv88e6xxx_g2_pot_write(chip, i, 0);
		if (err)
			break;
	}

	return err;
}

2990 2991
static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
{
2992 2993 2994
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
			      GLOBAL2_EEPROM_CMD_BUSY |
			      GLOBAL2_EEPROM_CMD_RUNNING);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
}

static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_wait(chip);
}

static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
				      u8 addr, u16 *data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
}

static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
				       u8 addr, u16 data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
{
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
			      GLOBAL2_SMI_PHY_CMD_BUSY);
}

static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_wait(chip);
}

static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
}

static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
}

3093 3094
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
{
3095
	u16 reg;
3096 3097
	int err;

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:2x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
				      0xffff);
		if (err)
			return err;
	}

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:0x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
				      0xffff);
		if (err)
			return err;
	}
3117 3118 3119 3120 3121 3122

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
3123 3124 3125 3126 3127
	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3128
	if (err)
3129
		return err;
3130 3131

	/* Program the DSA routing table. */
3132 3133 3134
	err = mv88e6xxx_g2_set_device_mapping(chip);
	if (err)
		return err;
3135

3136 3137 3138 3139
	/* Clear all trunk masks and mapping. */
	err = mv88e6xxx_g2_clear_trunk(chip);
	if (err)
		return err;
3140

3141 3142 3143 3144 3145 3146 3147 3148 3149
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
		/* Disable ingress rate limiting by resetting all per port
		 * ingress rate limit resources to their initial state.
		 */
		err = mv88e6xxx_g2_clear_irl(chip);
			if (err)
				return err;
	}

3150 3151 3152 3153
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
		/* Initialize Cross-chip Port VLAN Table to reset defaults */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3154
		if (err)
3155
			return err;
3156
	}
3157

3158
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3159
		/* Clear the priority override table. */
3160 3161 3162
		err = mv88e6xxx_g2_clear_pot(chip);
		if (err)
			return err;
3163 3164
	}

3165
	return 0;
3166 3167
}

3168
static int mv88e6xxx_setup(struct dsa_switch *ds)
3169
{
3170
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3171
	int err;
3172 3173
	int i;

3174 3175
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
3176

3177
	mutex_lock(&chip->reg_lock);
3178

3179
	err = mv88e6xxx_switch_reset(chip);
3180 3181 3182
	if (err)
		goto unlock;

3183 3184 3185 3186 3187 3188 3189 3190 3191
	/* Setup Switch Port Registers */
	for (i = 0; i < chip->info->num_ports; i++) {
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
3192 3193 3194
	if (err)
		goto unlock;

3195 3196 3197
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3198 3199 3200
		if (err)
			goto unlock;
	}
3201

3202
unlock:
3203
	mutex_unlock(&chip->reg_lock);
3204

3205
	return err;
3206 3207
}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

3226 3227
static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
3228
{
3229
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3230 3231
	int ret;

3232 3233 3234
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
	mutex_unlock(&chip->reg_lock);
3235

3236 3237 3238
	return ret;
}

3239 3240
static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
3241
{
3242
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3243 3244
	int ret;

3245 3246 3247
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
	mutex_unlock(&chip->reg_lock);
3248

3249 3250 3251
	return ret;
}

3252
static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port)
3253
{
3254
	if (port >= 0 && port < chip->info->num_ports)
3255 3256 3257 3258
		return port;
	return -EINVAL;
}

3259
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum)
3260
{
3261 3262
	struct mv88e6xxx_chip *chip = bus->priv;
	int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3263 3264 3265
	int ret;

	if (addr < 0)
3266
		return 0xffff;
3267

3268
	mutex_lock(&chip->reg_lock);
3269

3270 3271
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
		ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum);
3272
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY))
3273
		ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum);
3274
	else
3275
		ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum);
3276

3277
	mutex_unlock(&chip->reg_lock);
3278 3279 3280
	return ret;
}

3281
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum,
3282
				u16 val)
3283
{
3284 3285
	struct mv88e6xxx_chip *chip = bus->priv;
	int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3286 3287 3288
	int ret;

	if (addr < 0)
3289
		return 0xffff;
3290

3291
	mutex_lock(&chip->reg_lock);
3292

3293 3294
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
		ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val);
3295
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY))
3296
		ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val);
3297
	else
3298
		ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val);
3299

3300
	mutex_unlock(&chip->reg_lock);
3301 3302 3303
	return ret;
}

3304
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3305 3306 3307 3308 3309 3310
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

3311 3312
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
		mv88e6xxx_ppu_state_init(chip);
3313 3314

	if (np)
3315
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3316

3317
	bus = devm_mdiobus_alloc(chip->dev);
3318 3319 3320
	if (!bus)
		return -ENOMEM;

3321
	bus->priv = (void *)chip;
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3332
	bus->parent = chip->dev;
3333

3334 3335
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3336 3337 3338
	else
		err = mdiobus_register(bus);
	if (err) {
3339
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3340 3341
		goto out;
	}
3342
	chip->mdio_bus = bus;
3343 3344 3345 3346

	return 0;

out:
3347 3348
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3349 3350 3351 3352

	return err;
}

3353
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3354 3355

{
3356
	struct mii_bus *bus = chip->mdio_bus;
3357 3358 3359

	mdiobus_unregister(bus);

3360 3361
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3362 3363
}

3364 3365 3366 3367
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
3368
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3369 3370 3371 3372 3373
	int ret;
	int val;

	*temp = 0;

3374
	mutex_lock(&chip->reg_lock);
3375

3376
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
3377 3378 3379 3380
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3381
	ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3382 3383 3384
	if (ret < 0)
		goto error;

3385
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
3386 3387 3388 3389 3390 3391
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3392
	val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3393 3394 3395 3396 3397 3398
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
3399
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
3400 3401 3402 3403 3404 3405
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3406 3407
	mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
	mutex_unlock(&chip->reg_lock);
3408 3409 3410 3411 3412
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
3413 3414
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3415 3416 3417 3418
	int ret;

	*temp = 0;

3419
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
3420 3421 3422 3423 3424 3425 3426 3427
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

3428
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3429
{
3430
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3431

3432
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3433 3434
		return -EOPNOTSUPP;

3435
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3436 3437 3438 3439 3440
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3441
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3442
{
3443 3444
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3445 3446
	int ret;

3447
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3448 3449 3450 3451
		return -EOPNOTSUPP;

	*temp = 0;

3452
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3453 3454 3455 3456 3457 3458 3459 3460
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

3461
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3462
{
3463 3464
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3465 3466
	int ret;

3467
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3468 3469
		return -EOPNOTSUPP;

3470
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3471 3472 3473
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3474 3475
	return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
					 (ret & 0xe0ff) | (temp << 8));
3476 3477
}

3478
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3479
{
3480 3481
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3482 3483
	int ret;

3484
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3485 3486 3487 3488
		return -EOPNOTSUPP;

	*alarm = false;

3489
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3490 3491 3492 3493 3494 3495 3496 3497 3498
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = (val >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;
		*data++ = (val >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	/* Ensure the RO WriteEn bit is set */
	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
	if (err)
		return err;

	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
		return -EROFS;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (*data++ << 8) | (val & 0xff);

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		val = *data++;
		val |= *data++ << 8;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (val & 0xff00) | *data++;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	return err;
}

3666 3667 3668 3669 3670 3671 3672
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3673
		.port_base_addr = 0x10,
3674
		.age_time_coeff = 15000,
3675 3676 3677 3678 3679 3680 3681 3682 3683
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3684
		.port_base_addr = 0x10,
3685
		.age_time_coeff = 15000,
3686 3687 3688 3689 3690 3691 3692 3693 3694
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3695
		.port_base_addr = 0x10,
3696
		.age_time_coeff = 15000,
3697 3698 3699 3700 3701 3702 3703 3704 3705
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3706
		.port_base_addr = 0x10,
3707
		.age_time_coeff = 15000,
3708 3709 3710 3711 3712 3713 3714 3715 3716
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3717
		.port_base_addr = 0x10,
3718
		.age_time_coeff = 15000,
3719 3720 3721 3722 3723 3724 3725 3726 3727
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3728
		.port_base_addr = 0x10,
3729
		.age_time_coeff = 15000,
3730 3731 3732 3733 3734 3735 3736 3737 3738
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3739
		.port_base_addr = 0x10,
3740
		.age_time_coeff = 15000,
3741 3742 3743 3744 3745 3746 3747 3748 3749
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3750
		.port_base_addr = 0x10,
3751
		.age_time_coeff = 15000,
3752 3753 3754 3755 3756 3757 3758 3759 3760
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3761
		.port_base_addr = 0x10,
3762
		.age_time_coeff = 15000,
3763 3764 3765 3766 3767 3768 3769 3770 3771
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3772
		.port_base_addr = 0x10,
3773
		.age_time_coeff = 15000,
3774 3775 3776 3777 3778 3779 3780 3781 3782
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3783
		.port_base_addr = 0x10,
3784
		.age_time_coeff = 15000,
3785 3786 3787 3788 3789 3790 3791 3792 3793
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3794
		.port_base_addr = 0x10,
3795
		.age_time_coeff = 15000,
3796 3797 3798 3799 3800 3801 3802 3803 3804
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3805
		.port_base_addr = 0x10,
3806
		.age_time_coeff = 15000,
3807 3808 3809 3810 3811 3812 3813 3814 3815
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3816
		.port_base_addr = 0x10,
3817
		.age_time_coeff = 15000,
3818 3819 3820 3821 3822 3823 3824 3825 3826
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3827
		.port_base_addr = 0x10,
3828
		.age_time_coeff = 15000,
3829 3830 3831 3832 3833 3834 3835 3836 3837
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3838
		.port_base_addr = 0x10,
3839
		.age_time_coeff = 15000,
3840 3841 3842 3843 3844 3845 3846 3847 3848
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3849
		.port_base_addr = 0x10,
3850
		.age_time_coeff = 15000,
3851 3852 3853 3854
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},
};

3855
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3856
{
3857
	int i;
3858

3859 3860 3861
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3862 3863 3864 3865

	return NULL;
}

3866
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3867 3868
{
	const struct mv88e6xxx_info *info;
3869 3870 3871
	unsigned int prod_num, rev;
	u16 id;
	int err;
3872

3873 3874 3875 3876 3877
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3878 3879 3880 3881 3882 3883 3884 3885

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3886
	/* Update the compatible info with the probed one */
3887
	chip->info = info;
3888

3889 3890
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3891 3892 3893 3894

	return 0;
}

3895
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3896
{
3897
	struct mv88e6xxx_chip *chip;
3898

3899 3900
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3901 3902
		return NULL;

3903
	chip->dev = dev;
3904

3905
	mutex_init(&chip->reg_lock);
3906

3907
	return chip;
3908 3909
}

3910
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3911 3912 3913 3914 3915 3916
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3917
	if (sw_addr == 0)
3918
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3919
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3920
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3921 3922 3923
	else
		return -EINVAL;

3924 3925
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3926 3927 3928 3929

	return 0;
}

3930 3931 3932
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3933
{
3934
	struct mv88e6xxx_chip *chip;
3935
	struct mii_bus *bus;
3936
	int err;
3937

3938
	bus = dsa_host_dev_to_mii_bus(host_dev);
3939 3940 3941
	if (!bus)
		return NULL;

3942 3943
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3944 3945
		return NULL;

3946
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3947
	chip->info = &mv88e6xxx_table[MV88E6085];
3948

3949
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3950 3951 3952
	if (err)
		goto free;

3953
	err = mv88e6xxx_detect(chip);
3954
	if (err)
3955
		goto free;
3956

3957
	err = mv88e6xxx_mdio_register(chip, NULL);
3958
	if (err)
3959
		goto free;
3960

3961
	*priv = chip;
3962

3963
	return chip->info->name;
3964
free:
3965
	devm_kfree(dsa_dev, chip);
3966 3967

	return NULL;
3968 3969
}

3970
static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3971
	.tag_protocol		= DSA_TAG_PROTO_EDSA,
3972
	.probe			= mv88e6xxx_drv_probe,
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3987
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3988 3989 3990 3991
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3992
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
};

4007
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4008 4009
				     struct device_node *np)
{
4010
	struct device *dev = chip->dev;
4011 4012 4013 4014 4015 4016 4017
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4018
	ds->priv = chip;
4019 4020 4021 4022 4023 4024 4025
	ds->drv = &mv88e6xxx_switch_driver;

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4026
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4027
{
4028
	dsa_unregister_switch(chip->ds);
4029 4030
}

4031
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4032
{
4033
	struct device *dev = &mdiodev->dev;
4034
	struct device_node *np = dev->of_node;
4035
	const struct mv88e6xxx_info *compat_info;
4036
	struct mv88e6xxx_chip *chip;
4037
	u32 eeprom_len;
4038
	int err;
4039

4040 4041 4042 4043
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4044 4045
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4046 4047
		return -ENOMEM;

4048
	chip->info = compat_info;
4049

4050
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4051 4052
	if (err)
		return err;
4053

4054
	err = mv88e6xxx_detect(chip);
4055 4056
	if (err)
		return err;
4057

4058 4059 4060
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
4061

4062
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4063
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4064
		chip->eeprom_len = eeprom_len;
4065

4066
	err = mv88e6xxx_mdio_register(chip, np);
4067 4068 4069
	if (err)
		return err;

4070
	err = mv88e6xxx_register_switch(chip, np);
4071
	if (err) {
4072
		mv88e6xxx_mdio_unregister(chip);
4073 4074 4075
		return err;
	}

4076 4077
	return 0;
}
4078 4079 4080 4081

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4082
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4083

4084 4085
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4086 4087 4088
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4089 4090 4091 4092
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
	register_switch_driver(&mv88e6xxx_switch_driver);
	return mdio_driver_register(&mv88e6xxx_driver);
}
4112 4113 4114 4115
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4116
	mdio_driver_unregister(&mv88e6xxx_driver);
4117
	unregister_switch_driver(&mv88e6xxx_switch_driver);
4118 4119
}
module_exit(mv88e6xxx_cleanup);
4120 4121 4122 4123

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");