chip.c 96.7 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32 33
#include "mv88e6xxx.h"

34
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35
{
36 37
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
38 39 40 41
		dump_stack();
	}
}

42 43 44 45 46 47 48 49 50 51
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
52
 */
53

54
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 56
			      int addr, int reg, u16 *val)
{
57
	if (!chip->smi_ops)
58 59
		return -EOPNOTSUPP;

60
	return chip->smi_ops->read(chip, addr, reg, val);
61 62
}

63
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 65
			       int addr, int reg, u16 val)
{
66
	if (!chip->smi_ops)
67 68
		return -EOPNOTSUPP;

69
	return chip->smi_ops->write(chip, addr, reg, val);
70 71
}

72
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 74 75 76
					  int addr, int reg, u16 *val)
{
	int ret;

77
	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 79 80 81 82 83 84 85
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

86
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 88 89 90
					   int addr, int reg, u16 val)
{
	int ret;

91
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 93 94 95 96 97 98 99 100 101 102
	if (ret < 0)
		return ret;

	return 0;
}

static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

103
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 105 106 107 108
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
109
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 111 112
		if (ret < 0)
			return ret;

113
		if ((ret & SMI_CMD_BUSY) == 0)
114 115 116 117 118 119
			return 0;
	}

	return -ETIMEDOUT;
}

120
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121
					 int addr, int reg, u16 *val)
122 123 124
{
	int ret;

125
	/* Wait for the bus to become free. */
126
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 128 129
	if (ret < 0)
		return ret;

130
	/* Transmit the read command. */
131
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 134 135
	if (ret < 0)
		return ret;

136
	/* Wait for the read command to complete. */
137
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 139 140
	if (ret < 0)
		return ret;

141
	/* Read the data. */
142
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 144 145
	if (ret < 0)
		return ret;

146
	*val = ret & 0xffff;
147

148
	return 0;
149 150
}

151
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152
					  int addr, int reg, u16 val)
153 154 155
{
	int ret;

156
	/* Wait for the bus to become free. */
157
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Transmit the data to write. */
162
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Transmit the write command. */
167
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 170 171
	if (ret < 0)
		return ret;

172
	/* Wait for the write command to complete. */
173
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 175 176 177 178 179
	if (ret < 0)
		return ret;

	return 0;
}

180 181 182 183 184
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

185
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 187 188 189
			  int addr, int reg, u16 *val)
{
	int err;

190
	assert_reg_lock(chip);
191

192
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 194 195
	if (err)
		return err;

196
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 198 199 200 201
		addr, reg, *val);

	return 0;
}

202
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203
			   int addr, int reg, u16 val)
204
{
205 206
	int err;

207
	assert_reg_lock(chip);
208

209
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 211 212
	if (err)
		return err;

213
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 215
		addr, reg, val);

216 217 218
	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/* Indirect write to single pointer-data register with an Update bit */
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
			    u16 update)
{
	u16 val;
	int i, err;

	/* Wait until the previous operation is completed */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & BIT(15)))
			break;
	}

	if (i == 16)
		return -ETIMEDOUT;

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

245
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
246 247 248 249
{
	u16 val;
	int err;

250
	err = mv88e6xxx_read(chip, addr, reg, &val);
251 252 253 254 255 256
	if (err)
		return err;

	return val;
}

257
static int mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
258 259 260
{
	int ret;

261 262 263
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_reg_read(chip, addr, reg);
	mutex_unlock(&chip->reg_lock);
264 265 266 267

	return ret;
}

268
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
269 270
				int reg, u16 val)
{
271
	return mv88e6xxx_write(chip, addr, reg, val);
272 273
}

274
static int mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
275
			       int reg, u16 val)
276 277 278
{
	int ret;

279 280 281
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_reg_write(chip, addr, reg, val);
	mutex_unlock(&chip->reg_lock);
282 283 284 285

	return ret;
}

286
static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
287
				      int addr, int regnum)
288 289
{
	if (addr >= 0)
290
		return _mv88e6xxx_reg_read(chip, addr, regnum);
291 292 293
	return 0xffff;
}

294
static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
295
				       int addr, int regnum, u16 val)
296 297
{
	if (addr >= 0)
298
		return _mv88e6xxx_reg_write(chip, addr, regnum, val);
299 300 301
	return 0;
}

302
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
303 304
{
	int ret;
305
	unsigned long timeout;
306

307
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
308 309 310
	if (ret < 0)
		return ret;

311
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
312
				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
313 314
	if (ret)
		return ret;
315

316 317
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
318
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
319 320 321
		if (ret < 0)
			return ret;

322
		usleep_range(1000, 2000);
323 324
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
325
			return 0;
326 327 328 329 330
	}

	return -ETIMEDOUT;
}

331
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
332
{
333
	int ret, err;
334
	unsigned long timeout;
335

336
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
337 338 339
	if (ret < 0)
		return ret;

340
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
341
				   ret | GLOBAL_CONTROL_PPU_ENABLE);
342 343
	if (err)
		return err;
344

345 346
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
347
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
348 349 350
		if (ret < 0)
			return ret;

351
		usleep_range(1000, 2000);
352 353
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
354
			return 0;
355 356 357 358 359 360 361
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
362
	struct mv88e6xxx_chip *chip;
363

364
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
365

366
	mutex_lock(&chip->reg_lock);
367

368 369 370 371
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
372
	}
373

374
	mutex_unlock(&chip->reg_lock);
375 376 377 378
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
379
	struct mv88e6xxx_chip *chip = (void *)_ps;
380

381
	schedule_work(&chip->ppu_work);
382 383
}

384
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
385 386 387
{
	int ret;

388
	mutex_lock(&chip->ppu_mutex);
389

390
	/* If the PHY polling unit is enabled, disable it so that
391 392 393 394
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
395 396
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
397
		if (ret < 0) {
398
			mutex_unlock(&chip->ppu_mutex);
399 400
			return ret;
		}
401
		chip->ppu_disabled = 1;
402
	} else {
403
		del_timer(&chip->ppu_timer);
404
		ret = 0;
405 406 407 408 409
	}

	return ret;
}

410
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
411
{
412
	/* Schedule a timer to re-enable the PHY polling unit. */
413 414
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
415 416
}

417
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
418
{
419 420 421 422 423
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
424 425
}

426
static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr,
427
				   int regnum)
428 429 430
{
	int ret;

431
	ret = mv88e6xxx_ppu_access_get(chip);
432
	if (ret >= 0) {
433 434
		ret = _mv88e6xxx_reg_read(chip, addr, regnum);
		mv88e6xxx_ppu_access_put(chip);
435 436 437 438 439
	}

	return ret;
}

440
static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr,
441
				    int regnum, u16 val)
442 443 444
{
	int ret;

445
	ret = mv88e6xxx_ppu_access_get(chip);
446
	if (ret >= 0) {
447 448
		ret = _mv88e6xxx_reg_write(chip, addr, regnum, val);
		mv88e6xxx_ppu_access_put(chip);
449 450 451 452 453
	}

	return ret;
}

454
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
455
{
456
	return chip->info->family == MV88E6XXX_FAMILY_6065;
457 458
}

459
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
460
{
461
	return chip->info->family == MV88E6XXX_FAMILY_6095;
462 463
}

464
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
465
{
466
	return chip->info->family == MV88E6XXX_FAMILY_6097;
467 468
}

469
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
470
{
471
	return chip->info->family == MV88E6XXX_FAMILY_6165;
472 473
}

474
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
475
{
476
	return chip->info->family == MV88E6XXX_FAMILY_6185;
477 478
}

479
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
480
{
481
	return chip->info->family == MV88E6XXX_FAMILY_6320;
482 483
}

484
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
485
{
486
	return chip->info->family == MV88E6XXX_FAMILY_6351;
487 488
}

489
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
490
{
491
	return chip->info->family == MV88E6XXX_FAMILY_6352;
492 493
}

494
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
495
{
496
	return chip->info->num_databases;
497 498
}

499
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
500 501
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
502 503
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
504 505 506 507 508
		return true;

	return false;
}

509 510 511 512
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
513 514
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
515
{
516
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
517 518
	u32 reg;
	int ret;
519 520 521 522

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

523
	mutex_lock(&chip->reg_lock);
524

525
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
526 527 528 529 530 531 532 533 534 535 536
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
537
		reg |= PORT_PCS_CTRL_LINK_UP;
538

539
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

561 562
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
	    (port >= chip->info->num_ports - 2)) {
563 564 565 566 567 568 569 570
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
571
	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
572 573

out:
574
	mutex_unlock(&chip->reg_lock);
575 576
}

577
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
578 579 580 581 582
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
583
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
584
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
585 586 587 588 589 590
			return 0;
	}

	return -ETIMEDOUT;
}

591
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
592 593 594
{
	int ret;

595
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
596 597
		port = (port + 1) << 5;

598
	/* Snapshot the hardware statistics counters for this port. */
599
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
600 601 602 603
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
604

605
	/* Wait for the snapshotting to complete. */
606
	ret = _mv88e6xxx_stats_wait(chip);
607 608 609 610 611 612
	if (ret < 0)
		return ret;

	return 0;
}

613
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
614
				  int stat, u32 *val)
615 616 617 618 619 620
{
	u32 _val;
	int ret;

	*val = 0;

621
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
622 623
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
624 625 626
	if (ret < 0)
		return;

627
	ret = _mv88e6xxx_stats_wait(chip);
628 629 630
	if (ret < 0)
		return;

631
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
632 633 634 635 636
	if (ret < 0)
		return;

	_val = ret << 16;

637
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
638 639 640 641 642 643
	if (ret < 0)
		return;

	*val = _val | ret;
}

644
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
704 705
};

706
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
707
			       struct mv88e6xxx_hw_stat *stat)
708
{
709 710
	switch (stat->type) {
	case BANK0:
711
		return true;
712
	case BANK1:
713
		return mv88e6xxx_6320_family(chip);
714
	case PORT:
715 716 717 718 719 720
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
721
	}
722
	return false;
723 724
}

725
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
726
					    struct mv88e6xxx_hw_stat *s,
727 728 729 730 731 732 733
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

734 735
	switch (s->type) {
	case PORT:
736
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
737 738 739 740 741
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
742
			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
743
						  s->reg + 1);
744 745 746 747
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
748 749 750
		break;
	case BANK0:
	case BANK1:
751
		_mv88e6xxx_stats_read(chip, s->reg, &low);
752
		if (s->sizeof_stat == 8)
753
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
754 755 756 757 758
	}
	value = (((u64)high) << 16) | low;
	return value;
}

759 760
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
761
{
762
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
763 764
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
765

766 767
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
768
		if (mv88e6xxx_has_stat(chip, stat)) {
769 770 771 772
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
773
	}
774 775
}

776
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
777
{
778
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
779 780 781 782 783
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
784
		if (mv88e6xxx_has_stat(chip, stat))
785 786 787
			j++;
	}
	return j;
788 789
}

790 791
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
792
{
793
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
794 795 796 797
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

798
	mutex_lock(&chip->reg_lock);
799

800
	ret = _mv88e6xxx_stats_snapshot(chip, port);
801
	if (ret < 0) {
802
		mutex_unlock(&chip->reg_lock);
803 804 805 806
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
807 808
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
809 810 811 812
			j++;
		}
	}

813
	mutex_unlock(&chip->reg_lock);
814 815
}

816
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
817 818 819 820
{
	return 32 * sizeof(u16);
}

821 822
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
823
{
824
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
825 826 827 828 829 830 831
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

832
	mutex_lock(&chip->reg_lock);
833

834 835 836
	for (i = 0; i < 32; i++) {
		int ret;

837
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
838 839 840
		if (ret >= 0)
			p[i] = ret;
	}
841

842
	mutex_unlock(&chip->reg_lock);
843 844
}

845
static int _mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int reg, int offset,
846
			   u16 mask)
847 848 849 850 851 852
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

853
		ret = _mv88e6xxx_reg_read(chip, reg, offset);
854 855
		if (ret < 0)
			return ret;
856 857 858 859 860 861 862 863
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

864
static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int reg,
865
			  int offset, u16 mask)
866 867 868
{
	int ret;

869 870 871
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_wait(chip, reg, offset, mask);
	mutex_unlock(&chip->reg_lock);
872 873 874 875

	return ret;
}

876
static int mv88e6xxx_mdio_wait(struct mv88e6xxx_chip *chip)
877
{
878
	return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
879
			       GLOBAL2_SMI_OP_BUSY);
880 881
}

882
static int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
883
{
884
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
885

886
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
887
			      GLOBAL2_EEPROM_OP_LOAD);
888 889
}

890
static int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
891
{
892
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
893

894
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
895
			      GLOBAL2_EEPROM_OP_BUSY);
896 897
}

898 899
static int mv88e6xxx_read_eeprom_word(struct dsa_switch *ds, int addr)
{
900
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
901 902
	int ret;

903
	mutex_lock(&chip->eeprom_mutex);
904

905
	ret = mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
906 907 908 909 910 911 912 913 914
				  GLOBAL2_EEPROM_OP_READ |
				  (addr & GLOBAL2_EEPROM_OP_ADDR_MASK));
	if (ret < 0)
		goto error;

	ret = mv88e6xxx_eeprom_busy_wait(ds);
	if (ret < 0)
		goto error;

915
	ret = mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA);
916
error:
917
	mutex_unlock(&chip->eeprom_mutex);
918 919 920
	return ret;
}

921 922
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
923
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
924

925 926
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEPROM))
		return chip->eeprom_len;
927 928 929 930

	return 0;
}

931 932
static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
933
{
934
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
935 936 937 938
	int offset;
	int len;
	int ret;

939
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEPROM))
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		return -EOPNOTSUPP;

	offset = eeprom->offset;
	len = eeprom->len;
	eeprom->len = 0;

	eeprom->magic = 0xc3ec4951;

	ret = mv88e6xxx_eeprom_load_wait(ds);
	if (ret < 0)
		return ret;

	if (offset & 1) {
		int word;

		word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		*data++ = (word >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		int word;

		word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		*data++ = word & 0xff;
		*data++ = (word >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		int word;

		word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		*data++ = word & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_eeprom_is_readonly(struct dsa_switch *ds)
{
1000
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1001 1002
	int ret;

1003
	ret = mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_OP);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	if (ret < 0)
		return ret;

	if (!(ret & GLOBAL2_EEPROM_OP_WRITE_EN))
		return -EROFS;

	return 0;
}

static int mv88e6xxx_write_eeprom_word(struct dsa_switch *ds, int addr,
				       u16 data)
{
1016
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1017 1018
	int ret;

1019
	mutex_lock(&chip->eeprom_mutex);
1020

1021
	ret = mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
1022 1023 1024
	if (ret < 0)
		goto error;

1025
	ret = mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
1026 1027 1028 1029 1030 1031 1032
				  GLOBAL2_EEPROM_OP_WRITE |
				  (addr & GLOBAL2_EEPROM_OP_ADDR_MASK));
	if (ret < 0)
		goto error;

	ret = mv88e6xxx_eeprom_busy_wait(ds);
error:
1033
	mutex_unlock(&chip->eeprom_mutex);
1034 1035 1036
	return ret;
}

1037 1038
static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
1039
{
1040
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1041 1042 1043 1044
	int offset;
	int ret;
	int len;

1045
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEPROM))
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		return -EOPNOTSUPP;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	ret = mv88e6xxx_eeprom_is_readonly(ds);
	if (ret)
		return ret;

	offset = eeprom->offset;
	len = eeprom->len;
	eeprom->len = 0;

	ret = mv88e6xxx_eeprom_load_wait(ds);
	if (ret < 0)
		return ret;

	if (offset & 1) {
		int word;

		word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		word = (*data++ << 8) | (word & 0xff);

		ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
		if (ret < 0)
			return ret;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		int word;

		word = *data++;
		word |= *data++ << 8;

		ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
		if (ret < 0)
			return ret;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		int word;

		word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		word = (word & 0xff00) | *data++;

		ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
		if (ret < 0)
			return ret;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

1117
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
1118
{
1119
	return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
1120
			       GLOBAL_ATU_OP_BUSY);
1121 1122
}

1123
static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
1124
					int addr, int regnum)
1125 1126 1127
{
	int ret;

1128
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
1129 1130 1131 1132
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
1133

1134
	ret = mv88e6xxx_mdio_wait(chip);
1135 1136 1137
	if (ret < 0)
		return ret;

1138
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA);
1139 1140

	return ret;
1141 1142
}

1143
static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
1144
					 int addr, int regnum, u16 val)
1145
{
1146 1147
	int ret;

1148
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
1149 1150
	if (ret < 0)
		return ret;
1151

1152
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
1153 1154 1155
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

1156
	return mv88e6xxx_mdio_wait(chip);
1157 1158
}

1159 1160
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
1161
{
1162
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1163 1164
	int reg;

1165
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1166 1167
		return -EOPNOTSUPP;

1168
	mutex_lock(&chip->reg_lock);
1169

1170
	reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
1171
	if (reg < 0)
1172
		goto out;
1173 1174 1175 1176

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

1177
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
1178
	if (reg < 0)
1179
		goto out;
1180

1181
	e->eee_active = !!(reg & PORT_STATUS_EEE);
1182
	reg = 0;
1183

1184
out:
1185
	mutex_unlock(&chip->reg_lock);
1186
	return reg;
1187 1188
}

1189 1190
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
1191
{
1192
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1193
	int reg;
1194 1195
	int ret;

1196
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1197 1198
		return -EOPNOTSUPP;

1199
	mutex_lock(&chip->reg_lock);
1200

1201
	ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
1202 1203 1204 1205 1206 1207 1208 1209 1210
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

1211
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
1212
out:
1213
	mutex_unlock(&chip->reg_lock);
1214 1215

	return ret;
1216 1217
}

1218
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
1219 1220 1221
{
	int ret;

1222 1223 1224
	if (mv88e6xxx_has_fid_reg(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
					   fid);
1225 1226
		if (ret < 0)
			return ret;
1227
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1228
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
1229
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
1230 1231 1232
		if (ret < 0)
			return ret;

1233
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
1234 1235 1236 1237 1238 1239 1240
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1241 1242
	}

1243
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1244 1245 1246
	if (ret < 0)
		return ret;

1247
	return _mv88e6xxx_atu_wait(chip);
1248 1249
}

1250
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1270
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1271 1272
}

1273
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1274 1275
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1276
{
1277 1278
	int op;
	int err;
1279

1280
	err = _mv88e6xxx_atu_wait(chip);
1281 1282
	if (err)
		return err;
1283

1284
	err = _mv88e6xxx_atu_data_write(chip, entry);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1296
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1297 1298
}

1299
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1300
				u16 fid, bool static_too)
1301 1302 1303 1304 1305
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1306

1307
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1308 1309
}

1310
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1311
			       int from_port, int to_port, bool static_too)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1325
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1326 1327
}

1328
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1329
				 int port, bool static_too)
1330 1331
{
	/* Destination port 0xF means remove the entries */
1332
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1333 1334
}

1335 1336 1337 1338 1339 1340 1341
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1342
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1343
				 u8 state)
1344
{
1345
	struct dsa_switch *ds = chip->ds;
1346
	int reg, ret = 0;
1347 1348
	u8 oldstate;

1349
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1350 1351
	if (reg < 0)
		return reg;
1352

1353
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1354

1355 1356 1357 1358 1359
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1360
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1361 1362 1363
		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
		    (state == PORT_CONTROL_STATE_DISABLED ||
		     state == PORT_CONTROL_STATE_BLOCKING)) {
1364
			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1365
			if (ret)
1366
				return ret;
1367
		}
1368

1369
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1370
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1371
					   reg);
1372 1373 1374
		if (ret)
			return ret;

1375
		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1376 1377
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1378 1379 1380 1381 1382
	}

	return ret;
}

1383
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1384
{
1385 1386 1387
	struct net_device *bridge = chip->ports[port].bridge_dev;
	const u16 mask = (1 << chip->info->num_ports) - 1;
	struct dsa_switch *ds = chip->ds;
1388
	u16 output_ports = 0;
1389
	int reg;
1390 1391 1392 1393 1394 1395
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1396
		for (i = 0; i < chip->info->num_ports; ++i) {
1397
			/* allow sending frames to every group member */
1398
			if (bridge && chip->ports[i].bridge_dev == bridge)
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1409

1410
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1411 1412
	if (reg < 0)
		return reg;
1413

1414 1415
	reg &= ~mask;
	reg |= output_ports & mask;
1416

1417
	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1418 1419
}

1420 1421
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1422
{
1423
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1424
	int stp_state;
1425
	int err;
1426 1427 1428

	switch (state) {
	case BR_STATE_DISABLED:
1429
		stp_state = PORT_CONTROL_STATE_DISABLED;
1430 1431 1432
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1433
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1434 1435
		break;
	case BR_STATE_LEARNING:
1436
		stp_state = PORT_CONTROL_STATE_LEARNING;
1437 1438 1439
		break;
	case BR_STATE_FORWARDING:
	default:
1440
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1441 1442 1443
		break;
	}

1444 1445 1446
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1447 1448

	if (err)
1449 1450
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1451
			   mv88e6xxx_port_state_names[stp_state]);
1452 1453
}

1454
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1455
				u16 *new, u16 *old)
1456
{
1457
	struct dsa_switch *ds = chip->ds;
1458
	u16 pvid;
1459 1460
	int ret;

1461
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1462 1463 1464
	if (ret < 0)
		return ret;

1465 1466 1467 1468 1469 1470
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

1471
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1472 1473 1474 1475
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

1476 1477
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1478 1479 1480 1481
	}

	if (old)
		*old = pvid;
1482 1483 1484 1485

	return 0;
}

1486
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1487
				    int port, u16 *pvid)
1488
{
1489
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1490 1491
}

1492
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1493
				    int port, u16 pvid)
1494
{
1495
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1496 1497
}

1498
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1499
{
1500
	return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1501 1502 1503
			       GLOBAL_VTU_OP_BUSY);
}

1504
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1505 1506 1507
{
	int ret;

1508
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1509 1510 1511
	if (ret < 0)
		return ret;

1512
	return _mv88e6xxx_vtu_wait(chip);
1513 1514
}

1515
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1516 1517 1518
{
	int ret;

1519
	ret = _mv88e6xxx_vtu_wait(chip);
1520 1521 1522
	if (ret < 0)
		return ret;

1523
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1524 1525
}

1526
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1527 1528 1529 1530 1531 1532 1533 1534
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
1535
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1536 1537 1538 1539 1540 1541 1542
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1543
	for (i = 0; i < chip->info->num_ports; ++i) {
1544 1545 1546 1547 1548 1549 1550 1551 1552
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1553
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1554 1555
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1556
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1557 1558
}

1559
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1560 1561
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1562
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1563 1564
}

1565
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1566 1567 1568 1569 1570 1571 1572
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
	int i;
	int ret;

1573
	for (i = 0; i < chip->info->num_ports; ++i) {
1574 1575 1576 1577 1578 1579 1580
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1581
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1582 1583 1584 1585 1586 1587 1588 1589
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1590
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1591 1592
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1593
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1594 1595
}

1596
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1597 1598
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1599
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1600 1601
}

1602
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1603
{
1604
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1605 1606 1607
				    vid & GLOBAL_VTU_VID_MASK);
}

1608
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1609 1610 1611 1612 1613
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1614
	ret = _mv88e6xxx_vtu_wait(chip);
1615 1616 1617
	if (ret < 0)
		return ret;

1618
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1619 1620 1621
	if (ret < 0)
		return ret;

1622
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1623 1624 1625 1626 1627 1628 1629
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1630
		ret = mv88e6xxx_vtu_data_read(chip, &next);
1631 1632 1633
		if (ret < 0)
			return ret;

1634 1635
		if (mv88e6xxx_has_fid_reg(chip)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1636 1637 1638 1639 1640
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1641
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1642 1643 1644
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1645
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1646 1647 1648 1649 1650 1651
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1652
		}
1653

1654 1655
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1668 1669 1670
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1671
{
1672
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1673 1674 1675 1676
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

1677
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1678 1679
		return -EOPNOTSUPP;

1680
	mutex_lock(&chip->reg_lock);
1681

1682
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1683 1684 1685
	if (err)
		goto unlock;

1686
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1687 1688 1689 1690
	if (err)
		goto unlock;

	do {
1691
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1702 1703
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1718
	mutex_unlock(&chip->reg_lock);
1719 1720 1721 1722

	return err;
}

1723
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1724 1725
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1726
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1727 1728 1729
	u16 reg = 0;
	int ret;

1730
	ret = _mv88e6xxx_vtu_wait(chip);
1731 1732 1733 1734 1735 1736 1737
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1738
	ret = mv88e6xxx_vtu_data_write(chip, entry);
1739 1740 1741
	if (ret < 0)
		return ret;

1742
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1743
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1744 1745
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
					   reg);
1746 1747
		if (ret < 0)
			return ret;
1748
	}
1749

1750
	if (mv88e6xxx_has_fid_reg(chip)) {
1751
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1752 1753
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
					   reg);
1754 1755
		if (ret < 0)
			return ret;
1756
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1757 1758 1759 1760 1761
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1762 1763 1764 1765 1766
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1767
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1768 1769 1770
	if (ret < 0)
		return ret;

1771
	return _mv88e6xxx_vtu_cmd(chip, op);
1772 1773
}

1774
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1775 1776 1777 1778 1779
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1780
	ret = _mv88e6xxx_vtu_wait(chip);
1781 1782 1783
	if (ret < 0)
		return ret;

1784
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1785 1786 1787 1788
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

1789
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1790 1791 1792
	if (ret < 0)
		return ret;

1793
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1794 1795 1796 1797 1798
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

1799
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1800 1801 1802 1803 1804 1805
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1806
		ret = mv88e6xxx_stu_data_read(chip, &next);
1807 1808 1809 1810 1811 1812 1813 1814
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

1815
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1816 1817 1818 1819 1820
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

1821
	ret = _mv88e6xxx_vtu_wait(chip);
1822 1823 1824 1825 1826 1827 1828
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1829
	ret = mv88e6xxx_stu_data_write(chip, entry);
1830 1831 1832 1833 1834
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1835
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1836 1837 1838 1839
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1840
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1841 1842 1843
	if (ret < 0)
		return ret;

1844
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1845 1846
}

1847
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1848
			       u16 *new, u16 *old)
1849
{
1850
	struct dsa_switch *ds = chip->ds;
1851
	u16 upper_mask;
1852 1853 1854
	u16 fid;
	int ret;

1855
	if (mv88e6xxx_num_databases(chip) == 4096)
1856
		upper_mask = 0xff;
1857
	else if (mv88e6xxx_num_databases(chip) == 256)
1858
		upper_mask = 0xf;
1859 1860 1861
	else
		return -EOPNOTSUPP;

1862
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1863
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1864 1865 1866 1867 1868 1869 1870 1871 1872
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

1873
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1874 1875 1876 1877 1878 1879
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1880
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1881 1882 1883
	if (ret < 0)
		return ret;

1884
	fid |= (ret & upper_mask) << 4;
1885 1886

	if (new) {
1887 1888
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1889

1890
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1891 1892 1893 1894
					   ret);
		if (ret < 0)
			return ret;

1895 1896
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1897 1898 1899 1900 1901 1902 1903 1904
	}

	if (old)
		*old = fid;

	return 0;
}

1905
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1906
				   int port, u16 *fid)
1907
{
1908
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1909 1910
}

1911
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1912
				   int port, u16 fid)
1913
{
1914
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1915 1916
}

1917
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1918 1919 1920
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1921
	int i, err;
1922 1923 1924

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1925
	/* Set every FID bit used by the (un)bridged ports */
1926 1927
	for (i = 0; i < chip->info->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1928 1929 1930 1931 1932 1933
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1934
	/* Set every FID bit used by the VLAN entries */
1935
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1936 1937 1938 1939
	if (err)
		return err;

	do {
1940
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1954
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1955 1956 1957
		return -ENOSPC;

	/* Clear the database */
1958
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1959 1960
}

1961
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1962
			      struct mv88e6xxx_vtu_stu_entry *entry)
1963
{
1964
	struct dsa_switch *ds = chip->ds;
1965 1966 1967 1968
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1969 1970
	int i, err;

1971
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1972 1973
	if (err)
		return err;
1974

1975
	/* exclude all ports except the CPU and DSA ports */
1976
	for (i = 0; i < chip->info->num_ports; ++i)
1977 1978 1979
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1980

1981 1982
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1983 1984 1985 1986 1987 1988 1989
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1990
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1991 1992 1993 1994 1995 1996 1997 1998
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1999
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
2000 2001 2002 2003 2004 2005 2006 2007 2008
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

2009
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
2010 2011 2012 2013 2014 2015 2016
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

2017
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
2018 2019 2020
	if (err)
		return err;

2021
	err = _mv88e6xxx_vtu_getnext(chip, entry);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

2032
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
2033 2034 2035 2036 2037
	}

	return err;
}

2038 2039 2040
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
2041
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2042 2043 2044 2045 2046 2047
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

2048
	mutex_lock(&chip->reg_lock);
2049

2050
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
2051 2052 2053 2054
	if (err)
		goto unlock;

	do {
2055
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2056 2057 2058 2059 2060 2061 2062 2063 2064
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

2065
		for (i = 0; i < chip->info->num_ports; ++i) {
2066 2067 2068 2069 2070 2071 2072
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

2073 2074
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
2075 2076
				break; /* same bridge, check next VLAN */

2077
			netdev_warn(ds->ports[port].netdev,
2078 2079
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
2080
				    netdev_name(chip->ports[i].bridge_dev));
2081 2082 2083 2084 2085 2086
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
2087
	mutex_unlock(&chip->reg_lock);
2088 2089 2090 2091

	return err;
}

2092 2093 2094 2095 2096 2097 2098
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

2099 2100
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
2101
{
2102
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2103 2104 2105 2106
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

2107
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2108 2109
		return -EOPNOTSUPP;

2110
	mutex_lock(&chip->reg_lock);
2111

2112
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
2113 2114 2115 2116 2117
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

2118 2119 2120
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
2121

2122
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
2123 2124 2125 2126
					   ret);
		if (ret < 0)
			goto unlock;

2127
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
2128 2129 2130
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
2131

2132
	ret = 0;
2133
unlock:
2134
	mutex_unlock(&chip->reg_lock);
2135 2136 2137 2138

	return ret;
}

2139 2140 2141 2142
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
2143
{
2144
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2145 2146
	int err;

2147
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2148 2149
		return -EOPNOTSUPP;

2150 2151 2152 2153 2154 2155 2156 2157
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

2158 2159 2160 2161 2162 2163
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2164
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
2165
				    u16 vid, bool untagged)
2166 2167 2168 2169
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2170
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
2171
	if (err)
2172
		return err;
2173 2174 2175 2176 2177

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

2178
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2179 2180
}

2181 2182 2183
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
2184
{
2185
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2186 2187 2188 2189
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

2190
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2191 2192
		return;

2193
	mutex_lock(&chip->reg_lock);
2194

2195
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
2196
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
2197 2198
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
2199
				   vid, untagged ? 'u' : 't');
2200

2201
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
2202
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
2203
			   vlan->vid_end);
2204

2205
	mutex_unlock(&chip->reg_lock);
2206 2207
}

2208
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
2209
				    int port, u16 vid)
2210
{
2211
	struct dsa_switch *ds = chip->ds;
2212 2213 2214
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

2215
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2216
	if (err)
2217
		return err;
2218

2219 2220
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
2221
		return -EOPNOTSUPP;
2222 2223 2224 2225

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
2226
	vlan.valid = false;
2227
	for (i = 0; i < chip->info->num_ports; ++i) {
2228
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
2229 2230 2231
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
2232
			vlan.valid = true;
2233 2234 2235 2236
			break;
		}
	}

2237
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2238 2239 2240
	if (err)
		return err;

2241
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2242 2243
}

2244 2245
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
2246
{
2247
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2248 2249 2250
	u16 pvid, vid;
	int err = 0;

2251
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2252 2253
		return -EOPNOTSUPP;

2254
	mutex_lock(&chip->reg_lock);
2255

2256
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2257 2258 2259
	if (err)
		goto unlock;

2260
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2261
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2262 2263 2264 2265
		if (err)
			goto unlock;

		if (vid == pvid) {
2266
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2267 2268 2269 2270 2271
			if (err)
				goto unlock;
		}
	}

2272
unlock:
2273
	mutex_unlock(&chip->reg_lock);
2274 2275 2276 2277

	return err;
}

2278
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2279
				    const unsigned char *addr)
2280 2281 2282 2283
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2284
		ret = _mv88e6xxx_reg_write(
2285
			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2286
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2287 2288 2289 2290 2291 2292 2293
		if (ret < 0)
			return ret;
	}

	return 0;
}

2294
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2295
				   unsigned char *addr)
2296 2297 2298 2299
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2300
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2301
					  GLOBAL_ATU_MAC_01 + i);
2302 2303 2304 2305 2306 2307 2308 2309 2310
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2311
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2312
			       struct mv88e6xxx_atu_entry *entry)
2313
{
2314 2315
	int ret;

2316
	ret = _mv88e6xxx_atu_wait(chip);
2317 2318 2319
	if (ret < 0)
		return ret;

2320
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2321 2322 2323
	if (ret < 0)
		return ret;

2324
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2325
	if (ret < 0)
2326 2327
		return ret;

2328
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2329
}
2330

2331
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2332 2333 2334 2335
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2336 2337 2338
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2339 2340
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2341
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2342
	else
2343
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2344 2345
	if (err)
		return err;
2346

2347
	entry.fid = vlan.fid;
2348 2349 2350 2351 2352 2353 2354
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

2355
	return _mv88e6xxx_atu_load(chip, &entry);
2356 2357
}

2358 2359 2360
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2361 2362 2363 2364 2365 2366 2367
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2368 2369 2370
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2371
{
2372
	int state = is_multicast_ether_addr(fdb->addr) ?
2373 2374
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2375
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2376

2377 2378
	mutex_lock(&chip->reg_lock);
	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2379 2380
		netdev_err(ds->ports[port].netdev,
			   "failed to load MAC address\n");
2381
	mutex_unlock(&chip->reg_lock);
2382 2383
}

2384 2385
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2386
{
2387
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2388 2389
	int ret;

2390 2391
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2392
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2393
	mutex_unlock(&chip->reg_lock);
2394 2395 2396 2397

	return ret;
}

2398
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2399
				  struct mv88e6xxx_atu_entry *entry)
2400
{
2401 2402 2403 2404
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2405

2406
	ret = _mv88e6xxx_atu_wait(chip);
2407 2408
	if (ret < 0)
		return ret;
2409

2410
	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2411 2412
	if (ret < 0)
		return ret;
2413

2414
	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2415 2416
	if (ret < 0)
		return ret;
2417

2418
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2419 2420
	if (ret < 0)
		return ret;
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2438

2439
	*entry = next;
2440 2441 2442
	return 0;
}

2443
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2444
					u16 fid, u16 vid, int port,
2445 2446 2447 2448 2449 2450 2451 2452
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2453
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2454 2455 2456 2457
	if (err)
		return err;

	do {
2458
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2484 2485 2486
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
2487
{
2488
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2489 2490 2491
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2492
	u16 fid;
2493 2494
	int err;

2495
	mutex_lock(&chip->reg_lock);
2496

2497
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2498
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2499 2500 2501
	if (err)
		goto unlock;

2502
	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2503 2504 2505
	if (err)
		goto unlock;

2506
	/* Dump VLANs' Filtering Information Databases */
2507
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2508 2509 2510 2511
	if (err)
		goto unlock;

	do {
2512
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2513
		if (err)
2514
			break;
2515 2516 2517 2518

		if (!vlan.valid)
			break;

2519 2520
		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
						   port, fdb, cb);
2521
		if (err)
2522
			break;
2523 2524 2525
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
2526
	mutex_unlock(&chip->reg_lock);
2527 2528 2529 2530

	return err;
}

2531 2532
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2533
{
2534
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2535
	int i, err = 0;
2536

2537
	mutex_lock(&chip->reg_lock);
2538

2539
	/* Assign the bridge and remap each port's VLANTable */
2540
	chip->ports[port].bridge_dev = bridge;
2541

2542 2543 2544
	for (i = 0; i < chip->info->num_ports; ++i) {
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2545 2546 2547 2548 2549
			if (err)
				break;
		}
	}

2550
	mutex_unlock(&chip->reg_lock);
2551

2552
	return err;
2553 2554
}

2555
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2556
{
2557 2558
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	struct net_device *bridge = chip->ports[port].bridge_dev;
2559
	int i;
2560

2561
	mutex_lock(&chip->reg_lock);
2562

2563
	/* Unassign the bridge and remap each port's VLANTable */
2564
	chip->ports[port].bridge_dev = NULL;
2565

2566 2567 2568
	for (i = 0; i < chip->info->num_ports; ++i)
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2569 2570
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2571

2572
	mutex_unlock(&chip->reg_lock);
2573 2574
}

2575
static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
2576
				      int port, int page, int reg, int val)
2577 2578 2579
{
	int ret;

2580
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2581 2582 2583
	if (ret < 0)
		goto restore_page_0;

2584
	ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
2585
restore_page_0:
2586
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2587 2588 2589 2590

	return ret;
}

2591
static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
2592
				     int port, int page, int reg)
2593 2594 2595
{
	int ret;

2596
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2597 2598 2599
	if (ret < 0)
		goto restore_page_0;

2600
	ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
2601
restore_page_0:
2602
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2603 2604 2605 2606

	return ret;
}

2607
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2608
{
2609
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2610
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2611
	struct gpio_desc *gpiod = chip->reset;
2612 2613 2614 2615 2616
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
2617 2618
	for (i = 0; i < chip->info->num_ports; i++) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2619 2620 2621
		if (ret < 0)
			return ret;

2622
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
					   ret & 0xfffc);
		if (ret)
			return ret;
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2644
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2645
	else
2646
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2647 2648 2649 2650 2651 2652
	if (ret)
		return ret;

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2653
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		if (ret < 0)
			return ret;

		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		ret = -ETIMEDOUT;
	else
		ret = 0;

	return ret;
}

2669
static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
2670 2671 2672
{
	int ret;

2673
	ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
2674
					PAGE_FIBER_SERDES, MII_BMCR);
2675 2676 2677 2678 2679
	if (ret < 0)
		return ret;

	if (ret & BMCR_PDOWN) {
		ret &= ~BMCR_PDOWN;
2680
		ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
2681 2682
						 PAGE_FIBER_SERDES, MII_BMCR,
						 ret);
2683 2684 2685 2686 2687
	}

	return ret;
}

2688
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2689
{
2690
	struct dsa_switch *ds = chip->ds;
2691
	int ret;
2692
	u16 reg;
2693

2694 2695 2696 2697
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2698 2699 2700 2701 2702 2703
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2704
		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2705
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2706
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2707 2708 2709 2710
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2711
			if (mv88e6xxx_6065_family(chip))
2712 2713 2714 2715 2716 2717 2718
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2719
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2720 2721
					   PORT_PCS_CTRL, reg);
		if (ret)
2722
			return ret;
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2740 2741 2742 2743
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2744 2745 2746 2747
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2748
		if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2749
			reg |= PORT_CONTROL_DSA_TAG;
2750 2751 2752 2753 2754
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2755 2756
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
				PORT_CONTROL_FORWARD_UNKNOWN |
2757
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2758 2759
		}

2760 2761 2762 2763 2764 2765 2766 2767
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6065_family(chip) ||
		    mv88e6xxx_6185_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2768
			reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2769 2770
		}
	}
2771
	if (dsa_is_dsa_port(ds, port)) {
2772 2773
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2774
			reg |= PORT_CONTROL_DSA_TAG;
2775 2776 2777 2778 2779
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2780
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2781 2782
		}

2783 2784 2785 2786 2787
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2788
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2789 2790
					   PORT_CONTROL, reg);
		if (ret)
2791
			return ret;
2792 2793
	}

2794 2795 2796
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2797 2798
	if (mv88e6xxx_6352_family(chip)) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2799
		if (ret < 0)
2800
			return ret;
2801 2802 2803 2804
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
2805
			ret = mv88e6xxx_power_on_serdes(chip);
2806
			if (ret < 0)
2807
				return ret;
2808 2809 2810
		}
	}

2811
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2812
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2813 2814 2815
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2816 2817
	 */
	reg = 0;
2818 2819 2820 2821
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2822 2823
		reg = PORT_CONTROL_2_MAP_DA;

2824 2825
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2826 2827
		reg |= PORT_CONTROL_2_JUMBO_10240;

2828
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2829 2830 2831 2832 2833 2834 2835 2836 2837
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2838
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2839

2840
	if (reg) {
2841
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2842 2843
					   PORT_CONTROL_2, reg);
		if (ret)
2844
			return ret;
2845 2846 2847 2848 2849 2850 2851
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2852
	reg = 1 << port;
2853 2854
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2855
		reg = 0;
2856

2857 2858
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
				   reg);
2859
	if (ret)
2860
		return ret;
2861 2862

	/* Egress rate control 2: disable egress rate control. */
2863
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2864 2865
				   0x0000);
	if (ret)
2866
		return ret;
2867

2868 2869 2870
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2871 2872 2873 2874
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2875
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2876 2877
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
2878
			return ret;
2879 2880 2881 2882 2883

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2884
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2885 2886 2887 2888
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2889
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2890 2891
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
2892
			return ret;
2893 2894 2895 2896

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2897
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2898 2899
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
2900
			return ret;
2901 2902 2903
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2904
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2905 2906
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
2907
			return ret;
2908 2909 2910 2911

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2912
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2913 2914
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
2915
			return ret;
2916 2917
	}

2918 2919 2920 2921
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2922
		/* Rate Control: disable ingress rate limiting. */
2923
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2924 2925
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
2926
			return ret;
2927 2928
	}

2929 2930
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2931
	 */
2932 2933
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
				   0x0000);
2934
	if (ret)
2935
		return ret;
2936

2937
	/* Port based VLAN map: give each port the same default address
2938 2939
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2940
	 */
2941
	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2942
	if (ret)
2943
		return ret;
2944

2945
	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2946
	if (ret)
2947
		return ret;
2948 2949 2950 2951

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2952
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2953
				   0x0000);
2954 2955
	if (ret)
		return ret;
2956 2957 2958 2959

	return 0;
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
			      (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
			      (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
			       (addr[4] << 8) | addr[5]);
}

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
}

3005
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
3006
{
3007
	struct dsa_switch *ds = chip->ds;
3008
	u32 upstream_port = dsa_upstream_port(ds);
3009
	u16 reg;
3010
	int err;
3011

3012 3013 3014 3015
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
3016 3017
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
3018 3019
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

3020
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
3021 3022 3023
	if (err)
		return err;

3024 3025 3026 3027 3028 3029
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
3030 3031
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
				   reg);
3032 3033 3034
	if (err)
		return err;

3035
	/* Disable remote management, and set the switch's DSA device number. */
3036
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
3037 3038 3039 3040 3041
				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				   (ds->index & 0x1f));
	if (err)
		return err;

3042 3043 3044 3045 3046
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

3047 3048 3049 3050
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
3051 3052
	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
			      GLOBAL_ATU_CONTROL_LEARN2ALL);
3053
	if (err)
3054
		return err;
3055

3056 3057
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
3058 3059 3060 3061 3062 3063 3064
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

3065
	/* Configure the IP ToS mapping registers. */
3066
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
3067
	if (err)
3068
		return err;
3069
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
3070
	if (err)
3071
		return err;
3072
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
3073
	if (err)
3074
		return err;
3075
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
3076
	if (err)
3077
		return err;
3078
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
3079
	if (err)
3080
		return err;
3081
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
3082
	if (err)
3083
		return err;
3084
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
3085
	if (err)
3086
		return err;
3087
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
3088
	if (err)
3089
		return err;
3090 3091

	/* Configure the IEEE 802.1p priority mapping register. */
3092
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
3093
	if (err)
3094
		return err;
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	/* Clear the statistics counters for all ports */
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
					     int target, int port)
{
	u16 val = (target << 8) | (port & 0xf);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
}

static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
{
	int target, port;
	int err;

	/* Initialize the routing port to the 32 possible target devices */
	for (target = 0; target < 32; ++target) {
		port = 0xf;

		if (target < DSA_MAX_SWITCHES) {
			port = chip->ds->rtable[target];
			if (port == DSA_RTABLE_NONE)
				port = 0xf;
		}

		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
		if (err)
			break;
	}

	return err;
}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
					 bool hask, u16 mask)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (num << 12) | (mask & port_mask);

	if (hask)
		val |= GLOBAL2_TRUNK_MASK_HASK;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
}

static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
					    u16 map)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (id << 11) | (map & port_mask);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
}

static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	int i, err;

	/* Clear all eight possible Trunk Mask vectors */
	for (i = 0; i < 8; ++i) {
		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
		if (err)
			return err;
	}

	/* Clear all sixteen possible Trunk ID routing vectors */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
		if (err)
			return err;
	}

	return 0;
}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
{
	int port, err;

	/* Init all Ingress Rate Limit resources of all ports */
	for (port = 0; port < chip->info->num_ports; ++port) {
		/* XXX newer chips (like 88E6390) have different 2-bit ops */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
				      (port << 8));
		if (err)
			break;

		/* Wait for the operation to complete */
		err = _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_BUSY);
		if (err)
			break;
	}

	return err;
}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
/* Indirect write to the Switch MAC/WoL/WoF register */
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
					 unsigned int pointer, u8 data)
{
	u16 val = (pointer << 8) | data;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
}

static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int i, err;

	for (i = 0; i < 6; i++) {
		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
		if (err)
			break;
	}

	return err;
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
				  u8 data)
{
	u16 val = (pointer << 8) | (data & 0x7);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
}

static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
{
	int i, err;

	/* Clear all sixteen possible Priority Override entries */
	for (i = 0; i < 16; i++) {
		err = mv88e6xxx_g2_pot_write(chip, i, 0);
		if (err)
			break;
	}

	return err;
}

3251 3252
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
{
3253
	u16 reg;
3254 3255
	int err;

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:2x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
				      0xffff);
		if (err)
			return err;
	}

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:0x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
				      0xffff);
		if (err)
			return err;
	}
3275 3276 3277 3278 3279 3280

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
3281 3282 3283 3284 3285
	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3286
	if (err)
3287
		return err;
3288 3289

	/* Program the DSA routing table. */
3290 3291 3292
	err = mv88e6xxx_g2_set_device_mapping(chip);
	if (err)
		return err;
3293

3294 3295 3296 3297
	/* Clear all trunk masks and mapping. */
	err = mv88e6xxx_g2_clear_trunk(chip);
	if (err)
		return err;
3298

3299 3300 3301 3302 3303 3304 3305 3306 3307
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
		/* Disable ingress rate limiting by resetting all per port
		 * ingress rate limit resources to their initial state.
		 */
		err = mv88e6xxx_g2_clear_irl(chip);
			if (err)
				return err;
	}

3308 3309 3310 3311
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
		/* Initialize Cross-chip Port VLAN Table to reset defaults */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3312
		if (err)
3313
			return err;
3314
	}
3315

3316
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3317
		/* Clear the priority override table. */
3318 3319 3320
		err = mv88e6xxx_g2_clear_pot(chip);
		if (err)
			return err;
3321 3322
	}

3323
	return 0;
3324 3325
}

3326
static int mv88e6xxx_setup(struct dsa_switch *ds)
3327
{
3328
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3329
	int err;
3330 3331
	int i;

3332 3333
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
3334

3335 3336
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEPROM))
		mutex_init(&chip->eeprom_mutex);
3337

3338
	mutex_lock(&chip->reg_lock);
3339

3340
	err = mv88e6xxx_switch_reset(chip);
3341 3342 3343
	if (err)
		goto unlock;

3344 3345 3346 3347 3348 3349 3350 3351 3352
	/* Setup Switch Port Registers */
	for (i = 0; i < chip->info->num_ports; i++) {
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
3353 3354 3355
	if (err)
		goto unlock;

3356 3357 3358
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3359 3360 3361
		if (err)
			goto unlock;
	}
3362

3363
unlock:
3364
	mutex_unlock(&chip->reg_lock);
3365

3366
	return err;
3367 3368
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

3387 3388
static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
3389
{
3390
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3391 3392
	int ret;

3393 3394 3395
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
	mutex_unlock(&chip->reg_lock);
3396

3397 3398 3399
	return ret;
}

3400 3401
static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
3402
{
3403
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3404 3405
	int ret;

3406 3407 3408
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
	mutex_unlock(&chip->reg_lock);
3409

3410 3411 3412
	return ret;
}

3413
static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port)
3414
{
3415
	if (port >= 0 && port < chip->info->num_ports)
3416 3417 3418 3419
		return port;
	return -EINVAL;
}

3420
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum)
3421
{
3422 3423
	struct mv88e6xxx_chip *chip = bus->priv;
	int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3424 3425 3426
	int ret;

	if (addr < 0)
3427
		return 0xffff;
3428

3429
	mutex_lock(&chip->reg_lock);
3430

3431 3432 3433 3434
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
		ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum);
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
		ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum);
3435
	else
3436
		ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum);
3437

3438
	mutex_unlock(&chip->reg_lock);
3439 3440 3441
	return ret;
}

3442
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum,
3443
				u16 val)
3444
{
3445 3446
	struct mv88e6xxx_chip *chip = bus->priv;
	int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3447 3448 3449
	int ret;

	if (addr < 0)
3450
		return 0xffff;
3451

3452
	mutex_lock(&chip->reg_lock);
3453

3454 3455 3456 3457
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
		ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val);
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
		ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val);
3458
	else
3459
		ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val);
3460

3461
	mutex_unlock(&chip->reg_lock);
3462 3463 3464
	return ret;
}

3465
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3466 3467 3468 3469 3470 3471
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

3472 3473
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
		mv88e6xxx_ppu_state_init(chip);
3474 3475

	if (np)
3476
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3477

3478
	bus = devm_mdiobus_alloc(chip->dev);
3479 3480 3481
	if (!bus)
		return -ENOMEM;

3482
	bus->priv = (void *)chip;
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3493
	bus->parent = chip->dev;
3494

3495 3496
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3497 3498 3499
	else
		err = mdiobus_register(bus);
	if (err) {
3500
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3501 3502
		goto out;
	}
3503
	chip->mdio_bus = bus;
3504 3505 3506 3507

	return 0;

out:
3508 3509
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3510 3511 3512 3513

	return err;
}

3514
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3515 3516

{
3517
	struct mii_bus *bus = chip->mdio_bus;
3518 3519 3520

	mdiobus_unregister(bus);

3521 3522
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3523 3524
}

3525 3526 3527 3528
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
3529
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3530 3531 3532 3533 3534
	int ret;
	int val;

	*temp = 0;

3535
	mutex_lock(&chip->reg_lock);
3536

3537
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
3538 3539 3540 3541
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3542
	ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3543 3544 3545
	if (ret < 0)
		goto error;

3546
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
3547 3548 3549 3550 3551 3552
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3553
	val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3554 3555 3556 3557 3558 3559
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
3560
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
3561 3562 3563 3564 3565 3566
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3567 3568
	mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
	mutex_unlock(&chip->reg_lock);
3569 3570 3571 3572 3573
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
3574 3575
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3576 3577 3578 3579
	int ret;

	*temp = 0;

3580
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
3581 3582 3583 3584 3585 3586 3587 3588
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

3589
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3590
{
3591
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3592

3593
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3594 3595
		return -EOPNOTSUPP;

3596
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3597 3598 3599 3600 3601
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3602
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3603
{
3604 3605
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3606 3607
	int ret;

3608
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3609 3610 3611 3612
		return -EOPNOTSUPP;

	*temp = 0;

3613
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3614 3615 3616 3617 3618 3619 3620 3621
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

3622
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3623
{
3624 3625
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3626 3627
	int ret;

3628
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3629 3630
		return -EOPNOTSUPP;

3631
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3632 3633 3634
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3635 3636
	return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
					 (ret & 0xe0ff) | (temp << 8));
3637 3638
}

3639
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3640
{
3641 3642
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3643 3644
	int ret;

3645
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3646 3647 3648 3649
		return -EOPNOTSUPP;

	*alarm = false;

3650
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3651 3652 3653 3654 3655 3656 3657 3658 3659
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3660 3661 3662 3663 3664 3665 3666
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3667
		.port_base_addr = 0x10,
3668
		.age_time_coeff = 15000,
3669 3670 3671 3672 3673 3674 3675 3676 3677
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3678
		.port_base_addr = 0x10,
3679
		.age_time_coeff = 15000,
3680 3681 3682 3683 3684 3685 3686 3687 3688
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3689
		.port_base_addr = 0x10,
3690
		.age_time_coeff = 15000,
3691 3692 3693 3694 3695 3696 3697 3698 3699
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3700
		.port_base_addr = 0x10,
3701
		.age_time_coeff = 15000,
3702 3703 3704 3705 3706 3707 3708 3709 3710
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3711
		.port_base_addr = 0x10,
3712
		.age_time_coeff = 15000,
3713 3714 3715 3716 3717 3718 3719 3720 3721
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3722
		.port_base_addr = 0x10,
3723
		.age_time_coeff = 15000,
3724 3725 3726 3727 3728 3729 3730 3731 3732
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3733
		.port_base_addr = 0x10,
3734
		.age_time_coeff = 15000,
3735 3736 3737 3738 3739 3740 3741 3742 3743
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3744
		.port_base_addr = 0x10,
3745
		.age_time_coeff = 15000,
3746 3747 3748 3749 3750 3751 3752 3753 3754
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3755
		.port_base_addr = 0x10,
3756
		.age_time_coeff = 15000,
3757 3758 3759 3760 3761 3762 3763 3764 3765
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3766
		.port_base_addr = 0x10,
3767
		.age_time_coeff = 15000,
3768 3769 3770 3771 3772 3773 3774 3775 3776
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3777
		.port_base_addr = 0x10,
3778
		.age_time_coeff = 15000,
3779 3780 3781 3782 3783 3784 3785 3786 3787
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3788
		.port_base_addr = 0x10,
3789
		.age_time_coeff = 15000,
3790 3791 3792 3793 3794 3795 3796 3797 3798
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3799
		.port_base_addr = 0x10,
3800
		.age_time_coeff = 15000,
3801 3802 3803 3804 3805 3806 3807 3808 3809
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3810
		.port_base_addr = 0x10,
3811
		.age_time_coeff = 15000,
3812 3813 3814 3815 3816 3817 3818 3819 3820
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3821
		.port_base_addr = 0x10,
3822
		.age_time_coeff = 15000,
3823 3824 3825 3826 3827 3828 3829 3830 3831
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3832
		.port_base_addr = 0x10,
3833
		.age_time_coeff = 15000,
3834 3835 3836 3837 3838 3839 3840 3841 3842
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3843
		.port_base_addr = 0x10,
3844
		.age_time_coeff = 15000,
3845 3846 3847 3848
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},
};

3849
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3850
{
3851
	int i;
3852

3853 3854 3855
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3856 3857 3858 3859

	return NULL;
}

3860
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3861 3862 3863 3864
{
	const struct mv88e6xxx_info *info;
	int id, prod_num, rev;

3865 3866
	id = mv88e6xxx_reg_read(chip, chip->info->port_base_addr,
				PORT_SWITCH_ID);
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	if (id < 0)
		return id;

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3877
	/* Update the compatible info with the probed one */
3878
	chip->info = info;
3879

3880 3881
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3882 3883 3884 3885

	return 0;
}

3886
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3887
{
3888
	struct mv88e6xxx_chip *chip;
3889

3890 3891
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3892 3893
		return NULL;

3894
	chip->dev = dev;
3895

3896
	mutex_init(&chip->reg_lock);
3897

3898
	return chip;
3899 3900
}

3901
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3902 3903 3904 3905 3906 3907
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3908
	if (sw_addr == 0)
3909 3910 3911
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_MULTI_CHIP))
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3912 3913 3914
	else
		return -EINVAL;

3915 3916
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3917 3918 3919 3920

	return 0;
}

3921 3922 3923
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3924
{
3925
	struct mv88e6xxx_chip *chip;
3926
	struct mii_bus *bus;
3927
	int err;
3928

3929
	bus = dsa_host_dev_to_mii_bus(host_dev);
3930 3931 3932
	if (!bus)
		return NULL;

3933 3934
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3935 3936
		return NULL;

3937
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3938
	chip->info = &mv88e6xxx_table[MV88E6085];
3939

3940
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3941 3942 3943
	if (err)
		goto free;

3944
	err = mv88e6xxx_detect(chip);
3945
	if (err)
3946
		goto free;
3947

3948
	err = mv88e6xxx_mdio_register(chip, NULL);
3949
	if (err)
3950
		goto free;
3951

3952
	*priv = chip;
3953

3954
	return chip->info->name;
3955
free:
3956
	devm_kfree(dsa_dev, chip);
3957 3958

	return NULL;
3959 3960
}

3961
static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3962
	.tag_protocol		= DSA_TAG_PROTO_EDSA,
3963
	.probe			= mv88e6xxx_drv_probe,
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3978
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
};

3997
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3998 3999
				     struct device_node *np)
{
4000
	struct device *dev = chip->dev;
4001 4002 4003 4004 4005 4006 4007
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4008
	ds->priv = chip;
4009 4010 4011 4012 4013 4014 4015
	ds->drv = &mv88e6xxx_switch_driver;

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4016
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4017
{
4018
	dsa_unregister_switch(chip->ds);
4019 4020
}

4021
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4022
{
4023
	struct device *dev = &mdiodev->dev;
4024
	struct device_node *np = dev->of_node;
4025
	const struct mv88e6xxx_info *compat_info;
4026
	struct mv88e6xxx_chip *chip;
4027
	u32 eeprom_len;
4028
	int err;
4029

4030 4031 4032 4033
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4034 4035
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4036 4037
		return -ENOMEM;

4038
	chip->info = compat_info;
4039

4040
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4041 4042
	if (err)
		return err;
4043

4044
	err = mv88e6xxx_detect(chip);
4045 4046
	if (err)
		return err;
4047

4048 4049 4050
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
4051

4052
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEPROM) &&
4053
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4054
		chip->eeprom_len = eeprom_len;
4055

4056
	err = mv88e6xxx_mdio_register(chip, np);
4057 4058 4059
	if (err)
		return err;

4060
	err = mv88e6xxx_register_switch(chip, np);
4061
	if (err) {
4062
		mv88e6xxx_mdio_unregister(chip);
4063 4064 4065
		return err;
	}

4066 4067
	return 0;
}
4068 4069 4070 4071

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4072
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4073

4074 4075
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4076 4077 4078
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4079 4080 4081 4082
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
	register_switch_driver(&mv88e6xxx_switch_driver);
	return mdio_driver_register(&mv88e6xxx_driver);
}
4102 4103 4104 4105
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4106
	mdio_driver_unregister(&mv88e6xxx_driver);
4107
	unregister_switch_driver(&mv88e6xxx_switch_driver);
4108 4109
}
module_exit(mv88e6xxx_cleanup);
4110 4111 4112 4113

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");