amd_iommu.c 84.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34
#include <asm/msidef.h>
35
#include <asm/proto.h>
36
#include <asm/iommu.h>
37
#include <asm/gart.h>
38
#include <asm/dma.h>
39 40 41

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
42 43 44

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

45
#define LOOP_TIMEOUT	100000
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define AMD_IOMMU_PGSIZES	(~0xFFFUL)

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77 78 79 80
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

81 82
static struct iommu_ops amd_iommu_ops;

83
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84
int amd_iommu_max_glx_val = -1;
85

86 87
static struct dma_map_ops amd_iommu_dma_ops;

88 89 90
/*
 * general struct to manage commands send to an IOMMU
 */
91
struct iommu_cmd {
92 93 94
	u32 data[4];
};

95
static void update_domain(struct protection_domain *domain);
96
static int __init alloc_passthrough_domain(void);
97

98 99 100 101 102 103
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

104
static struct iommu_dev_data *alloc_dev_data(u16 devid)
105 106 107 108 109 110 111 112
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

113
	dev_data->devid = devid;
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

165 166 167 168 169 170 171
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

172 173 174 175 176
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

177 178 179 180
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
181 182
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
183 184 185 186 187 188 189 190 191 192 193 194
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

195 196 197 198 199 200 201 202 203
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
244
	if (dev->bus != &pci_bus_type)
245 246 247 248 249 250 251 252 253 254 255 256 257 258
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

259 260 261 262 263 264 265 266
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
{
	pci_dev_put(*from);
	*from = to;
}

#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

267 268
static int iommu_init_device(struct device *dev)
{
269
	struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
270
	struct iommu_dev_data *dev_data;
271
	struct iommu_group *group;
272
	u16 alias;
273
	int ret;
274 275 276 277

	if (dev->archdata.iommu)
		return 0;

278
	dev_data = find_dev_data(get_device_id(dev));
279 280 281
	if (!dev_data)
		return -ENOMEM;

282
	alias = amd_iommu_alias_table[dev_data->devid];
283
	if (alias != dev_data->devid) {
284
		struct iommu_dev_data *alias_data;
285

286 287 288 289
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
290 291 292
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
293
		dev_data->alias_data = alias_data;
294 295 296 297 298

		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
	} else
		dma_pdev = pci_dev_get(pdev);

299
	/* Account for quirked devices */
300 301
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

302 303 304 305
	/*
	 * If it's a multifunction device that does not support our
	 * required ACS flags, add to the same group as function 0.
	 */
306 307 308 309 310 311 312
	if (dma_pdev->multifunction &&
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
		swap_pci_ref(&dma_pdev,
			     pci_get_slot(dma_pdev->bus,
					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
					  0)));

313 314 315 316 317
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
318
	while (!pci_is_root_bus(dma_pdev->bus)) {
319 320 321 322 323 324 325 326 327 328
		struct pci_bus *bus = dma_pdev->bus;

		while (!bus->self) {
			if (!pci_is_root_bus(bus))
				bus = bus->parent;
			else
				goto root_bus;
		}

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
329 330
			break;

331
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
332 333
	}

334
root_bus:
335 336 337 338 339 340
	group = iommu_group_get(&dma_pdev->dev);
	pci_dev_put(dma_pdev);
	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);
341
	}
342

343 344 345 346 347 348 349
	ret = iommu_group_add_device(group, dev);

	iommu_group_put(group);

	if (ret)
		return ret;

350 351 352 353 354 355 356
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

357 358 359 360 361
	dev->archdata.iommu = dev_data;

	return 0;
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

376 377
static void iommu_uninit_device(struct device *dev)
{
378 379
	iommu_group_remove_device(dev);

380 381 382 383 384
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
385
}
J
Joerg Roedel 已提交
386 387 388

void __init amd_iommu_uninit_devices(void)
{
389
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
390 391 392 393 394 395 396 397 398
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
399 400 401 402

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
416 417 418
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
419 420 421 422 423 424 425 426 427 428 429
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
430 431 432 433 434 435
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

436
DECLARE_STATS_COUNTER(compl_wait);
437
DECLARE_STATS_COUNTER(cnt_map_single);
438
DECLARE_STATS_COUNTER(cnt_unmap_single);
439
DECLARE_STATS_COUNTER(cnt_map_sg);
440
DECLARE_STATS_COUNTER(cnt_unmap_sg);
441
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
442
DECLARE_STATS_COUNTER(cnt_free_coherent);
443
DECLARE_STATS_COUNTER(cross_page);
444
DECLARE_STATS_COUNTER(domain_flush_single);
445
DECLARE_STATS_COUNTER(domain_flush_all);
446
DECLARE_STATS_COUNTER(alloced_io_mem);
447
DECLARE_STATS_COUNTER(total_map_requests);
448 449 450 451 452
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
472
					 &amd_iommu_unmap_flush);
473 474

	amd_iommu_stats_add(&compl_wait);
475
	amd_iommu_stats_add(&cnt_map_single);
476
	amd_iommu_stats_add(&cnt_unmap_single);
477
	amd_iommu_stats_add(&cnt_map_sg);
478
	amd_iommu_stats_add(&cnt_unmap_sg);
479
	amd_iommu_stats_add(&cnt_alloc_coherent);
480
	amd_iommu_stats_add(&cnt_free_coherent);
481
	amd_iommu_stats_add(&cross_page);
482
	amd_iommu_stats_add(&domain_flush_single);
483
	amd_iommu_stats_add(&domain_flush_all);
484
	amd_iommu_stats_add(&alloced_io_mem);
485
	amd_iommu_stats_add(&total_map_requests);
486 487 488 489
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
490 491 492 493
}

#endif

494 495 496 497 498 499
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

500 501 502 503
static void dump_dte_entry(u16 devid)
{
	int i;

504 505
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
506 507 508
			amd_iommu_dev_table[devid].data[i]);
}

509 510 511 512 513 514 515 516 517
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

518
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
519
{
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
541

542
	printk(KERN_ERR "AMD-Vi: Event logged [");
543 544 545 546 547 548 549

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
550
		dump_dte_entry(devid);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
572
		dump_command(address);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
593 594

	memset(__evt, 0, 4 * sizeof(u32));
595 596 597 598 599 600 601 602 603 604 605 606 607
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
608
		iommu_print_event(iommu, iommu->evt_buf + head);
609 610 611 612 613 614 615 616
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

617
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
618 619 620
{
	struct amd_iommu_fault fault;

621 622
	INC_STATS_COUNTER(pri_requests);

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

645 646 647
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

648 649 650 651 652 653
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
670

671 672 673
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
674

675 676 677 678 679 680 681
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
682 683
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
684 685 686 687 688 689 690 691 692 693 694 695 696 697

		/*
		 * Release iommu->lock because ppr-handling might need to
		 * re-aquire it
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
698 699 700 701 702 703
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

704
irqreturn_t amd_iommu_int_thread(int irq, void *data)
705
{
706 707
	struct amd_iommu *iommu;

708
	for_each_iommu(iommu) {
709
		iommu_poll_events(iommu);
710 711
		iommu_poll_ppr_log(iommu);
	}
712 713

	return IRQ_HANDLED;
714 715
}

716 717 718 719 720
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

721 722 723 724 725 726
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
747 748 749
{
	u8 *target;

750
	target = iommu->cmd_buf + tail;
751 752 753 754 755 756
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
757
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
758
}
759

760
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
761
{
762 763
	WARN_ON(address & 0x7ULL);

764
	memset(cmd, 0, sizeof(*cmd));
765 766 767
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
768 769 770
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

771 772 773 774 775 776 777
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

894 895 896 897
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
898 899
}

900 901
/*
 * Writes the command to the IOMMUs command buffer and informs the
902
 * hardware about the new command.
903
 */
904 905 906
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
907
{
908
	u32 left, tail, head, next_tail;
909 910
	unsigned long flags;

911
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
912 913

again:
914 915
	spin_lock_irqsave(&iommu->lock, flags);

916 917 918 919
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
920

921 922 923 924
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
925

926 927
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
928

929 930 931 932 933 934
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
935 936
	}

937 938 939
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
940
	iommu->need_sync = sync;
941

942
	spin_unlock_irqrestore(&iommu->lock, flags);
943

944
	return 0;
945 946
}

947 948 949 950 951
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

952 953 954 955
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
956
static int iommu_completion_wait(struct amd_iommu *iommu)
957 958
{
	struct iommu_cmd cmd;
959
	volatile u64 sem = 0;
960
	int ret;
961

962
	if (!iommu->need_sync)
963
		return 0;
964

965
	build_completion_wait(&cmd, (u64)&sem);
966

967
	ret = iommu_queue_command_sync(iommu, &cmd, false);
968
	if (ret)
969
		return ret;
970

971
	return wait_on_sem(&sem);
972 973
}

974
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
975
{
976
	struct iommu_cmd cmd;
977

978
	build_inv_dte(&cmd, devid);
979

980 981
	return iommu_queue_command(iommu, &cmd);
}
982

983 984 985
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
986

987 988
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
989

990 991
	iommu_completion_wait(iommu);
}
992

993 994 995 996 997 998 999
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1000

1001 1002 1003 1004 1005 1006
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1007

1008
	iommu_completion_wait(iommu);
1009 1010
}

1011
static void iommu_flush_all(struct amd_iommu *iommu)
1012
{
1013
	struct iommu_cmd cmd;
1014

1015
	build_inv_all(&cmd);
1016

1017 1018 1019 1020
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1021 1022
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1023 1024 1025 1026 1027
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
1028 1029 1030
	}
}

1031
/*
1032
 * Command send function for flushing on-device TLB
1033
 */
1034 1035
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1036 1037
{
	struct amd_iommu *iommu;
1038
	struct iommu_cmd cmd;
1039
	int qdep;
1040

1041 1042
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1043

1044
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1045 1046

	return iommu_queue_command(iommu, &cmd);
1047 1048
}

1049 1050 1051
/*
 * Command send function for invalidating a device table entry
 */
1052
static int device_flush_dte(struct iommu_dev_data *dev_data)
1053
{
1054
	struct amd_iommu *iommu;
1055
	int ret;
1056

1057
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1058

1059
	ret = iommu_flush_dte(iommu, dev_data->devid);
1060 1061 1062
	if (ret)
		return ret;

1063
	if (dev_data->ats.enabled)
1064
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1065 1066

	return ret;
1067 1068
}

1069 1070 1071 1072 1073
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1074 1075
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1076
{
1077
	struct iommu_dev_data *dev_data;
1078 1079
	struct iommu_cmd cmd;
	int ret = 0, i;
1080

1081
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1082

1083 1084 1085 1086 1087 1088 1089 1090
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1091
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1092 1093
	}

1094 1095
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1096
		if (!dev_data->ats.enabled)
1097 1098
			continue;

1099
		ret |= device_flush_iotlb(dev_data, address, size);
1100 1101
	}

1102
	WARN_ON(ret);
1103 1104
}

1105 1106
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1107
{
1108
	__domain_flush_pages(domain, address, size, 0);
1109
}
1110

1111
/* Flush the whole IO/TLB for a given protection domain */
1112
static void domain_flush_tlb(struct protection_domain *domain)
1113
{
1114
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1115 1116
}

1117
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1118
static void domain_flush_tlb_pde(struct protection_domain *domain)
1119
{
1120
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1121 1122
}

1123
static void domain_flush_complete(struct protection_domain *domain)
1124
{
1125
	int i;
1126

1127 1128 1129
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1130

1131 1132 1133 1134 1135
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1136
	}
1137 1138
}

1139

1140
/*
1141
 * This function flushes the DTEs for all devices in domain
1142
 */
1143
static void domain_flush_devices(struct protection_domain *domain)
1144
{
1145
	struct iommu_dev_data *dev_data;
1146

1147
	list_for_each_entry(dev_data, &domain->dev_list, list)
1148
		device_flush_dte(dev_data);
1149 1150
}

1151 1152 1153 1154 1155 1156 1157
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1187
		      unsigned long page_size,
1188 1189 1190
		      u64 **pte_page,
		      gfp_t gfp)
{
1191
	int level, end_lvl;
1192
	u64 *pte, *page;
1193 1194

	BUG_ON(!is_power_of_2(page_size));
1195 1196 1197 1198

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1199 1200 1201 1202
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1203 1204 1205 1206 1207 1208 1209 1210 1211

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1212 1213 1214 1215
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1233
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1234 1235 1236 1237
{
	int level;
	u64 *pte;

1238 1239 1240 1241 1242
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1243

1244 1245 1246
	while (level > 0) {

		/* Not Present */
1247 1248 1249
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1269 1270
		level -= 1;

1271
		/* Walk to the next level */
1272 1273 1274 1275 1276 1277 1278
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1279 1280 1281 1282 1283 1284 1285
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1286 1287 1288
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1289
			  int prot,
1290
			  unsigned long page_size)
1291
{
1292
	u64 __pte, *pte;
1293
	int i, count;
1294

1295
	if (!(prot & IOMMU_PROT_MASK))
1296 1297
		return -EINVAL;

1298 1299 1300 1301 1302 1303 1304 1305
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1306

1307 1308 1309 1310 1311
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1312 1313 1314 1315 1316 1317

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1318 1319
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1320

1321 1322
	update_domain(dom);

1323 1324 1325
	return 0;
}

1326 1327 1328
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1329
{
1330 1331 1332 1333 1334 1335
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1366

1367
	return unmapped;
1368 1369
}

1370 1371 1372 1373
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1388 1389 1390 1391
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1392 1393 1394 1395 1396 1397 1398 1399
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1400
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1401
				     PAGE_SIZE);
1402 1403 1404 1405 1406 1407 1408
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1409
			__set_bit(addr >> PAGE_SHIFT,
1410
				  dma_dom->aperture[0]->bitmap);
1411 1412 1413 1414 1415
	}

	return 0;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1438 1439 1440
/*
 * Inits the unity mappings required for a specific device
 */
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1467

1468
/*
1469
 * The address allocator core functions.
1470 1471 1472
 *
 * called with domain->lock held
 */
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1494 1495 1496 1497 1498
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1499
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1500 1501 1502
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1503
	struct amd_iommu *iommu;
1504
	unsigned long i, old_size;
1505

1506 1507 1508 1509
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1529
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1540
	old_size                = dma_dom->aperture_size;
1541 1542
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1555
	/* Initialize the exclusion range if necessary */
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1578
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1579 1580 1581
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1582
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1583 1584
	}

1585 1586
	update_domain(&dma_dom->domain);

1587 1588 1589
	return 0;

out_free:
1590 1591
	update_domain(&dma_dom->domain);

1592 1593 1594 1595 1596 1597 1598 1599
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1600 1601 1602 1603 1604 1605 1606
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1607
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1608 1609 1610 1611 1612 1613
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1614 1615
	next_bit >>= PAGE_SHIFT;

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1634
			dom->next_address = address + (pages << PAGE_SHIFT);
1635 1636 1637 1638 1639 1640 1641 1642 1643
			break;
		}

		next_bit = 0;
	}

	return address;
}

1644 1645
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1646
					     unsigned int pages,
1647 1648
					     unsigned long align_mask,
					     u64 dma_mask)
1649 1650 1651
{
	unsigned long address;

1652 1653 1654 1655
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1656

1657
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1658
				     dma_mask, dom->next_address);
1659

1660
	if (address == -1) {
1661
		dom->next_address = 0;
1662 1663
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1664 1665
		dom->need_flush = true;
	}
1666

1667
	if (unlikely(address == -1))
1668
		address = DMA_ERROR_CODE;
1669 1670 1671 1672 1673 1674

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1675 1676 1677 1678 1679
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1680 1681 1682 1683
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1684 1685
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1686

1687 1688
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1689 1690 1691 1692
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1693

1694
	if (address >= dom->next_address)
1695
		dom->need_flush = true;
1696 1697

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1698

A
Akinobu Mita 已提交
1699
	bitmap_clear(range->bitmap, address, pages);
1700

1701 1702
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1765
static void free_pagetable(struct protection_domain *domain)
1766 1767 1768 1769
{
	int i, j;
	u64 *p1, *p2, *p3;

1770
	p1 = domain->pt_root;
1771 1772 1773 1774 1775 1776 1777 1778 1779

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1780
		for (j = 0; j < 512; ++j) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1791 1792

	domain->pt_root = NULL;
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1825 1826
static void free_gcr3_table(struct protection_domain *domain)
{
1827 1828 1829 1830 1831 1832 1833
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1834 1835 1836
	free_page((unsigned long)domain->gcr3_tbl);
}

1837 1838 1839 1840
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1841 1842
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1843 1844
	int i;

1845 1846 1847
	if (!dom)
		return;

1848 1849
	del_domain_from_list(&dom->domain);

1850
	free_pagetable(&dom->domain);
1851

1852 1853 1854 1855 1856 1857
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1858 1859 1860 1861

	kfree(dom);
}

1862 1863
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1864
 * It also initializes the page table and the address allocator data
1865 1866
 * structures required for the dma_ops interface
 */
1867
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1880
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1881
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1882
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1883
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1884 1885 1886 1887
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1888
	dma_dom->need_flush = false;
1889
	dma_dom->target_dev = 0xffff;
1890

1891 1892
	add_domain_to_list(&dma_dom->domain);

1893
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1894 1895
		goto free_dma_dom;

1896
	/*
1897 1898
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1899
	 */
1900
	dma_dom->aperture[0]->bitmap[0] = 1;
1901
	dma_dom->next_address = 0;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1921
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1922
{
1923
	u64 pte_root = 0;
1924
	u64 flags = 0;
1925

1926 1927 1928
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1929 1930 1931
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1932

1933 1934
	flags = amd_iommu_dev_table[devid].data[1];

1935 1936 1937
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1964 1965 1966 1967 1968
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1969 1970 1971 1972 1973 1974 1975 1976 1977
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1978 1979
}

1980 1981
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1982 1983
{
	struct amd_iommu *iommu;
1984
	bool ats;
1985

1986 1987
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1988 1989 1990 1991

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1992
	set_dte_entry(dev_data->devid, domain, ats);
1993 1994 1995 1996 1997 1998

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1999
	device_flush_dte(dev_data);
2000 2001
}

2002
static void do_detach(struct iommu_dev_data *dev_data)
2003 2004 2005
{
	struct amd_iommu *iommu;

2006
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2007 2008

	/* decrease reference counters */
2009 2010 2011 2012 2013 2014
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2015
	clear_dte_entry(dev_data->devid);
2016

2017
	/* Flush the DTE entry */
2018
	device_flush_dte(dev_data);
2019 2020 2021 2022 2023 2024
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2025
static int __attach_device(struct iommu_dev_data *dev_data,
2026
			   struct protection_domain *domain)
2027
{
2028
	int ret;
2029

2030 2031 2032
	/* lock domain */
	spin_lock(&domain->lock);

2033 2034
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2035

2036 2037 2038 2039 2040
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2041

2042 2043 2044
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2045

2046
		/* Do real assignment */
2047
		if (alias_data->domain == NULL)
2048
			do_attach(alias_data, domain);
2049 2050

		atomic_inc(&alias_data->bind);
2051
	}
2052

2053
	if (dev_data->domain == NULL)
2054
		do_attach(dev_data, domain);
2055

2056 2057
	atomic_inc(&dev_data->bind);

2058 2059 2060 2061
	ret = 0;

out_unlock:

2062 2063
	/* ready */
	spin_unlock(&domain->lock);
2064

2065
	return ret;
2066
}
2067

2068 2069 2070 2071 2072 2073 2074 2075

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2076 2077 2078 2079 2080 2081
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2082
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2083 2084 2085
	if (!pos)
		return -EINVAL;

2086 2087 2088
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2089 2090 2091 2092

	return 0;
}

2093 2094
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2095 2096 2097 2098 2099 2100 2101 2102
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2114 2115
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2116 2117 2118
	if (ret)
		goto out_err;

2119 2120 2121 2122 2123 2124
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2138
/* FIXME: Move this to PCI code */
2139
#define PCI_PRI_TLP_OFF		(1 << 15)
2140

J
Joerg Roedel 已提交
2141
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2142
{
2143
	u16 status;
2144 2145
	int pos;

2146
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2147 2148 2149
	if (!pos)
		return false;

2150
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2151

2152
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2153 2154
}

2155 2156 2157 2158
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2159 2160
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2161
{
2162
	struct pci_dev *pdev = to_pci_dev(dev);
2163
	struct iommu_dev_data *dev_data;
2164
	unsigned long flags;
2165
	int ret;
2166

2167 2168
	dev_data = get_dev_data(dev);

2169 2170 2171 2172 2173 2174 2175 2176 2177
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2178
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2179 2180
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2181 2182 2183
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2184

2185
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2186
	ret = __attach_device(dev_data, domain);
2187 2188
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2189 2190 2191 2192 2193
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2194
	domain_flush_tlb_pde(domain);
2195 2196

	return ret;
2197 2198
}

2199 2200 2201
/*
 * Removes a device from a protection domain (unlocked)
 */
2202
static void __detach_device(struct iommu_dev_data *dev_data)
2203
{
2204
	struct protection_domain *domain;
2205
	unsigned long flags;
2206

2207
	BUG_ON(!dev_data->domain);
2208

2209 2210 2211
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2212

2213 2214 2215
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2216
		if (atomic_dec_and_test(&alias_data->bind))
2217
			do_detach(alias_data);
2218 2219
	}

2220
	if (atomic_dec_and_test(&dev_data->bind))
2221
		do_detach(dev_data);
2222

2223
	spin_unlock_irqrestore(&domain->lock, flags);
2224 2225 2226

	/*
	 * If we run in passthrough mode the device must be assigned to the
2227 2228
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2229
	 */
2230
	if (dev_data->passthrough &&
2231
	    (dev_data->domain == NULL && domain != pt_domain))
2232
		__attach_device(dev_data, pt_domain);
2233 2234 2235 2236 2237
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2238
static void detach_device(struct device *dev)
2239
{
2240
	struct protection_domain *domain;
2241
	struct iommu_dev_data *dev_data;
2242 2243
	unsigned long flags;

2244
	dev_data = get_dev_data(dev);
2245
	domain   = dev_data->domain;
2246

2247 2248
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2249
	__detach_device(dev_data);
2250
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2251

2252 2253 2254
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2255
		pci_disable_ats(to_pci_dev(dev));
2256 2257

	dev_data->ats.enabled = false;
2258
}
2259

2260 2261 2262 2263 2264 2265
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2266
	struct iommu_dev_data *dev_data;
2267
	struct protection_domain *dom = NULL;
2268 2269
	unsigned long flags;

2270
	dev_data   = get_dev_data(dev);
2271

2272 2273
	if (dev_data->domain)
		return dev_data->domain;
2274

2275 2276
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2277 2278 2279 2280 2281 2282 2283 2284

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2285 2286 2287 2288

	return dom;
}

2289 2290 2291 2292
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2293 2294 2295
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2296
	struct amd_iommu *iommu;
2297
	unsigned long flags;
2298
	u16 devid;
2299

2300 2301
	if (!check_device(dev))
		return 0;
2302

2303 2304 2305
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2306 2307

	switch (action) {
2308
	case BUS_NOTIFY_UNBOUND_DRIVER:
2309 2310 2311

		domain = domain_for_device(dev);

2312 2313
		if (!domain)
			goto out;
2314
		if (dev_data->passthrough)
2315
			break;
2316
		detach_device(dev);
2317 2318
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2319 2320 2321

		iommu_init_device(dev);

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2334 2335
		domain = domain_for_device(dev);

2336 2337 2338 2339
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2340
		dma_domain = dma_ops_domain_alloc();
2341 2342 2343 2344 2345 2346 2347 2348
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2349 2350
		dev_data = get_dev_data(dev);

2351
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2352

2353
		break;
2354 2355 2356 2357
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2368
static struct notifier_block device_nb = {
2369 2370
	.notifier_call = device_change_notifier,
};
2371

2372 2373 2374 2375 2376
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2390
static struct protection_domain *get_domain(struct device *dev)
2391
{
2392
	struct protection_domain *domain;
2393
	struct dma_ops_domain *dma_dom;
2394
	u16 devid = get_device_id(dev);
2395

2396
	if (!check_device(dev))
2397
		return ERR_PTR(-EINVAL);
2398

2399 2400 2401
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2402

2403 2404
	if (domain != NULL)
		return domain;
2405

2406
	/* Device not bount yet - bind it */
2407
	dma_dom = find_protection_domain(devid);
2408
	if (!dma_dom)
2409 2410
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2411
	DUMP_printk("Using protection domain %d for device %s\n",
2412
		    dma_dom->domain.id, dev_name(dev));
2413

2414
	return &dma_dom->domain;
2415 2416
}

2417 2418
static void update_device_table(struct protection_domain *domain)
{
2419
	struct iommu_dev_data *dev_data;
2420

2421 2422
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2423 2424 2425 2426 2427 2428 2429 2430
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2431 2432 2433

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2434 2435 2436 2437

	domain->updated = false;
}

2438 2439 2440 2441 2442 2443
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2444
	struct aperture_range *aperture;
2445 2446
	u64 *pte, *pte_page;

2447 2448 2449 2450 2451
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2452
	if (!pte) {
2453
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2454
				GFP_ATOMIC);
2455 2456
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2457
		pte += PM_LEVEL_INDEX(0, address);
2458

2459
	update_domain(&dom->domain);
2460 2461 2462 2463

	return pte;
}

2464 2465 2466 2467
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2468
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2479
	pte  = dma_ops_get_pte(dom, address);
2480
	if (!pte)
2481
		return DMA_ERROR_CODE;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2499 2500 2501
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2502
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2503 2504
				 unsigned long address)
{
2505
	struct aperture_range *aperture;
2506 2507 2508 2509 2510
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2511 2512 2513 2514 2515 2516 2517
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2518

2519
	pte += PM_LEVEL_INDEX(0, address);
2520 2521 2522 2523 2524 2525

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2526 2527
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2528 2529
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2530 2531
 * Must be called with the domain lock held.
 */
2532 2533 2534 2535
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2536
			       int dir,
2537 2538
			       bool align,
			       u64 dma_mask)
2539 2540
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2541
	dma_addr_t address, start, ret;
2542
	unsigned int pages;
2543
	unsigned long align_mask = 0;
2544 2545
	int i;

2546
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2547 2548
	paddr &= PAGE_MASK;

2549 2550
	INC_STATS_COUNTER(total_map_requests);

2551 2552 2553
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2554 2555 2556
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2557
retry:
2558 2559
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2560
	if (unlikely(address == DMA_ERROR_CODE)) {
2561 2562 2563 2564 2565 2566 2567
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2568
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2569 2570 2571
			goto out;

		/*
2572
		 * aperture was successfully enlarged by 128 MB, try
2573 2574 2575 2576
		 * allocation again
		 */
		goto retry;
	}
2577 2578 2579

	start = address;
	for (i = 0; i < pages; ++i) {
2580
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2581
		if (ret == DMA_ERROR_CODE)
2582 2583
			goto out_unmap;

2584 2585 2586 2587 2588
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2589 2590
	ADD_STATS_COUNTER(alloced_io_mem, size);

2591
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2592
		domain_flush_tlb(&dma_dom->domain);
2593
		dma_dom->need_flush = false;
2594
	} else if (unlikely(amd_iommu_np_cache))
2595
		domain_flush_pages(&dma_dom->domain, address, size);
2596

2597 2598
out:
	return address;
2599 2600 2601 2602 2603

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2604
		dma_ops_domain_unmap(dma_dom, start);
2605 2606 2607 2608
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2609
	return DMA_ERROR_CODE;
2610 2611
}

2612 2613 2614 2615
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2616
static void __unmap_single(struct dma_ops_domain *dma_dom,
2617 2618 2619 2620
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2621
	dma_addr_t flush_addr;
2622 2623 2624
	dma_addr_t i, start;
	unsigned int pages;

2625
	if ((dma_addr == DMA_ERROR_CODE) ||
2626
	    (dma_addr + size > dma_dom->aperture_size))
2627 2628
		return;

2629
	flush_addr = dma_addr;
2630
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2631 2632 2633 2634
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2635
		dma_ops_domain_unmap(dma_dom, start);
2636 2637 2638
		start += PAGE_SIZE;
	}

2639 2640
	SUB_STATS_COUNTER(alloced_io_mem, size);

2641
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2642

2643
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2644
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2645 2646
		dma_dom->need_flush = false;
	}
2647 2648
}

2649 2650 2651
/*
 * The exported map_single function for dma_ops.
 */
2652 2653 2654 2655
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2656 2657 2658 2659
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2660
	u64 dma_mask;
2661
	phys_addr_t paddr = page_to_phys(page) + offset;
2662

2663 2664
	INC_STATS_COUNTER(cnt_map_single);

2665 2666
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2667
		return (dma_addr_t)paddr;
2668 2669
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2670

2671 2672
	dma_mask = *dev->dma_mask;

2673
	spin_lock_irqsave(&domain->lock, flags);
2674

2675
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2676
			    dma_mask);
2677
	if (addr == DMA_ERROR_CODE)
2678 2679
		goto out;

2680
	domain_flush_complete(domain);
2681 2682 2683 2684 2685 2686 2687

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2688 2689 2690
/*
 * The exported unmap_single function for dma_ops.
 */
2691 2692
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2693 2694 2695 2696
{
	unsigned long flags;
	struct protection_domain *domain;

2697 2698
	INC_STATS_COUNTER(cnt_unmap_single);

2699 2700
	domain = get_domain(dev);
	if (IS_ERR(domain))
2701 2702
		return;

2703 2704
	spin_lock_irqsave(&domain->lock, flags);

2705
	__unmap_single(domain->priv, dma_addr, size, dir);
2706

2707
	domain_flush_complete(domain);
2708 2709 2710 2711

	spin_unlock_irqrestore(&domain->lock, flags);
}

2712 2713 2714 2715
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2730 2731 2732 2733
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2734
static int map_sg(struct device *dev, struct scatterlist *sglist,
2735 2736
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2737 2738 2739 2740 2741 2742 2743
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2744
	u64 dma_mask;
2745

2746 2747
	INC_STATS_COUNTER(cnt_map_sg);

2748 2749
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2750
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2751 2752
	else if (IS_ERR(domain))
		return 0;
2753

2754
	dma_mask = *dev->dma_mask;
2755 2756 2757 2758 2759 2760

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2761
		s->dma_address = __map_single(dev, domain->priv,
2762 2763
					      paddr, s->length, dir, false,
					      dma_mask);
2764 2765 2766 2767 2768 2769 2770 2771

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2772
	domain_flush_complete(domain);
2773 2774 2775 2776 2777 2778 2779 2780

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2781
			__unmap_single(domain->priv, s->dma_address,
2782 2783 2784 2785 2786 2787 2788 2789 2790
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2791 2792 2793 2794
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2795
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2796 2797
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2798 2799 2800 2801 2802 2803
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2804 2805
	INC_STATS_COUNTER(cnt_unmap_sg);

2806 2807
	domain = get_domain(dev);
	if (IS_ERR(domain))
2808 2809
		return;

2810 2811 2812
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2813
		__unmap_single(domain->priv, s->dma_address,
2814 2815 2816 2817
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2818
	domain_flush_complete(domain);
2819 2820 2821 2822

	spin_unlock_irqrestore(&domain->lock, flags);
}

2823 2824 2825
/*
 * The exported alloc_coherent function for dma_ops.
 */
2826
static void *alloc_coherent(struct device *dev, size_t size,
2827 2828
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2829 2830 2831 2832 2833
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2834
	u64 dma_mask = dev->coherent_dma_mask;
2835

2836 2837
	INC_STATS_COUNTER(cnt_alloc_coherent);

2838 2839
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2840 2841 2842
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2843 2844
	} else if (IS_ERR(domain))
		return NULL;
2845

2846 2847 2848
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2849 2850 2851

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2852
		return NULL;
2853 2854 2855

	paddr = virt_to_phys(virt_addr);

2856 2857 2858
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2859 2860
	spin_lock_irqsave(&domain->lock, flags);

2861
	*dma_addr = __map_single(dev, domain->priv, paddr,
2862
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2863

2864
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2865
		spin_unlock_irqrestore(&domain->lock, flags);
2866
		goto out_free;
J
Jiri Slaby 已提交
2867
	}
2868

2869
	domain_flush_complete(domain);
2870 2871 2872 2873

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2874 2875 2876 2877 2878 2879

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2880 2881
}

2882 2883 2884
/*
 * The exported free_coherent function for dma_ops.
 */
2885
static void free_coherent(struct device *dev, size_t size,
2886 2887
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2888 2889 2890 2891
{
	unsigned long flags;
	struct protection_domain *domain;

2892 2893
	INC_STATS_COUNTER(cnt_free_coherent);

2894 2895
	domain = get_domain(dev);
	if (IS_ERR(domain))
2896 2897
		goto free_mem;

2898 2899
	spin_lock_irqsave(&domain->lock, flags);

2900
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2901

2902
	domain_flush_complete(domain);
2903 2904 2905 2906 2907 2908 2909

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2910 2911 2912 2913 2914 2915
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2916
	return check_device(dev);
2917 2918
}

2919
/*
2920 2921
 * The function for pre-allocating protection domains.
 *
2922 2923 2924 2925
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
2926
static void __init prealloc_protection_domains(void)
2927
{
2928
	struct iommu_dev_data *dev_data;
2929
	struct dma_ops_domain *dma_dom;
2930
	struct pci_dev *dev = NULL;
2931
	u16 devid;
2932

2933
	for_each_pci_dev(dev) {
2934 2935 2936

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2937
			continue;
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2949
		/* Is there already any domain for it? */
2950
		if (domain_for_device(&dev->dev))
2951
			continue;
2952 2953 2954

		devid = get_device_id(&dev->dev);

2955
		dma_dom = dma_ops_domain_alloc();
2956 2957 2958
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2959 2960
		dma_dom->target_dev = devid;

2961
		attach_device(&dev->dev, &dma_dom->domain);
2962

2963
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2964 2965 2966
	}
}

2967
static struct dma_map_ops amd_iommu_dma_ops = {
2968 2969
	.alloc = alloc_coherent,
	.free = free_coherent,
2970 2971
	.map_page = map_page,
	.unmap_page = unmap_page,
2972 2973
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2974
	.dma_supported = amd_iommu_dma_supported,
2975 2976
};

2977 2978
static unsigned device_dma_ops_init(void)
{
2979
	struct iommu_dev_data *dev_data;
2980 2981 2982 2983 2984
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
2985 2986 2987

			iommu_ignore_device(&pdev->dev);

2988 2989 2990 2991
			unhandled += 1;
			continue;
		}

2992 2993 2994 2995 2996 2997
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2998 2999 3000 3001 3002
	}

	return unhandled;
}

3003 3004 3005
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3006 3007 3008

void __init amd_iommu_init_api(void)
{
3009
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3010 3011
}

3012 3013 3014
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3015
	int ret, unhandled;
3016

3017 3018 3019 3020 3021
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3022
	for_each_iommu(iommu) {
3023
		iommu->default_dom = dma_ops_domain_alloc();
3024 3025
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3026
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3027 3028 3029 3030 3031
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3032
	/*
3033
	 * Pre-allocate the protection domains for each device.
3034
	 */
3035
	prealloc_protection_domains();
3036 3037

	iommu_detected = 1;
3038
	swiotlb = 0;
3039

3040
	/* Make the driver finally visible to the drivers */
3041 3042 3043 3044 3045
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3046

3047 3048
	amd_iommu_stats_init();

3049 3050 3051 3052 3053
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3054 3055 3056 3057
	return 0;

free_domains:

3058
	for_each_iommu(iommu) {
3059 3060 3061 3062 3063 3064
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3078
	struct iommu_dev_data *dev_data, *next;
3079 3080 3081 3082
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3083
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3084
		__detach_device(dev_data);
3085 3086
		atomic_set(&dev_data->bind, 0);
	}
3087 3088 3089 3090

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3091 3092 3093 3094 3095
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3096 3097
	del_domain_from_list(domain);

3098 3099 3100 3101 3102 3103 3104
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3105 3106 3107 3108 3109
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3110
		return NULL;
3111 3112

	spin_lock_init(&domain->lock);
3113
	mutex_init(&domain->api_lock);
3114 3115
	domain->id = domain_id_alloc();
	if (!domain->id)
3116
		goto out_err;
3117
	INIT_LIST_HEAD(&domain->dev_list);
3118

3119 3120
	add_domain_to_list(domain);

3121 3122 3123 3124 3125 3126 3127 3128
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3143 3144 3145 3146 3147 3148
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3149
		goto out_free;
3150 3151

	domain->mode    = PAGE_MODE_3_LEVEL;
3152 3153 3154 3155
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3156 3157
	domain->iommu_domain = dom;

3158 3159
	dom->priv = domain;

3160 3161 3162 3163
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3164 3165 3166
	return 0;

out_free:
3167
	protection_domain_free(domain);
3168 3169 3170 3171

	return -ENOMEM;
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3184 3185
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3186

3187 3188 3189
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3190
	protection_domain_free(domain);
3191 3192 3193 3194

	dom->priv = NULL;
}

3195 3196 3197
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3198
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3199 3200 3201
	struct amd_iommu *iommu;
	u16 devid;

3202
	if (!check_device(dev))
3203 3204
		return;

3205
	devid = get_device_id(dev);
3206

3207
	if (dev_data->domain != NULL)
3208
		detach_device(dev);
3209 3210 3211 3212 3213 3214 3215 3216

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3217 3218 3219 3220
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3221
	struct iommu_dev_data *dev_data;
3222
	struct amd_iommu *iommu;
3223
	int ret;
3224

3225
	if (!check_device(dev))
3226 3227
		return -EINVAL;

3228 3229
	dev_data = dev->archdata.iommu;

3230
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3231 3232 3233
	if (!iommu)
		return -EINVAL;

3234
	if (dev_data->domain)
3235
		detach_device(dev);
3236

3237
	ret = attach_device(dev, domain);
3238 3239 3240

	iommu_completion_wait(iommu);

3241
	return ret;
3242 3243
}

3244
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3245
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3246 3247 3248 3249 3250
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3251 3252 3253
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3254 3255 3256 3257 3258
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3259
	mutex_lock(&domain->api_lock);
3260
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3261 3262
	mutex_unlock(&domain->api_lock);

3263
	return ret;
3264 3265
}

3266 3267
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3268 3269
{
	struct protection_domain *domain = dom->priv;
3270
	size_t unmap_size;
3271

3272 3273 3274
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3275
	mutex_lock(&domain->api_lock);
3276
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3277
	mutex_unlock(&domain->api_lock);
3278

3279
	domain_flush_tlb_pde(domain);
3280

3281
	return unmap_size;
3282 3283
}

3284 3285 3286 3287
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3288
	unsigned long offset_mask;
3289
	phys_addr_t paddr;
3290
	u64 *pte, __pte;
3291

3292 3293 3294
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3295
	pte = fetch_pte(domain, iova);
3296

3297
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3298 3299
		return 0;

3300 3301 3302 3303 3304 3305 3306
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3307 3308 3309 3310

	return paddr;
}

S
Sheng Yang 已提交
3311 3312 3313
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3314 3315 3316 3317 3318
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3319 3320 3321
	return 0;
}

3322 3323 3324 3325 3326
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3327 3328
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3329
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3330
	.domain_has_cap = amd_iommu_domain_has_cap,
3331
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3332 3333
};

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3346
	struct iommu_dev_data *dev_data;
3347
	struct pci_dev *dev = NULL;
3348
	struct amd_iommu *iommu;
3349
	u16 devid;
3350
	int ret;
3351

3352 3353 3354
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3355

3356
	for_each_pci_dev(dev) {
3357
		if (!check_device(&dev->dev))
3358 3359
			continue;

3360 3361 3362
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3363 3364
		devid = get_device_id(&dev->dev);

3365
		iommu = amd_iommu_rlookup_table[devid];
3366 3367 3368
		if (!iommu)
			continue;

3369
		attach_device(&dev->dev, pt_domain);
3370 3371
	}

J
Joerg Roedel 已提交
3372 3373
	amd_iommu_stats_init();

3374 3375 3376 3377
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3519 3520
	INC_STATS_COUNTER(invalidate_iotlb);

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3541 3542
	INC_STATS_COUNTER(invalidate_iotlb_all);

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3654 3655 3656 3657 3658 3659 3660 3661

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3662 3663
	INC_STATS_COUNTER(complete_ppr);

3664 3665 3666 3667 3668 3669 3670 3671 3672
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);