intel_pstate.c 22.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

#define SAMPLE_COUNT		3

37 38 39 40
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c

41

42
#define FRAC_BITS 6
43 44
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
45
#define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
46 47 48 49 50 51 52 53 54 55 56 57

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
}

struct sample {
58
	int32_t core_pct_busy;
59 60
	u64 aperf;
	u64 mperf;
61
	unsigned long long tsc;
62 63 64 65 66 67 68 69 70 71
	int freq;
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

72 73 74 75 76 77
struct vid_data {
	int32_t min;
	int32_t max;
	int32_t ratio;
};

78 79 80 81 82 83 84
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
85
	int32_t last_err;
86 87 88 89 90 91 92 93 94 95
};

struct cpudata {
	int cpu;

	char name[64];

	struct timer_list timer;

	struct pstate_data pstate;
96
	struct vid_data vid;
97 98 99 100
	struct _pid pid;

	u64	prev_aperf;
	u64	prev_mperf;
101
	unsigned long long prev_tsc;
102
	struct sample sample;
103 104 105 106 107 108 109 110 111 112 113 114
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

115 116 117 118
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
119 120
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
121 122
};

123 124 125
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
126 127
};

128 129 130
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

131 132 133 134 135 136
struct perf_limits {
	int no_turbo;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
137 138
	int max_policy_pct;
	int max_sysfs_pct;
139 140 141 142 143 144 145 146
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
147 148
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
149 150 151 152 153 154 155
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
156
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{

	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

175
static signed int pid_calc(struct _pid *pid, int32_t busy)
176
{
177
	signed int result;
178 179 180
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

181
	fp_error = int_tofp(pid->setpoint) - busy;
182

183
	if (abs(fp_error) <= int_tofp(pid->deadband))
184 185 186 187 188 189 190 191 192 193 194 195 196
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

197 198
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
199 200 201 202 203 204 205 206

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;

	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
207 208 209
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
210 211

	pid_reset(&cpu->pid,
212
		pid_params.setpoint,
213
		100,
214
		pid_params.deadband,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
248 249 250 251 252 253
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	{NULL, NULL}
};

static struct dentry *debugfs_parent;
static void intel_pstate_debug_expose_params(void)
{
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

305 306
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};
static struct kobject *intel_pstate_kobject;

static void intel_pstate_sysfs_expose_params(void)
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/
358 359 360 361
static int byt_get_min_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
362
	return (value >> 8) & 0xFF;
363 364 365 366 367 368 369 370
}

static int byt_get_max_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
	return (value >> 16) & 0xFF;
}
371

372 373 374 375 376 377 378
static int byt_get_turbo_pstate(void)
{
	u64 value;
	rdmsrl(BYT_TURBO_RATIOS, value);
	return value & 0x3F;
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
}


415
static int core_get_min_pstate(void)
416 417
{
	u64 value;
418
	rdmsrl(MSR_PLATFORM_INFO, value);
419 420 421
	return (value >> 40) & 0xFF;
}

422
static int core_get_max_pstate(void)
423 424
{
	u64 value;
425
	rdmsrl(MSR_PLATFORM_INFO, value);
426 427 428
	return (value >> 8) & 0xFF;
}

429
static int core_get_turbo_pstate(void)
430 431 432
{
	u64 value;
	int nont, ret;
433
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
434
	nont = core_get_max_pstate();
435 436 437 438 439 440
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

441
static void core_set_pstate(struct cpudata *cpudata, int pstate)
442 443 444 445 446 447 448
{
	u64 val;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

449
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

469 470 471 472 473 474 475 476 477 478 479 480
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
481
		.get_turbo = byt_get_turbo_pstate,
482 483
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
484 485 486 487
	},
};


488 489 490
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
491
	int max_perf_adj;
492 493 494 495
	int min_perf;
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

496 497
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
517

518 519
	cpu->pstate.current_pstate = pstate;

520
	pstate_funcs.set(cpu, pstate);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
	sprintf(cpu->name, "Intel 2nd generation core");

542 543 544
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
545

546 547 548
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);

549 550 551 552 553 554 555 556 557 558
	/*
	 * goto max pstate so we don't slow up boot if we are built-in if we are
	 * a module we will take care of it during normal operation
	 */
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
}

static inline void intel_pstate_calc_busy(struct cpudata *cpu,
					struct sample *sample)
{
559 560
	int32_t core_pct;
	int32_t c0_pct;
561

562 563 564 565 566 567
	core_pct = div_fp(int_tofp((sample->aperf)),
			int_tofp((sample->mperf)));
	core_pct = mul_fp(core_pct, int_tofp(100));
	FP_ROUNDUP(core_pct);

	c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
568 569

	sample->freq = fp_toint(
570
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
571

572
	sample->core_pct_busy = mul_fp(core_pct, c0_pct);
573 574 575 576 577
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
578
	unsigned long long tsc;
579 580 581

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
582
	tsc = native_read_tsc();
583

584 585 586 587
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;
	tsc = tsc >> FRAC_BITS;

588 589 590 591 592 593
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.tsc = tsc;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
	cpu->sample.tsc -= cpu->prev_tsc;
594

595
	intel_pstate_calc_busy(cpu, &cpu->sample);
596 597 598

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
599
	cpu->prev_tsc = tsc;
600 601 602 603 604 605
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

606
	sample_time = pid_params.sample_rate_ms;
607 608 609 610
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

611
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
612
{
613
	int32_t core_busy, max_pstate, current_pstate;
614

615
	core_busy = cpu->sample.core_pct_busy;
616
	max_pstate = int_tofp(cpu->pstate.max_pstate);
617
	current_pstate = int_tofp(cpu->pstate.current_pstate);
618 619
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
	return FP_ROUNDUP(core_busy);
620 621 622 623
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
624
	int32_t busy_scaled;
625 626 627 628 629 630 631 632 633 634
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
635

636 637 638 639 640 641 642 643 644
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
645
	struct sample *sample;
646 647

	intel_pstate_sample(cpu);
648

649
	sample = &cpu->sample;
650

651
	intel_pstate_adjust_busy_pstate(cpu);
652 653 654 655 656 657 658 659

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

660 661 662 663
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
664 665
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
666 667

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
668 669
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
670
	ICPU(0x37, byt_params),
671 672 673 674 675 676
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{

	const struct x86_cpu_id *id;
	struct cpudata *cpu;

	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	intel_pstate_get_cpu_pstates(cpu);
698 699 700 701 702
	if (!cpu->pstate.current_pstate) {
		all_cpu_data[cpunum] = NULL;
		kfree(cpu);
		return -ENODATA;
	}
703 704

	cpu->cpu = cpunum;
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
730
	sample = &cpu->sample;
731 732 733 734 735 736 737 738 739
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

740 741 742
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

743 744 745 746 747 748
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
		limits.no_turbo = 0;
749
		return 0;
750
	}
751 752 753 754
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

755 756 757
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
758
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
759 760 761 762 763 764

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
765
	cpufreq_verify_within_cpu_limits(policy);
766 767 768 769 770 771 772 773

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

774
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
775
{
776 777
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
778

779 780 781 782 783 784
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

	del_timer(&all_cpu_data[cpu_num]->timer);
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
785 786
}

787
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
788 789
{
	struct cpudata *cpu;
790
	int rc;
791 792 793 794 795 796 797 798 799 800 801 802 803

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (!limits.no_turbo &&
		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

804 805
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
822
	.stop_cpu	= intel_pstate_stop_cpu,
823 824 825
	.name		= "intel_pstate",
};

826 827
static int __initdata no_load;

828 829 830 831 832 833 834 835
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

836 837 838
	if (!pstate_funcs.get_max() ||
		!pstate_funcs.get_min() ||
		!pstate_funcs.get_turbo())
839 840 841 842 843 844 845 846 847 848 849 850
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
851

852
static void copy_pid_params(struct pstate_adjust_policy *policy)
853 854 855 856 857 858 859 860 861
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

862
static void copy_cpu_funcs(struct pstate_funcs *funcs)
863 864 865 866 867
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
868
	pstate_funcs.get_vid   = funcs->get_vid;
869 870
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

	if (acpi_disabled
	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
		    && intel_pstate_no_acpi_pss())
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

937 938
static int __init intel_pstate_init(void)
{
939
	int cpu, rc = 0;
940
	const struct x86_cpu_id *id;
941
	struct cpu_defaults *cpu_info;
942

943 944 945
	if (no_load)
		return -ENODEV;

946 947 948 949
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

950 951 952 953 954 955 956
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

957 958 959 960 961
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

962 963 964
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

965 966
	pr_info("Intel P-state driver initializing.\n");

967
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
968 969 970 971 972 973 974 975 976
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
977

978 979
	return rc;
out:
980 981 982 983 984 985 986 987 988 989
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
990 991 992 993
	return -ENODEV;
}
device_initcall(intel_pstate_init);

994 995 996 997 998 999 1000 1001 1002 1003 1004
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1005 1006 1007
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");