head.S 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Low-level CPU initialisation
 * Based on arch/arm/kernel/head.S
 *
 * Copyright (C) 1994-2002 Russell King
 * Copyright (C) 2003-2012 ARM Ltd.
 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
 *		Will Deacon <will.deacon@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/linkage.h>
#include <linux/init.h>
25
#include <linux/irqchip/arm-gic-v3.h>
26 27

#include <asm/assembler.h>
28
#include <asm/boot.h>
29 30
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
31
#include <asm/cache.h>
32
#include <asm/cputype.h>
33
#include <asm/elf.h>
34
#include <asm/kernel-pgtable.h>
35
#include <asm/kvm_arm.h>
36 37 38 39
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pgtable.h>
#include <asm/page.h>
40
#include <asm/smp.h>
41 42
#include <asm/sysreg.h>
#include <asm/thread_info.h>
43
#include <asm/virt.h>
44

45
#define __PHYS_OFFSET	(KERNEL_START - TEXT_OFFSET)
46

47 48 49
#if (TEXT_OFFSET & 0xfff) != 0
#error TEXT_OFFSET must be at least 4KB aligned
#elif (PAGE_OFFSET & 0x1fffff) != 0
M
Mark Rutland 已提交
50
#error PAGE_OFFSET must be at least 2MB aligned
51
#elif TEXT_OFFSET > 0x1fffff
M
Mark Rutland 已提交
52
#error TEXT_OFFSET must be less than 2MB
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#endif

/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * The requirements are:
 *   MMU = off, D-cache = off, I-cache = on or off,
 *   x0 = physical address to the FDT blob.
 *
 * This code is mostly position independent so you call this at
 * __pa(PAGE_OFFSET + TEXT_OFFSET).
 *
 * Note that the callee-saved registers are used for storing variables
 * that are useful before the MMU is enabled. The allocations are described
 * in the entry routines.
 */
	__HEAD
71
_head:
72 73 74
	/*
	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
	 */
M
Mark Salter 已提交
75 76 77 78 79 80 81 82
#ifdef CONFIG_EFI
	/*
	 * This add instruction has no meaningful effect except that
	 * its opcode forms the magic "MZ" signature required by UEFI.
	 */
	add	x13, x18, #0x16
	b	stext
#else
83 84
	b	stext				// branch to kernel start, magic
	.long	0				// reserved
M
Mark Salter 已提交
85
#endif
86 87 88
	le64sym	_kernel_offset_le		// Image load offset from start of RAM, little-endian
	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
	le64sym	_kernel_flags_le		// Informative flags, little-endian
R
Roy Franz 已提交
89 90 91 92 93 94 95
	.quad	0				// reserved
	.quad	0				// reserved
	.quad	0				// reserved
	.byte	0x41				// Magic number, "ARM\x64"
	.byte	0x52
	.byte	0x4d
	.byte	0x64
M
Mark Salter 已提交
96
#ifdef CONFIG_EFI
97
	.long	pe_header - _head		// Offset to the PE header.
M
Mark Salter 已提交
98
#else
R
Roy Franz 已提交
99
	.word	0				// reserved
M
Mark Salter 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
#endif

#ifdef CONFIG_EFI
	.align 3
pe_header:
	.ascii	"PE"
	.short 	0
coff_header:
	.short	0xaa64				// AArch64
	.short	2				// nr_sections
	.long	0 				// TimeDateStamp
	.long	0				// PointerToSymbolTable
	.long	1				// NumberOfSymbols
	.short	section_table - optional_header	// SizeOfOptionalHeader
	.short	0x206				// Characteristics.
						// IMAGE_FILE_DEBUG_STRIPPED |
						// IMAGE_FILE_EXECUTABLE_IMAGE |
						// IMAGE_FILE_LINE_NUMS_STRIPPED
optional_header:
	.short	0x20b				// PE32+ format
	.byte	0x02				// MajorLinkerVersion
	.byte	0x14				// MinorLinkerVersion
122
	.long	_end - efi_header_end		// SizeOfCode
M
Mark Salter 已提交
123 124
	.long	0				// SizeOfInitializedData
	.long	0				// SizeOfUninitializedData
125
	.long	__efistub_entry - _head		// AddressOfEntryPoint
126
	.long	efi_header_end - _head		// BaseOfCode
M
Mark Salter 已提交
127 128 129

extra_header_fields:
	.quad	0				// ImageBase
130
	.long	0x1000				// SectionAlignment
131
	.long	PECOFF_FILE_ALIGNMENT		// FileAlignment
M
Mark Salter 已提交
132 133 134 135 136 137 138 139
	.short	0				// MajorOperatingSystemVersion
	.short	0				// MinorOperatingSystemVersion
	.short	0				// MajorImageVersion
	.short	0				// MinorImageVersion
	.short	0				// MajorSubsystemVersion
	.short	0				// MinorSubsystemVersion
	.long	0				// Win32VersionValue

140
	.long	_end - _head			// SizeOfImage
M
Mark Salter 已提交
141 142

	// Everything before the kernel image is considered part of the header
143
	.long	efi_header_end - _head		// SizeOfHeaders
M
Mark Salter 已提交
144 145 146 147 148 149 150 151
	.long	0				// CheckSum
	.short	0xa				// Subsystem (EFI application)
	.short	0				// DllCharacteristics
	.quad	0				// SizeOfStackReserve
	.quad	0				// SizeOfStackCommit
	.quad	0				// SizeOfHeapReserve
	.quad	0				// SizeOfHeapCommit
	.long	0				// LoaderFlags
152
	.long	(section_table - .) / 8		// NumberOfRvaAndSizes
M
Mark Salter 已提交
153 154 155 156 157 158 159 160

	.quad	0				// ExportTable
	.quad	0				// ImportTable
	.quad	0				// ResourceTable
	.quad	0				// ExceptionTable
	.quad	0				// CertificationTable
	.quad	0				// BaseRelocationTable

161 162 163 164 165
#ifdef CONFIG_DEBUG_EFI
	.long	efi_debug_table - _head		// DebugTable
	.long	efi_debug_table_size
#endif

M
Mark Salter 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	// Section table
section_table:

	/*
	 * The EFI application loader requires a relocation section
	 * because EFI applications must be relocatable.  This is a
	 * dummy section as far as we are concerned.
	 */
	.ascii	".reloc"
	.byte	0
	.byte	0			// end of 0 padding of section name
	.long	0
	.long	0
	.long	0			// SizeOfRawData
	.long	0			// PointerToRawData
	.long	0			// PointerToRelocations
	.long	0			// PointerToLineNumbers
	.short	0			// NumberOfRelocations
	.short	0			// NumberOfLineNumbers
	.long	0x42100040		// Characteristics (section flags)


	.ascii	".text"
	.byte	0
	.byte	0
	.byte	0        		// end of 0 padding of section name
192 193 194 195
	.long	_end - efi_header_end	// VirtualSize
	.long	efi_header_end - _head	// VirtualAddress
	.long	_edata - efi_header_end	// SizeOfRawData
	.long	efi_header_end - _head	// PointerToRawData
M
Mark Salter 已提交
196 197 198 199 200 201

	.long	0		// PointerToRelocations (0 for executables)
	.long	0		// PointerToLineNumbers (0 for executables)
	.short	0		// NumberOfRelocations  (0 for executables)
	.short	0		// NumberOfLineNumbers  (0 for executables)
	.long	0xe0500020	// Characteristics (section flags)
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#ifdef CONFIG_DEBUG_EFI
	/*
	 * The debug table is referenced via its Relative Virtual Address (RVA),
	 * which is only defined for those parts of the image that are covered
	 * by a section declaration. Since this header is not covered by any
	 * section, the debug table must be emitted elsewhere. So stick it in
	 * the .init.rodata section instead.
	 *
	 * Note that the EFI debug entry itself may legally have a zero RVA,
	 * which means we can simply put it right after the section headers.
	 */
	__INITRODATA

	.align	2
efi_debug_table:
	// EFI_IMAGE_DEBUG_DIRECTORY_ENTRY
	.long	0			// Characteristics
	.long	0			// TimeDateStamp
	.short	0			// MajorVersion
	.short	0			// MinorVersion
	.long	2			// Type == EFI_IMAGE_DEBUG_TYPE_CODEVIEW
	.long	efi_debug_entry_size	// SizeOfData
	.long	0			// RVA
	.long	efi_debug_entry - _head	// FileOffset

	.set	efi_debug_table_size, . - efi_debug_table
	.previous

efi_debug_entry:
	// EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY
	.ascii	"NB10"			// Signature
	.long	0			// Unknown
	.long	0			// Unknown2
	.long	0			// Unknown3

	.asciz	VMLINUX_PATH

	.set	efi_debug_entry_size, . - efi_debug_entry
#endif

243
	/*
244
	 * EFI will load .text onwards at the 4k section alignment
245 246
	 * described in the PE/COFF header. To ensure that instruction
	 * sequences using an adrp and a :lo12: immediate will function
247
	 * correctly at this alignment, we must ensure that .text is
248 249 250
	 * placed at a 4k boundary in the Image to begin with.
	 */
	.align 12
251
efi_header_end:
M
Mark Salter 已提交
252
#endif
253

254 255
	__INIT

256 257 258 259 260 261 262 263 264 265
	/*
	 * The following callee saved general purpose registers are used on the
	 * primary lowlevel boot path:
	 *
	 *  Register   Scope                      Purpose
	 *  x21        stext() .. start_kernel()  FDT pointer passed at boot in x0
	 *  x23        stext() .. start_kernel()  physical misalignment/KASLR offset
	 *  x28        __create_page_tables()     callee preserved temp register
	 *  x19/x20    __primary_switch()         callee preserved temp registers
	 */
266
ENTRY(stext)
267
	bl	preserve_boot_args
268
	bl	el2_setup			// Drop to EL1, w0=cpu_boot_mode
269 270
	adrp	x23, __PHYS_OFFSET
	and	x23, x23, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0
271
	bl	set_cpu_boot_mode_flag
272
	bl	__create_page_tables
273
	/*
274 275
	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
	 * details.
276 277 278
	 * On return, the CPU will be ready for the MMU to be turned on and
	 * the TCR will have been set.
	 */
279
	bl	__cpu_setup			// initialise processor
280
	b	__primary_switch
281 282
ENDPROC(stext)

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/*
 * Preserve the arguments passed by the bootloader in x0 .. x3
 */
preserve_boot_args:
	mov	x21, x0				// x21=FDT

	adr_l	x0, boot_args			// record the contents of
	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
	stp	x2, x3, [x0, #16]

	dmb	sy				// needed before dc ivac with
						// MMU off

	add	x1, x0, #0x20			// 4 x 8 bytes
	b	__inval_cache_range		// tail call
ENDPROC(preserve_boot_args)

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
 * Macro to create a table entry to the next page.
 *
 *	tbl:	page table address
 *	virt:	virtual address
 *	shift:	#imm page table shift
 *	ptrs:	#imm pointers per table page
 *
 * Preserves:	virt
 * Corrupts:	tmp1, tmp2
 * Returns:	tbl -> next level table page address
 */
	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
	lsr	\tmp1, \virt, #\shift
	and	\tmp1, \tmp1, #\ptrs - 1	// table index
	add	\tmp2, \tbl, #PAGE_SIZE
	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
	str	\tmp2, [\tbl, \tmp1, lsl #3]
	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
	.endm

/*
 * Macro to populate the PGD (and possibily PUD) for the corresponding
 * block entry in the next level (tbl) for the given virtual address.
 *
 * Preserves:	tbl, next, virt
 * Corrupts:	tmp1, tmp2
 */
	.macro	create_pgd_entry, tbl, virt, tmp1, tmp2
	create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
330 331 332 333
#if SWAPPER_PGTABLE_LEVELS > 3
	create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
#endif
#if SWAPPER_PGTABLE_LEVELS > 2
334
	create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
335 336 337 338 339 340 341 342 343 344 345
#endif
	.endm

/*
 * Macro to populate block entries in the page table for the start..end
 * virtual range (inclusive).
 *
 * Preserves:	tbl, flags
 * Corrupts:	phys, start, end, pstate
 */
	.macro	create_block_map, tbl, flags, phys, start, end
346 347
	lsr	\phys, \phys, #SWAPPER_BLOCK_SHIFT
	lsr	\start, \start, #SWAPPER_BLOCK_SHIFT
348
	and	\start, \start, #PTRS_PER_PTE - 1	// table index
349 350
	orr	\phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT	// table entry
	lsr	\end, \end, #SWAPPER_BLOCK_SHIFT
351 352 353
	and	\end, \end, #PTRS_PER_PTE - 1		// table end index
9999:	str	\phys, [\tbl, \start, lsl #3]		// store the entry
	add	\start, \start, #1			// next entry
354
	add	\phys, \phys, #SWAPPER_BLOCK_SIZE		// next block
355 356 357 358 359 360 361 362 363
	cmp	\start, \end
	b.ls	9999b
	.endm

/*
 * Setup the initial page tables. We only setup the barest amount which is
 * required to get the kernel running. The following sections are required:
 *   - identity mapping to enable the MMU (low address, TTBR0)
 *   - first few MB of the kernel linear mapping to jump to once the MMU has
364
 *     been enabled
365 366
 */
__create_page_tables:
367
	mov	x28, lr
368 369 370 371 372

	/*
	 * Invalidate the idmap and swapper page tables to avoid potential
	 * dirty cache lines being evicted.
	 */
373
	adrp	x0, idmap_pg_dir
374
	adrp	x1, swapper_pg_dir + SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE
375 376 377 378 379
	bl	__inval_cache_range

	/*
	 * Clear the idmap and swapper page tables.
	 */
380
	adrp	x0, idmap_pg_dir
381
	adrp	x6, swapper_pg_dir + SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE
382 383 384 385 386 387 388
1:	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	cmp	x0, x6
	b.lo	1b

389
	mov	x7, SWAPPER_MM_MMUFLAGS
390 391 392 393

	/*
	 * Create the identity mapping.
	 */
394
	adrp	x0, idmap_pg_dir
395
	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

#ifndef CONFIG_ARM64_VA_BITS_48
#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
#define EXTRA_PTRS	(1 << (48 - EXTRA_SHIFT))

	/*
	 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be
	 * created that covers system RAM if that is located sufficiently high
	 * in the physical address space. So for the ID map, use an extended
	 * virtual range in that case, by configuring an additional translation
	 * level.
	 * First, we have to verify our assumption that the current value of
	 * VA_BITS was chosen such that all translation levels are fully
	 * utilised, and that lowering T0SZ will always result in an additional
	 * translation level to be configured.
	 */
#if VA_BITS != EXTRA_SHIFT
#error "Mismatch between VA_BITS and page size/number of translation levels"
#endif

	/*
	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
418
	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
419
	 * this number conveniently equals the number of leading zeroes in
420
	 * the physical address of __idmap_text_end.
421
	 */
422
	adrp	x5, __idmap_text_end
423 424 425 426
	clz	x5, x5
	cmp	x5, TCR_T0SZ(VA_BITS)	// default T0SZ small enough?
	b.ge	1f			// .. then skip additional level

427 428 429 430
	adr_l	x6, idmap_t0sz
	str	x5, [x6]
	dmb	sy
	dc	ivac, x6		// Invalidate potentially stale cache line
431 432 433 434 435

	create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6
1:
#endif

436
	create_pgd_entry x0, x3, x5, x6
437 438
	mov	x5, x3				// __pa(__idmap_text_start)
	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
439 440 441 442 443
	create_block_map x0, x7, x3, x5, x6

	/*
	 * Map the kernel image (starting with PHYS_OFFSET).
	 */
444
	adrp	x0, swapper_pg_dir
445
	mov_q	x5, KIMAGE_VADDR + TEXT_OFFSET	// compile time __va(_text)
446
	add	x5, x5, x23			// add KASLR displacement
447
	create_pgd_entry x0, x5, x3, x6
448 449 450 451
	adrp	x6, _end			// runtime __pa(_end)
	adrp	x3, _text			// runtime __pa(_text)
	sub	x6, x6, x3			// _end - _text
	add	x6, x6, x5			// runtime __va(_end)
452 453 454 455 456 457 458
	create_block_map x0, x7, x3, x5, x6

	/*
	 * Since the page tables have been populated with non-cacheable
	 * accesses (MMU disabled), invalidate the idmap and swapper page
	 * tables again to remove any speculatively loaded cache lines.
	 */
459
	adrp	x0, idmap_pg_dir
460
	adrp	x1, swapper_pg_dir + SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE
461
	dmb	sy
462 463
	bl	__inval_cache_range

464
	ret	x28
465 466 467 468
ENDPROC(__create_page_tables)
	.ltorg

/*
469
 * The following fragment of code is executed with the MMU enabled.
470 471
 *
 *   x0 = __PHYS_OFFSET
472
 */
473
__primary_switched:
474 475
	adrp	x4, init_thread_union
	add	sp, x4, #THREAD_SIZE
476 477
	adr_l	x5, init_task
	msr	sp_el0, x5			// Save thread_info
478

479 480 481 482
	adr_l	x8, vectors			// load VBAR_EL1 with virtual
	msr	vbar_el1, x8			// vector table address
	isb

483 484 485
	stp	xzr, x30, [sp, #-16]!
	mov	x29, sp

486 487 488 489 490 491
	str_l	x21, __fdt_pointer, x5		// Save FDT pointer

	ldr_l	x4, kimage_vaddr		// Save the offset between
	sub	x4, x4, x0			// the kernel virtual and
	str_l	x4, kimage_voffset, x5		// physical mappings

492 493 494 495 496 497
	// Clear BSS
	adr_l	x0, __bss_start
	mov	x1, xzr
	adr_l	x2, __bss_stop
	sub	x2, x2, x0
	bl	__pi_memset
498
	dsb	ishst				// Make zero page visible to PTW
499

A
Andrey Ryabinin 已提交
500 501
#ifdef CONFIG_KASAN
	bl	kasan_early_init
502 503
#endif
#ifdef CONFIG_RANDOMIZE_BASE
504 505
	tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized?
	b.ne	0f
506
	mov	x0, x21				// pass FDT address in x0
507
	mov	x1, x23				// pass modulo offset in x1
508 509
	bl	kaslr_early_init		// parse FDT for KASLR options
	cbz	x0, 0f				// KASLR disabled? just proceed
510
	orr	x23, x23, x0			// record KASLR offset
511 512
	ldp	x29, x30, [sp], #16		// we must enable KASLR, return
	ret					// to __primary_switch()
513
0:
A
Andrey Ryabinin 已提交
514
#endif
515
	b	start_kernel
516
ENDPROC(__primary_switched)
517 518 519 520 521

/*
 * end early head section, begin head code that is also used for
 * hotplug and needs to have the same protections as the text region
 */
522
	.section ".idmap.text","ax"
523 524 525 526

ENTRY(kimage_vaddr)
	.quad		_text - TEXT_OFFSET

527 528 529
/*
 * If we're fortunate enough to boot at EL2, ensure that the world is
 * sane before dropping to EL1.
530
 *
531
 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
532
 * booted in EL1 or EL2 respectively.
533 534 535
 */
ENTRY(el2_setup)
	mrs	x0, CurrentEL
536
	cmp	x0, #CurrentEL_EL2
M
Mark Rutland 已提交
537 538
	b.eq	1f
	mrs	x0, sctlr_el1
539 540 541
CPU_BE(	orr	x0, x0, #(3 << 24)	)	// Set the EE and E0E bits for EL1
CPU_LE(	bic	x0, x0, #(3 << 24)	)	// Clear the EE and E0E bits for EL1
	msr	sctlr_el1, x0
542
	mov	w0, #BOOT_CPU_MODE_EL1		// This cpu booted in EL1
543
	isb
544 545
	ret

M
Mark Rutland 已提交
546 547 548 549 550
1:	mrs	x0, sctlr_el2
CPU_BE(	orr	x0, x0, #(1 << 25)	)	// Set the EE bit for EL2
CPU_LE(	bic	x0, x0, #(1 << 25)	)	// Clear the EE bit for EL2
	msr	sctlr_el2, x0

551 552 553 554 555 556 557 558 559 560 561 562
#ifdef CONFIG_ARM64_VHE
	/*
	 * Check for VHE being present. For the rest of the EL2 setup,
	 * x2 being non-zero indicates that we do have VHE, and that the
	 * kernel is intended to run at EL2.
	 */
	mrs	x2, id_aa64mmfr1_el1
	ubfx	x2, x2, #8, #4
#else
	mov	x2, xzr
#endif

563
	/* Hyp configuration. */
564 565 566 567 568
	mov	x0, #HCR_RW			// 64-bit EL1
	cbz	x2, set_hcr
	orr	x0, x0, #HCR_TGE		// Enable Host Extensions
	orr	x0, x0, #HCR_E2H
set_hcr:
569
	msr	hcr_el2, x0
570
	isb
571

572 573 574 575 576 577 578 579 580 581 582
	/*
	 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
	 * This is not necessary for VHE, since the host kernel runs in EL2,
	 * and EL0 accesses are configured in the later stage of boot process.
	 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
	 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
	 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
	 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
	 * EL2.
	 */
	cbnz	x2, 1f
583 584 585
	mrs	x0, cnthctl_el2
	orr	x0, x0, #3			// Enable EL1 physical timers
	msr	cnthctl_el2, x0
586
1:
587
	msr	cntvoff_el2, xzr		// Clear virtual offset
588

589 590 591 592 593 594 595
#ifdef CONFIG_ARM_GIC_V3
	/* GICv3 system register access */
	mrs	x0, id_aa64pfr0_el1
	ubfx	x0, x0, #24, #4
	cmp	x0, #1
	b.ne	3f

596
	mrs_s	x0, ICC_SRE_EL2
597 598
	orr	x0, x0, #ICC_SRE_EL2_SRE	// Set ICC_SRE_EL2.SRE==1
	orr	x0, x0, #ICC_SRE_EL2_ENABLE	// Set ICC_SRE_EL2.Enable==1
599
	msr_s	ICC_SRE_EL2, x0
600
	isb					// Make sure SRE is now set
601 602
	mrs_s	x0, ICC_SRE_EL2			// Read SRE back,
	tbz	x0, #0, 3f			// and check that it sticks
603
	msr_s	ICH_HCR_EL2, xzr		// Reset ICC_HCR_EL2 to defaults
604 605 606 607

3:
#endif

608 609 610 611 612 613 614 615 616 617
	/* Populate ID registers. */
	mrs	x0, midr_el1
	mrs	x1, mpidr_el1
	msr	vpidr_el2, x0
	msr	vmpidr_el2, x1

#ifdef CONFIG_COMPAT
	msr	hstr_el2, xzr			// Disable CP15 traps to EL2
#endif

618
	/* EL2 debug */
619 620
	mrs	x1, id_aa64dfr0_el1		// Check ID_AA64DFR0_EL1 PMUVer
	sbfx	x0, x1, #8, #4
621 622
	cmp	x0, #1
	b.lt	4f				// Skip if no PMU present
623 624
	mrs	x0, pmcr_el0			// Disable debug access traps
	ubfx	x0, x0, #11, #5			// to EL2 and allow access to
625
4:
626 627 628 629 630 631 632 633 634 635 636 637 638
	csel	x3, xzr, x0, lt			// all PMU counters from EL1

	/* Statistical profiling */
	ubfx	x0, x1, #32, #4			// Check ID_AA64DFR0_EL1 PMSVer
	cbz	x0, 6f				// Skip if SPE not present
	cbnz	x2, 5f				// VHE?
	mov	x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
	orr	x3, x3, x1			// If we don't have VHE, then
	b	6f				// use EL1&0 translation.
5:						// For VHE, use EL2 translation
	orr	x3, x3, #MDCR_EL2_TPMS		// and disable access from EL1
6:
	msr	mdcr_el2, x3			// Configure debug traps
639

640 641 642
	/* Stage-2 translation */
	msr	vttbr_el2, xzr

643 644
	cbz	x2, install_el2_stub

645
	mov	w0, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
646 647 648 649
	isb
	ret

install_el2_stub:
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	/*
	 * When VHE is not in use, early init of EL2 and EL1 needs to be
	 * done here.
	 * When VHE _is_ in use, EL1 will not be used in the host and
	 * requires no configuration, and all non-hyp-specific EL2 setup
	 * will be done via the _EL1 system register aliases in __cpu_setup.
	 */
	/* sctlr_el1 */
	mov	x0, #0x0800			// Set/clear RES{1,0} bits
CPU_BE(	movk	x0, #0x33d0, lsl #16	)	// Set EE and E0E on BE systems
CPU_LE(	movk	x0, #0x30d0, lsl #16	)	// Clear EE and E0E on LE systems
	msr	sctlr_el1, x0

	/* Coprocessor traps. */
	mov	x0, #0x33ff
	msr	cptr_el2, x0			// Disable copro. traps to EL2

M
Marc Zyngier 已提交
667
	/* Hypervisor stub */
668
	adr_l	x0, __hyp_stub_vectors
M
Marc Zyngier 已提交
669 670
	msr	vbar_el2, x0

671 672 673 674 675
	/* spsr */
	mov	x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
		      PSR_MODE_EL1h)
	msr	spsr_el2, x0
	msr	elr_el2, lr
676
	mov	w0, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
677 678 679
	eret
ENDPROC(el2_setup)

680 681
/*
 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
682
 * in w0. See arch/arm64/include/asm/virt.h for more info.
683
 */
684
set_cpu_boot_mode_flag:
685
	adr_l	x1, __boot_cpu_mode
686
	cmp	w0, #BOOT_CPU_MODE_EL2
687 688
	b.ne	1f
	add	x1, x1, #4
689
1:	str	w0, [x1]			// This CPU has booted in EL1
690 691
	dmb	sy
	dc	ivac, x1			// Invalidate potentially stale cache line
692 693 694
	ret
ENDPROC(set_cpu_boot_mode_flag)

695 696 697 698 699 700 701
/*
 * These values are written with the MMU off, but read with the MMU on.
 * Writers will invalidate the corresponding address, discarding up to a
 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
 * sufficient alignment that the CWG doesn't overlap another section.
 */
	.pushsection ".mmuoff.data.write", "aw"
702 703 704 705 706 707 708
/*
 * We need to find out the CPU boot mode long after boot, so we need to
 * store it in a writable variable.
 *
 * This is not in .bss, because we set it sufficiently early that the boot-time
 * zeroing of .bss would clobber it.
 */
709
ENTRY(__boot_cpu_mode)
710
	.long	BOOT_CPU_MODE_EL2
711
	.long	BOOT_CPU_MODE_EL1
712 713 714 715 716 717 718
/*
 * The booting CPU updates the failed status @__early_cpu_boot_status,
 * with MMU turned off.
 */
ENTRY(__early_cpu_boot_status)
	.long 	0

719 720
	.popsection

721 722 723 724 725
	/*
	 * This provides a "holding pen" for platforms to hold all secondary
	 * cores are held until we're ready for them to initialise.
	 */
ENTRY(secondary_holding_pen)
726
	bl	el2_setup			// Drop to EL1, w0=cpu_boot_mode
727
	bl	set_cpu_boot_mode_flag
728
	mrs	x0, mpidr_el1
729
	mov_q	x1, MPIDR_HWID_BITMASK
730
	and	x0, x0, x1
731
	adr_l	x3, secondary_holding_pen_release
732 733 734 735 736 737
pen:	ldr	x4, [x3]
	cmp	x4, x0
	b.eq	secondary_startup
	wfe
	b	pen
ENDPROC(secondary_holding_pen)
738 739 740 741 742 743 744

	/*
	 * Secondary entry point that jumps straight into the kernel. Only to
	 * be used where CPUs are brought online dynamically by the kernel.
	 */
ENTRY(secondary_entry)
	bl	el2_setup			// Drop to EL1
745
	bl	set_cpu_boot_mode_flag
746 747
	b	secondary_startup
ENDPROC(secondary_entry)
748

749
secondary_startup:
750 751 752
	/*
	 * Common entry point for secondary CPUs.
	 */
753
	bl	__cpu_setup			// initialise processor
754 755 756
	bl	__enable_mmu
	ldr	x8, =__secondary_switched
	br	x8
757 758
ENDPROC(secondary_startup)

759
__secondary_switched:
760 761 762 763
	adr_l	x5, vectors
	msr	vbar_el1, x5
	isb

764
	adr_l	x0, secondary_data
765 766 767 768
	ldr	x1, [x0, #CPU_BOOT_STACK]	// get secondary_data.stack
	mov	sp, x1
	ldr	x2, [x0, #CPU_BOOT_TASK]
	msr	sp_el0, x2
769 770 771 772
	mov	x29, #0
	b	secondary_start_kernel
ENDPROC(__secondary_switched)

773 774 775 776 777 778 779 780 781 782 783 784
/*
 * The booting CPU updates the failed status @__early_cpu_boot_status,
 * with MMU turned off.
 *
 * update_early_cpu_boot_status tmp, status
 *  - Corrupts tmp1, tmp2
 *  - Writes 'status' to __early_cpu_boot_status and makes sure
 *    it is committed to memory.
 */

	.macro	update_early_cpu_boot_status status, tmp1, tmp2
	mov	\tmp2, #\status
785 786
	adr_l	\tmp1, __early_cpu_boot_status
	str	\tmp2, [\tmp1]
787 788 789 790
	dmb	sy
	dc	ivac, \tmp1			// Invalidate potentially stale cache line
	.endm

791
/*
792
 * Enable the MMU.
793
 *
794 795
 *  x0  = SCTLR_EL1 value for turning on the MMU.
 *
796 797
 * Returns to the caller via x30/lr. This requires the caller to be covered
 * by the .idmap.text section.
798 799 800
 *
 * Checks if the selected granule size is supported by the CPU.
 * If it isn't, park the CPU
801
 */
802
ENTRY(__enable_mmu)
803 804 805 806
	mrs	x1, ID_AA64MMFR0_EL1
	ubfx	x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4
	cmp	x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
	b.ne	__no_granule_support
807
	update_early_cpu_boot_status 0, x1, x2
808 809 810 811
	adrp	x1, idmap_pg_dir
	adrp	x2, swapper_pg_dir
	msr	ttbr0_el1, x1			// load TTBR0
	msr	ttbr1_el1, x2			// load TTBR1
812 813 814
	isb
	msr	sctlr_el1, x0
	isb
815 816 817 818 819 820 821 822
	/*
	 * Invalidate the local I-cache so that any instructions fetched
	 * speculatively from the PoC are discarded, since they may have
	 * been dynamically patched at the PoU.
	 */
	ic	iallu
	dsb	nsh
	isb
823
	ret
824
ENDPROC(__enable_mmu)
825 826

__no_granule_support:
827 828 829
	/* Indicate that this CPU can't boot and is stuck in the kernel */
	update_early_cpu_boot_status CPU_STUCK_IN_KERNEL, x1, x2
1:
830
	wfe
831
	wfi
832
	b	1b
833
ENDPROC(__no_granule_support)
834

835
#ifdef CONFIG_RELOCATABLE
836
__relocate_kernel:
837 838 839 840 841 842 843
	/*
	 * Iterate over each entry in the relocation table, and apply the
	 * relocations in place.
	 */
	ldr	w9, =__rela_offset		// offset to reloc table
	ldr	w10, =__rela_size		// size of reloc table

844
	mov_q	x11, KIMAGE_VADDR		// default virtual offset
845 846 847 848 849
	add	x11, x11, x23			// actual virtual offset
	add	x9, x9, x11			// __va(.rela)
	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)

0:	cmp	x9, x10
850
	b.hs	1f
851 852 853
	ldp	x11, x12, [x9], #24
	ldr	x13, [x9, #-8]
	cmp	w12, #R_AARCH64_RELATIVE
854
	b.ne	0b
855 856 857
	add	x13, x13, x23			// relocate
	str	x13, [x11, x23]
	b	0b
858 859 860
1:	ret
ENDPROC(__relocate_kernel)
#endif
861

862 863 864 865 866 867
__primary_switch:
#ifdef CONFIG_RANDOMIZE_BASE
	mov	x19, x0				// preserve new SCTLR_EL1 value
	mrs	x20, sctlr_el1			// preserve old SCTLR_EL1 value
#endif

868
	bl	__enable_mmu
869 870 871 872
#ifdef CONFIG_RELOCATABLE
	bl	__relocate_kernel
#ifdef CONFIG_RANDOMIZE_BASE
	ldr	x8, =__primary_switched
873
	adrp	x0, __PHYS_OFFSET
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	blr	x8

	/*
	 * If we return here, we have a KASLR displacement in x23 which we need
	 * to take into account by discarding the current kernel mapping and
	 * creating a new one.
	 */
	msr	sctlr_el1, x20			// disable the MMU
	isb
	bl	__create_page_tables		// recreate kernel mapping

	tlbi	vmalle1				// Remove any stale TLB entries
	dsb	nsh

	msr	sctlr_el1, x19			// re-enable the MMU
	isb
	ic	iallu				// flush instructions fetched
	dsb	nsh				// via old mapping
	isb

	bl	__relocate_kernel
#endif
896 897
#endif
	ldr	x8, =__primary_switched
898
	adrp	x0, __PHYS_OFFSET
899 900
	br	x8
ENDPROC(__primary_switch)