head.S 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Low-level CPU initialisation
 * Based on arch/arm/kernel/head.S
 *
 * Copyright (C) 1994-2002 Russell King
 * Copyright (C) 2003-2012 ARM Ltd.
 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
 *		Will Deacon <will.deacon@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/linkage.h>
#include <linux/init.h>
25
#include <linux/irqchip/arm-gic-v3.h>
26 27

#include <asm/assembler.h>
28
#include <asm/boot.h>
29 30
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
31
#include <asm/cache.h>
32
#include <asm/cputype.h>
33
#include <asm/elf.h>
34
#include <asm/kernel-pgtable.h>
35
#include <asm/kvm_arm.h>
36 37 38 39
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pgtable.h>
#include <asm/page.h>
40
#include <asm/smp.h>
41 42
#include <asm/sysreg.h>
#include <asm/thread_info.h>
43
#include <asm/virt.h>
44

45
#define __PHYS_OFFSET	(KERNEL_START - TEXT_OFFSET)
46

47 48 49
#if (TEXT_OFFSET & 0xfff) != 0
#error TEXT_OFFSET must be at least 4KB aligned
#elif (PAGE_OFFSET & 0x1fffff) != 0
M
Mark Rutland 已提交
50
#error PAGE_OFFSET must be at least 2MB aligned
51
#elif TEXT_OFFSET > 0x1fffff
M
Mark Rutland 已提交
52
#error TEXT_OFFSET must be less than 2MB
53 54
#endif

55
#define KERNEL_START	_text
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define KERNEL_END	_end

/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * The requirements are:
 *   MMU = off, D-cache = off, I-cache = on or off,
 *   x0 = physical address to the FDT blob.
 *
 * This code is mostly position independent so you call this at
 * __pa(PAGE_OFFSET + TEXT_OFFSET).
 *
 * Note that the callee-saved registers are used for storing variables
 * that are useful before the MMU is enabled. The allocations are described
 * in the entry routines.
 */
	__HEAD
74
_head:
75 76 77
	/*
	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
	 */
M
Mark Salter 已提交
78 79 80 81 82 83 84 85
#ifdef CONFIG_EFI
	/*
	 * This add instruction has no meaningful effect except that
	 * its opcode forms the magic "MZ" signature required by UEFI.
	 */
	add	x13, x18, #0x16
	b	stext
#else
86 87
	b	stext				// branch to kernel start, magic
	.long	0				// reserved
M
Mark Salter 已提交
88
#endif
89 90 91
	le64sym	_kernel_offset_le		// Image load offset from start of RAM, little-endian
	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
	le64sym	_kernel_flags_le		// Informative flags, little-endian
R
Roy Franz 已提交
92 93 94 95 96 97 98
	.quad	0				// reserved
	.quad	0				// reserved
	.quad	0				// reserved
	.byte	0x41				// Magic number, "ARM\x64"
	.byte	0x52
	.byte	0x4d
	.byte	0x64
M
Mark Salter 已提交
99
#ifdef CONFIG_EFI
100
	.long	pe_header - _head		// Offset to the PE header.
M
Mark Salter 已提交
101
#else
R
Roy Franz 已提交
102
	.word	0				// reserved
M
Mark Salter 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#endif

#ifdef CONFIG_EFI
	.align 3
pe_header:
	.ascii	"PE"
	.short 	0
coff_header:
	.short	0xaa64				// AArch64
	.short	2				// nr_sections
	.long	0 				// TimeDateStamp
	.long	0				// PointerToSymbolTable
	.long	1				// NumberOfSymbols
	.short	section_table - optional_header	// SizeOfOptionalHeader
	.short	0x206				// Characteristics.
						// IMAGE_FILE_DEBUG_STRIPPED |
						// IMAGE_FILE_EXECUTABLE_IMAGE |
						// IMAGE_FILE_LINE_NUMS_STRIPPED
optional_header:
	.short	0x20b				// PE32+ format
	.byte	0x02				// MajorLinkerVersion
	.byte	0x14				// MinorLinkerVersion
125
	.long	_end - efi_header_end		// SizeOfCode
M
Mark Salter 已提交
126 127
	.long	0				// SizeOfInitializedData
	.long	0				// SizeOfUninitializedData
128
	.long	__efistub_entry - _head		// AddressOfEntryPoint
129
	.long	efi_header_end - _head		// BaseOfCode
M
Mark Salter 已提交
130 131 132

extra_header_fields:
	.quad	0				// ImageBase
133
	.long	0x1000				// SectionAlignment
134
	.long	PECOFF_FILE_ALIGNMENT		// FileAlignment
M
Mark Salter 已提交
135 136 137 138 139 140 141 142
	.short	0				// MajorOperatingSystemVersion
	.short	0				// MinorOperatingSystemVersion
	.short	0				// MajorImageVersion
	.short	0				// MinorImageVersion
	.short	0				// MajorSubsystemVersion
	.short	0				// MinorSubsystemVersion
	.long	0				// Win32VersionValue

143
	.long	_end - _head			// SizeOfImage
M
Mark Salter 已提交
144 145

	// Everything before the kernel image is considered part of the header
146
	.long	efi_header_end - _head		// SizeOfHeaders
M
Mark Salter 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	.long	0				// CheckSum
	.short	0xa				// Subsystem (EFI application)
	.short	0				// DllCharacteristics
	.quad	0				// SizeOfStackReserve
	.quad	0				// SizeOfStackCommit
	.quad	0				// SizeOfHeapReserve
	.quad	0				// SizeOfHeapCommit
	.long	0				// LoaderFlags
	.long	0x6				// NumberOfRvaAndSizes

	.quad	0				// ExportTable
	.quad	0				// ImportTable
	.quad	0				// ResourceTable
	.quad	0				// ExceptionTable
	.quad	0				// CertificationTable
	.quad	0				// BaseRelocationTable

	// Section table
section_table:

	/*
	 * The EFI application loader requires a relocation section
	 * because EFI applications must be relocatable.  This is a
	 * dummy section as far as we are concerned.
	 */
	.ascii	".reloc"
	.byte	0
	.byte	0			// end of 0 padding of section name
	.long	0
	.long	0
	.long	0			// SizeOfRawData
	.long	0			// PointerToRawData
	.long	0			// PointerToRelocations
	.long	0			// PointerToLineNumbers
	.short	0			// NumberOfRelocations
	.short	0			// NumberOfLineNumbers
	.long	0x42100040		// Characteristics (section flags)


	.ascii	".text"
	.byte	0
	.byte	0
	.byte	0        		// end of 0 padding of section name
190 191 192 193
	.long	_end - efi_header_end	// VirtualSize
	.long	efi_header_end - _head	// VirtualAddress
	.long	_edata - efi_header_end	// SizeOfRawData
	.long	efi_header_end - _head	// PointerToRawData
M
Mark Salter 已提交
194 195 196 197 198 199

	.long	0		// PointerToRelocations (0 for executables)
	.long	0		// PointerToLineNumbers (0 for executables)
	.short	0		// NumberOfRelocations  (0 for executables)
	.short	0		// NumberOfLineNumbers  (0 for executables)
	.long	0xe0500020	// Characteristics (section flags)
200 201

	/*
202
	 * EFI will load .text onwards at the 4k section alignment
203 204
	 * described in the PE/COFF header. To ensure that instruction
	 * sequences using an adrp and a :lo12: immediate will function
205
	 * correctly at this alignment, we must ensure that .text is
206 207 208
	 * placed at a 4k boundary in the Image to begin with.
	 */
	.align 12
209
efi_header_end:
M
Mark Salter 已提交
210
#endif
211

212 213
	__INIT

214
ENTRY(stext)
215
	bl	preserve_boot_args
216
	bl	el2_setup			// Drop to EL1, w20=cpu_boot_mode
217
	adrp	x24, __PHYS_OFFSET
218
	and	x23, x24, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0
219
	bl	set_cpu_boot_mode_flag
220 221
	bl	__create_page_tables		// x25=TTBR0, x26=TTBR1
	/*
222 223
	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
	 * details.
224 225 226
	 * On return, the CPU will be ready for the MMU to be turned on and
	 * the TCR will have been set.
	 */
227 228 229 230
	bl	__cpu_setup			// initialise processor
	adr_l	x27, __primary_switch		// address to jump to after
						// MMU has been enabled
	b	__enable_mmu
231 232
ENDPROC(stext)

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/*
 * Preserve the arguments passed by the bootloader in x0 .. x3
 */
preserve_boot_args:
	mov	x21, x0				// x21=FDT

	adr_l	x0, boot_args			// record the contents of
	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
	stp	x2, x3, [x0, #16]

	dmb	sy				// needed before dc ivac with
						// MMU off

	add	x1, x0, #0x20			// 4 x 8 bytes
	b	__inval_cache_range		// tail call
ENDPROC(preserve_boot_args)

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * Macro to create a table entry to the next page.
 *
 *	tbl:	page table address
 *	virt:	virtual address
 *	shift:	#imm page table shift
 *	ptrs:	#imm pointers per table page
 *
 * Preserves:	virt
 * Corrupts:	tmp1, tmp2
 * Returns:	tbl -> next level table page address
 */
	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
	lsr	\tmp1, \virt, #\shift
	and	\tmp1, \tmp1, #\ptrs - 1	// table index
	add	\tmp2, \tbl, #PAGE_SIZE
	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
	str	\tmp2, [\tbl, \tmp1, lsl #3]
	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
	.endm

/*
 * Macro to populate the PGD (and possibily PUD) for the corresponding
 * block entry in the next level (tbl) for the given virtual address.
 *
 * Preserves:	tbl, next, virt
 * Corrupts:	tmp1, tmp2
 */
	.macro	create_pgd_entry, tbl, virt, tmp1, tmp2
	create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
280 281 282 283
#if SWAPPER_PGTABLE_LEVELS > 3
	create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
#endif
#if SWAPPER_PGTABLE_LEVELS > 2
284
	create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
285 286 287 288 289 290 291 292 293 294 295
#endif
	.endm

/*
 * Macro to populate block entries in the page table for the start..end
 * virtual range (inclusive).
 *
 * Preserves:	tbl, flags
 * Corrupts:	phys, start, end, pstate
 */
	.macro	create_block_map, tbl, flags, phys, start, end
296 297
	lsr	\phys, \phys, #SWAPPER_BLOCK_SHIFT
	lsr	\start, \start, #SWAPPER_BLOCK_SHIFT
298
	and	\start, \start, #PTRS_PER_PTE - 1	// table index
299 300
	orr	\phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT	// table entry
	lsr	\end, \end, #SWAPPER_BLOCK_SHIFT
301 302 303
	and	\end, \end, #PTRS_PER_PTE - 1		// table end index
9999:	str	\phys, [\tbl, \start, lsl #3]		// store the entry
	add	\start, \start, #1			// next entry
304
	add	\phys, \phys, #SWAPPER_BLOCK_SIZE		// next block
305 306 307 308 309 310 311 312 313
	cmp	\start, \end
	b.ls	9999b
	.endm

/*
 * Setup the initial page tables. We only setup the barest amount which is
 * required to get the kernel running. The following sections are required:
 *   - identity mapping to enable the MMU (low address, TTBR0)
 *   - first few MB of the kernel linear mapping to jump to once the MMU has
314
 *     been enabled
315 316
 */
__create_page_tables:
317 318
	adrp	x25, idmap_pg_dir
	adrp	x26, swapper_pg_dir
319
	mov	x28, lr
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

	/*
	 * Invalidate the idmap and swapper page tables to avoid potential
	 * dirty cache lines being evicted.
	 */
	mov	x0, x25
	add	x1, x26, #SWAPPER_DIR_SIZE
	bl	__inval_cache_range

	/*
	 * Clear the idmap and swapper page tables.
	 */
	mov	x0, x25
	add	x6, x26, #SWAPPER_DIR_SIZE
1:	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	cmp	x0, x6
	b.lo	1b

341
	mov	x7, SWAPPER_MM_MMUFLAGS
342 343 344 345 346

	/*
	 * Create the identity mapping.
	 */
	mov	x0, x25				// idmap_pg_dir
347
	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

#ifndef CONFIG_ARM64_VA_BITS_48
#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
#define EXTRA_PTRS	(1 << (48 - EXTRA_SHIFT))

	/*
	 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be
	 * created that covers system RAM if that is located sufficiently high
	 * in the physical address space. So for the ID map, use an extended
	 * virtual range in that case, by configuring an additional translation
	 * level.
	 * First, we have to verify our assumption that the current value of
	 * VA_BITS was chosen such that all translation levels are fully
	 * utilised, and that lowering T0SZ will always result in an additional
	 * translation level to be configured.
	 */
#if VA_BITS != EXTRA_SHIFT
#error "Mismatch between VA_BITS and page size/number of translation levels"
#endif

	/*
	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
370
	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
371
	 * this number conveniently equals the number of leading zeroes in
372
	 * the physical address of __idmap_text_end.
373
	 */
374
	adrp	x5, __idmap_text_end
375 376 377 378
	clz	x5, x5
	cmp	x5, TCR_T0SZ(VA_BITS)	// default T0SZ small enough?
	b.ge	1f			// .. then skip additional level

379 380 381 382
	adr_l	x6, idmap_t0sz
	str	x5, [x6]
	dmb	sy
	dc	ivac, x6		// Invalidate potentially stale cache line
383 384 385 386 387

	create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6
1:
#endif

388
	create_pgd_entry x0, x3, x5, x6
389 390
	mov	x5, x3				// __pa(__idmap_text_start)
	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
391 392 393 394 395 396
	create_block_map x0, x7, x3, x5, x6

	/*
	 * Map the kernel image (starting with PHYS_OFFSET).
	 */
	mov	x0, x26				// swapper_pg_dir
397
	mov_q	x5, KIMAGE_VADDR + TEXT_OFFSET	// compile time __va(_text)
398
	add	x5, x5, x23			// add KASLR displacement
399
	create_pgd_entry x0, x5, x3, x6
400 401 402 403
	adrp	x6, _end			// runtime __pa(_end)
	adrp	x3, _text			// runtime __pa(_text)
	sub	x6, x6, x3			// _end - _text
	add	x6, x6, x5			// runtime __va(_end)
404 405 406 407 408 409 410 411 412
	create_block_map x0, x7, x3, x5, x6

	/*
	 * Since the page tables have been populated with non-cacheable
	 * accesses (MMU disabled), invalidate the idmap and swapper page
	 * tables again to remove any speculatively loaded cache lines.
	 */
	mov	x0, x25
	add	x1, x26, #SWAPPER_DIR_SIZE
413
	dmb	sy
414 415
	bl	__inval_cache_range

416
	ret	x28
417 418 419 420
ENDPROC(__create_page_tables)
	.ltorg

/*
421
 * The following fragment of code is executed with the MMU enabled.
422
 */
423
	.set	initial_sp, init_thread_union + THREAD_START_SP
424
__primary_switched:
425
	mov	x28, lr				// preserve LR
426 427 428 429
	adr_l	x8, vectors			// load VBAR_EL1 with virtual
	msr	vbar_el1, x8			// vector table address
	isb

430 431 432 433 434 435
	// Clear BSS
	adr_l	x0, __bss_start
	mov	x1, xzr
	adr_l	x2, __bss_stop
	sub	x2, x2, x0
	bl	__pi_memset
436
	dsb	ishst				// Make zero page visible to PTW
437

438
	adr_l	sp, initial_sp, x4
439 440 441
	mov	x4, sp
	and	x4, x4, #~(THREAD_SIZE - 1)
	msr	sp_el0, x4			// Save thread_info
442
	str_l	x21, __fdt_pointer, x5		// Save FDT pointer
443

444
	ldr_l	x4, kimage_vaddr		// Save the offset between
445 446 447
	sub	x4, x4, x24			// the kernel virtual and
	str_l	x4, kimage_voffset, x5		// physical mappings

448
	mov	x29, #0
A
Andrey Ryabinin 已提交
449 450
#ifdef CONFIG_KASAN
	bl	kasan_early_init
451 452
#endif
#ifdef CONFIG_RANDOMIZE_BASE
453 454
	tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized?
	b.ne	0f
455
	mov	x0, x21				// pass FDT address in x0
456
	mov	x1, x23				// pass modulo offset in x1
457 458
	bl	kaslr_early_init		// parse FDT for KASLR options
	cbz	x0, 0f				// KASLR disabled? just proceed
459
	orr	x23, x23, x0			// record KASLR offset
460 461 462
	ret	x28				// we must enable KASLR, return
						// to __enable_mmu()
0:
A
Andrey Ryabinin 已提交
463
#endif
464
	b	start_kernel
465
ENDPROC(__primary_switched)
466 467 468 469 470 471

/*
 * end early head section, begin head code that is also used for
 * hotplug and needs to have the same protections as the text region
 */
	.section ".text","ax"
472 473 474 475

ENTRY(kimage_vaddr)
	.quad		_text - TEXT_OFFSET

476 477 478
/*
 * If we're fortunate enough to boot at EL2, ensure that the world is
 * sane before dropping to EL1.
479 480 481
 *
 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if
 * booted in EL1 or EL2 respectively.
482 483 484
 */
ENTRY(el2_setup)
	mrs	x0, CurrentEL
485
	cmp	x0, #CurrentEL_EL2
486 487 488 489 490 491 492 493 494 495
	b.ne	1f
	mrs	x0, sctlr_el2
CPU_BE(	orr	x0, x0, #(1 << 25)	)	// Set the EE bit for EL2
CPU_LE(	bic	x0, x0, #(1 << 25)	)	// Clear the EE bit for EL2
	msr	sctlr_el2, x0
	b	2f
1:	mrs	x0, sctlr_el1
CPU_BE(	orr	x0, x0, #(3 << 24)	)	// Set the EE and E0E bits for EL1
CPU_LE(	bic	x0, x0, #(3 << 24)	)	// Clear the EE and E0E bits for EL1
	msr	sctlr_el1, x0
496
	mov	w20, #BOOT_CPU_MODE_EL1		// This cpu booted in EL1
497
	isb
498 499
	ret

500 501 502 503 504 505 506 507 508 509 510 511 512
2:
#ifdef CONFIG_ARM64_VHE
	/*
	 * Check for VHE being present. For the rest of the EL2 setup,
	 * x2 being non-zero indicates that we do have VHE, and that the
	 * kernel is intended to run at EL2.
	 */
	mrs	x2, id_aa64mmfr1_el1
	ubfx	x2, x2, #8, #4
#else
	mov	x2, xzr
#endif

513
	/* Hyp configuration. */
514 515 516 517 518
	mov	x0, #HCR_RW			// 64-bit EL1
	cbz	x2, set_hcr
	orr	x0, x0, #HCR_TGE		// Enable Host Extensions
	orr	x0, x0, #HCR_E2H
set_hcr:
519
	msr	hcr_el2, x0
520
	isb
521 522 523 524 525

	/* Generic timers. */
	mrs	x0, cnthctl_el2
	orr	x0, x0, #3			// Enable EL1 physical timers
	msr	cnthctl_el2, x0
526
	msr	cntvoff_el2, xzr		// Clear virtual offset
527

528 529 530 531 532 533 534
#ifdef CONFIG_ARM_GIC_V3
	/* GICv3 system register access */
	mrs	x0, id_aa64pfr0_el1
	ubfx	x0, x0, #24, #4
	cmp	x0, #1
	b.ne	3f

535
	mrs_s	x0, ICC_SRE_EL2
536 537
	orr	x0, x0, #ICC_SRE_EL2_SRE	// Set ICC_SRE_EL2.SRE==1
	orr	x0, x0, #ICC_SRE_EL2_ENABLE	// Set ICC_SRE_EL2.Enable==1
538
	msr_s	ICC_SRE_EL2, x0
539
	isb					// Make sure SRE is now set
540 541
	mrs_s	x0, ICC_SRE_EL2			// Read SRE back,
	tbz	x0, #0, 3f			// and check that it sticks
542
	msr_s	ICH_HCR_EL2, xzr		// Reset ICC_HCR_EL2 to defaults
543 544 545 546

3:
#endif

547 548 549 550 551 552 553 554
	/* Populate ID registers. */
	mrs	x0, midr_el1
	mrs	x1, mpidr_el1
	msr	vpidr_el2, x0
	msr	vmpidr_el2, x1

	/* sctlr_el1 */
	mov	x0, #0x0800			// Set/clear RES{1,0} bits
555 556
CPU_BE(	movk	x0, #0x33d0, lsl #16	)	// Set EE and E0E on BE systems
CPU_LE(	movk	x0, #0x30d0, lsl #16	)	// Clear EE and E0E on LE systems
557 558 559 560 561 562 563 564 565 566
	msr	sctlr_el1, x0

	/* Coprocessor traps. */
	mov	x0, #0x33ff
	msr	cptr_el2, x0			// Disable copro. traps to EL2

#ifdef CONFIG_COMPAT
	msr	hstr_el2, xzr			// Disable CP15 traps to EL2
#endif

567
	/* EL2 debug */
568 569 570 571
	mrs	x0, id_aa64dfr0_el1		// Check ID_AA64DFR0_EL1 PMUVer
	sbfx	x0, x0, #8, #4
	cmp	x0, #1
	b.lt	4f				// Skip if no PMU present
572 573 574
	mrs	x0, pmcr_el0			// Disable debug access traps
	ubfx	x0, x0, #11, #5			// to EL2 and allow access to
	msr	mdcr_el2, x0			// all PMU counters from EL1
575
4:
576

577 578 579
	/* Stage-2 translation */
	msr	vttbr_el2, xzr

580 581 582 583 584 585 586
	cbz	x2, install_el2_stub

	mov	w20, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
	isb
	ret

install_el2_stub:
M
Marc Zyngier 已提交
587
	/* Hypervisor stub */
588 589
	adrp	x0, __hyp_stub_vectors
	add	x0, x0, #:lo12:__hyp_stub_vectors
M
Marc Zyngier 已提交
590 591
	msr	vbar_el2, x0

592 593 594 595 596
	/* spsr */
	mov	x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
		      PSR_MODE_EL1h)
	msr	spsr_el2, x0
	msr	elr_el2, lr
597
	mov	w20, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
598 599 600
	eret
ENDPROC(el2_setup)

601 602 603 604
/*
 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
 * in x20. See arch/arm64/include/asm/virt.h for more info.
 */
605
set_cpu_boot_mode_flag:
606
	adr_l	x1, __boot_cpu_mode
607 608 609
	cmp	w20, #BOOT_CPU_MODE_EL2
	b.ne	1f
	add	x1, x1, #4
610 611 612
1:	str	w20, [x1]			// This CPU has booted in EL1
	dmb	sy
	dc	ivac, x1			// Invalidate potentially stale cache line
613 614 615
	ret
ENDPROC(set_cpu_boot_mode_flag)

616 617 618 619 620 621 622
/*
 * We need to find out the CPU boot mode long after boot, so we need to
 * store it in a writable variable.
 *
 * This is not in .bss, because we set it sufficiently early that the boot-time
 * zeroing of .bss would clobber it.
 */
623 624
	.pushsection	.data..cacheline_aligned
	.align	L1_CACHE_SHIFT
625
ENTRY(__boot_cpu_mode)
626
	.long	BOOT_CPU_MODE_EL2
627
	.long	BOOT_CPU_MODE_EL1
628 629
	.popsection

630 631 632 633 634
	/*
	 * This provides a "holding pen" for platforms to hold all secondary
	 * cores are held until we're ready for them to initialise.
	 */
ENTRY(secondary_holding_pen)
635 636
	bl	el2_setup			// Drop to EL1, w20=cpu_boot_mode
	bl	set_cpu_boot_mode_flag
637
	mrs	x0, mpidr_el1
638
	mov_q	x1, MPIDR_HWID_BITMASK
639
	and	x0, x0, x1
640
	adr_l	x3, secondary_holding_pen_release
641 642 643 644 645 646
pen:	ldr	x4, [x3]
	cmp	x4, x0
	b.eq	secondary_startup
	wfe
	b	pen
ENDPROC(secondary_holding_pen)
647 648 649 650 651 652 653

	/*
	 * Secondary entry point that jumps straight into the kernel. Only to
	 * be used where CPUs are brought online dynamically by the kernel.
	 */
ENTRY(secondary_entry)
	bl	el2_setup			// Drop to EL1
654
	bl	set_cpu_boot_mode_flag
655 656
	b	secondary_startup
ENDPROC(secondary_entry)
657

658
secondary_startup:
659 660 661
	/*
	 * Common entry point for secondary CPUs.
	 */
662 663
	adrp	x25, idmap_pg_dir
	adrp	x26, swapper_pg_dir
664
	bl	__cpu_setup			// initialise processor
665

666
	adr_l	x27, __secondary_switch		// address to jump to after enabling the MMU
667 668 669
	b	__enable_mmu
ENDPROC(secondary_startup)

670
__secondary_switched:
671 672 673 674
	adr_l	x5, vectors
	msr	vbar_el1, x5
	isb

675 676
	adr_l	x0, secondary_data
	ldr	x0, [x0, #CPU_BOOT_STACK]	// get secondary_data.stack
677
	mov	sp, x0
678 679
	and	x0, x0, #~(THREAD_SIZE - 1)
	msr	sp_el0, x0			// save thread_info
680 681 682 683
	mov	x29, #0
	b	secondary_start_kernel
ENDPROC(__secondary_switched)

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/*
 * The booting CPU updates the failed status @__early_cpu_boot_status,
 * with MMU turned off.
 *
 * update_early_cpu_boot_status tmp, status
 *  - Corrupts tmp1, tmp2
 *  - Writes 'status' to __early_cpu_boot_status and makes sure
 *    it is committed to memory.
 */

	.macro	update_early_cpu_boot_status status, tmp1, tmp2
	mov	\tmp2, #\status
	str_l	\tmp2, __early_cpu_boot_status, \tmp1
	dmb	sy
	dc	ivac, \tmp1			// Invalidate potentially stale cache line
	.endm

	.pushsection	.data..cacheline_aligned
	.align	L1_CACHE_SHIFT
ENTRY(__early_cpu_boot_status)
	.long 	0
	.popsection

707
/*
708
 * Enable the MMU.
709
 *
710 711 712
 *  x0  = SCTLR_EL1 value for turning on the MMU.
 *  x27 = *virtual* address to jump to upon completion
 *
713 714 715 716
 * Other registers depend on the function called upon completion.
 *
 * Checks if the selected granule size is supported by the CPU.
 * If it isn't, park the CPU
717
 */
718
	.section	".idmap.text", "ax"
719
__enable_mmu:
720
	mrs	x22, sctlr_el1			// preserve old SCTLR_EL1 value
721 722 723 724
	mrs	x1, ID_AA64MMFR0_EL1
	ubfx	x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4
	cmp	x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
	b.ne	__no_granule_support
725
	update_early_cpu_boot_status 0, x1, x2
726 727 728 729 730
	msr	ttbr0_el1, x25			// load TTBR0
	msr	ttbr1_el1, x26			// load TTBR1
	isb
	msr	sctlr_el1, x0
	isb
731 732 733 734 735 736 737 738
	/*
	 * Invalidate the local I-cache so that any instructions fetched
	 * speculatively from the PoC are discarded, since they may have
	 * been dynamically patched at the PoU.
	 */
	ic	iallu
	dsb	nsh
	isb
739 740 741 742 743 744 745 746 747
#ifdef CONFIG_RANDOMIZE_BASE
	mov	x19, x0				// preserve new SCTLR_EL1 value
	blr	x27

	/*
	 * If we return here, we have a KASLR displacement in x23 which we need
	 * to take into account by discarding the current kernel mapping and
	 * creating a new one.
	 */
748
	msr	sctlr_el1, x22			// disable the MMU
749 750 751 752 753
	isb
	bl	__create_page_tables		// recreate kernel mapping

	msr	sctlr_el1, x19			// re-enable the MMU
	isb
754 755 756
	ic	iallu				// flush instructions fetched
	dsb	nsh				// via old mapping
	isb
757
#endif
758
	br	x27
759
ENDPROC(__enable_mmu)
760 761

__no_granule_support:
762 763 764
	/* Indicate that this CPU can't boot and is stuck in the kernel */
	update_early_cpu_boot_status CPU_STUCK_IN_KERNEL, x1, x2
1:
765
	wfe
766 767
	wfi
	b 1b
768
ENDPROC(__no_granule_support)
769

770 771 772 773 774 775 776 777 778 779
__primary_switch:
#ifdef CONFIG_RELOCATABLE
	/*
	 * Iterate over each entry in the relocation table, and apply the
	 * relocations in place.
	 */
	ldr	w8, =__dynsym_offset		// offset to symbol table
	ldr	w9, =__rela_offset		// offset to reloc table
	ldr	w10, =__rela_size		// size of reloc table

780
	mov_q	x11, KIMAGE_VADDR		// default virtual offset
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	add	x11, x11, x23			// actual virtual offset
	add	x8, x8, x11			// __va(.dynsym)
	add	x9, x9, x11			// __va(.rela)
	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)

0:	cmp	x9, x10
	b.hs	2f
	ldp	x11, x12, [x9], #24
	ldr	x13, [x9, #-8]
	cmp	w12, #R_AARCH64_RELATIVE
	b.ne	1f
	add	x13, x13, x23			// relocate
	str	x13, [x11, x23]
	b	0b

1:	cmp	w12, #R_AARCH64_ABS64
	b.ne	0b
	add	x12, x12, x12, lsl #1		// symtab offset: 24x top word
	add	x12, x8, x12, lsr #(32 - 3)	// ... shifted into bottom word
	ldrsh	w14, [x12, #6]			// Elf64_Sym::st_shndx
	ldr	x15, [x12, #8]			// Elf64_Sym::st_value
	cmp	w14, #-0xf			// SHN_ABS (0xfff1) ?
	add	x14, x15, x23			// relocate
	csel	x15, x14, x15, ne
	add	x15, x13, x15
	str	x15, [x11, x23]
	b	0b

2:
#endif
	ldr	x8, =__primary_switched
	br	x8
ENDPROC(__primary_switch)

815 816 817 818
__secondary_switch:
	ldr	x8, =__secondary_switched
	br	x8
ENDPROC(__secondary_switch)