head.S 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Low-level CPU initialisation
 * Based on arch/arm/kernel/head.S
 *
 * Copyright (C) 1994-2002 Russell King
 * Copyright (C) 2003-2012 ARM Ltd.
 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
 *		Will Deacon <will.deacon@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/linkage.h>
#include <linux/init.h>
25
#include <linux/irqchip/arm-gic-v3.h>
26 27 28 29

#include <asm/assembler.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
30
#include <asm/cache.h>
31
#include <asm/cputype.h>
32
#include <asm/elf.h>
33
#include <asm/kernel-pgtable.h>
34
#include <asm/kvm_arm.h>
35 36 37 38
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pgtable.h>
#include <asm/page.h>
39
#include <asm/smp.h>
40 41
#include <asm/sysreg.h>
#include <asm/thread_info.h>
42
#include <asm/virt.h>
43

44
#define __PHYS_OFFSET	(KERNEL_START - TEXT_OFFSET)
45

46 47 48
#if (TEXT_OFFSET & 0xfff) != 0
#error TEXT_OFFSET must be at least 4KB aligned
#elif (PAGE_OFFSET & 0x1fffff) != 0
M
Mark Rutland 已提交
49
#error PAGE_OFFSET must be at least 2MB aligned
50
#elif TEXT_OFFSET > 0x1fffff
M
Mark Rutland 已提交
51
#error TEXT_OFFSET must be less than 2MB
52 53
#endif

54
#define KERNEL_START	_text
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#define KERNEL_END	_end

/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * The requirements are:
 *   MMU = off, D-cache = off, I-cache = on or off,
 *   x0 = physical address to the FDT blob.
 *
 * This code is mostly position independent so you call this at
 * __pa(PAGE_OFFSET + TEXT_OFFSET).
 *
 * Note that the callee-saved registers are used for storing variables
 * that are useful before the MMU is enabled. The allocations are described
 * in the entry routines.
 */
	__HEAD
73
_head:
74 75 76
	/*
	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
	 */
M
Mark Salter 已提交
77 78 79 80 81 82 83 84
#ifdef CONFIG_EFI
	/*
	 * This add instruction has no meaningful effect except that
	 * its opcode forms the magic "MZ" signature required by UEFI.
	 */
	add	x13, x18, #0x16
	b	stext
#else
85 86
	b	stext				// branch to kernel start, magic
	.long	0				// reserved
M
Mark Salter 已提交
87
#endif
88 89 90
	le64sym	_kernel_offset_le		// Image load offset from start of RAM, little-endian
	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
	le64sym	_kernel_flags_le		// Informative flags, little-endian
R
Roy Franz 已提交
91 92 93 94 95 96 97
	.quad	0				// reserved
	.quad	0				// reserved
	.quad	0				// reserved
	.byte	0x41				// Magic number, "ARM\x64"
	.byte	0x52
	.byte	0x4d
	.byte	0x64
M
Mark Salter 已提交
98
#ifdef CONFIG_EFI
99
	.long	pe_header - _head		// Offset to the PE header.
M
Mark Salter 已提交
100
#else
R
Roy Franz 已提交
101
	.word	0				// reserved
M
Mark Salter 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#endif

#ifdef CONFIG_EFI
	.align 3
pe_header:
	.ascii	"PE"
	.short 	0
coff_header:
	.short	0xaa64				// AArch64
	.short	2				// nr_sections
	.long	0 				// TimeDateStamp
	.long	0				// PointerToSymbolTable
	.long	1				// NumberOfSymbols
	.short	section_table - optional_header	// SizeOfOptionalHeader
	.short	0x206				// Characteristics.
						// IMAGE_FILE_DEBUG_STRIPPED |
						// IMAGE_FILE_EXECUTABLE_IMAGE |
						// IMAGE_FILE_LINE_NUMS_STRIPPED
optional_header:
	.short	0x20b				// PE32+ format
	.byte	0x02				// MajorLinkerVersion
	.byte	0x14				// MinorLinkerVersion
124
	.long	_end - efi_header_end		// SizeOfCode
M
Mark Salter 已提交
125 126
	.long	0				// SizeOfInitializedData
	.long	0				// SizeOfUninitializedData
127
	.long	__efistub_entry - _head		// AddressOfEntryPoint
128
	.long	efi_header_end - _head		// BaseOfCode
M
Mark Salter 已提交
129 130 131

extra_header_fields:
	.quad	0				// ImageBase
132
	.long	0x1000				// SectionAlignment
133
	.long	PECOFF_FILE_ALIGNMENT		// FileAlignment
M
Mark Salter 已提交
134 135 136 137 138 139 140 141
	.short	0				// MajorOperatingSystemVersion
	.short	0				// MinorOperatingSystemVersion
	.short	0				// MajorImageVersion
	.short	0				// MinorImageVersion
	.short	0				// MajorSubsystemVersion
	.short	0				// MinorSubsystemVersion
	.long	0				// Win32VersionValue

142
	.long	_end - _head			// SizeOfImage
M
Mark Salter 已提交
143 144

	// Everything before the kernel image is considered part of the header
145
	.long	efi_header_end - _head		// SizeOfHeaders
M
Mark Salter 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	.long	0				// CheckSum
	.short	0xa				// Subsystem (EFI application)
	.short	0				// DllCharacteristics
	.quad	0				// SizeOfStackReserve
	.quad	0				// SizeOfStackCommit
	.quad	0				// SizeOfHeapReserve
	.quad	0				// SizeOfHeapCommit
	.long	0				// LoaderFlags
	.long	0x6				// NumberOfRvaAndSizes

	.quad	0				// ExportTable
	.quad	0				// ImportTable
	.quad	0				// ResourceTable
	.quad	0				// ExceptionTable
	.quad	0				// CertificationTable
	.quad	0				// BaseRelocationTable

	// Section table
section_table:

	/*
	 * The EFI application loader requires a relocation section
	 * because EFI applications must be relocatable.  This is a
	 * dummy section as far as we are concerned.
	 */
	.ascii	".reloc"
	.byte	0
	.byte	0			// end of 0 padding of section name
	.long	0
	.long	0
	.long	0			// SizeOfRawData
	.long	0			// PointerToRawData
	.long	0			// PointerToRelocations
	.long	0			// PointerToLineNumbers
	.short	0			// NumberOfRelocations
	.short	0			// NumberOfLineNumbers
	.long	0x42100040		// Characteristics (section flags)


	.ascii	".text"
	.byte	0
	.byte	0
	.byte	0        		// end of 0 padding of section name
189 190 191 192
	.long	_end - efi_header_end	// VirtualSize
	.long	efi_header_end - _head	// VirtualAddress
	.long	_edata - efi_header_end	// SizeOfRawData
	.long	efi_header_end - _head	// PointerToRawData
M
Mark Salter 已提交
193 194 195 196 197 198

	.long	0		// PointerToRelocations (0 for executables)
	.long	0		// PointerToLineNumbers (0 for executables)
	.short	0		// NumberOfRelocations  (0 for executables)
	.short	0		// NumberOfLineNumbers  (0 for executables)
	.long	0xe0500020	// Characteristics (section flags)
199 200

	/*
201
	 * EFI will load .text onwards at the 4k section alignment
202 203
	 * described in the PE/COFF header. To ensure that instruction
	 * sequences using an adrp and a :lo12: immediate will function
204
	 * correctly at this alignment, we must ensure that .text is
205 206 207
	 * placed at a 4k boundary in the Image to begin with.
	 */
	.align 12
208
efi_header_end:
M
Mark Salter 已提交
209
#endif
210

211 212
	__INIT

213
ENTRY(stext)
214
	bl	preserve_boot_args
215
	bl	el2_setup			// Drop to EL1, w20=cpu_boot_mode
216
	mov	x23, xzr			// KASLR offset, defaults to 0
217
	adrp	x24, __PHYS_OFFSET
218
	bl	set_cpu_boot_mode_flag
219 220
	bl	__create_page_tables		// x25=TTBR0, x26=TTBR1
	/*
221 222
	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
	 * details.
223 224 225
	 * On return, the CPU will be ready for the MMU to be turned on and
	 * the TCR will have been set.
	 */
226 227 228 229
	bl	__cpu_setup			// initialise processor
	adr_l	x27, __primary_switch		// address to jump to after
						// MMU has been enabled
	b	__enable_mmu
230 231
ENDPROC(stext)

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Preserve the arguments passed by the bootloader in x0 .. x3
 */
preserve_boot_args:
	mov	x21, x0				// x21=FDT

	adr_l	x0, boot_args			// record the contents of
	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
	stp	x2, x3, [x0, #16]

	dmb	sy				// needed before dc ivac with
						// MMU off

	add	x1, x0, #0x20			// 4 x 8 bytes
	b	__inval_cache_range		// tail call
ENDPROC(preserve_boot_args)

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Macro to create a table entry to the next page.
 *
 *	tbl:	page table address
 *	virt:	virtual address
 *	shift:	#imm page table shift
 *	ptrs:	#imm pointers per table page
 *
 * Preserves:	virt
 * Corrupts:	tmp1, tmp2
 * Returns:	tbl -> next level table page address
 */
	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
	lsr	\tmp1, \virt, #\shift
	and	\tmp1, \tmp1, #\ptrs - 1	// table index
	add	\tmp2, \tbl, #PAGE_SIZE
	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
	str	\tmp2, [\tbl, \tmp1, lsl #3]
	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
	.endm

/*
 * Macro to populate the PGD (and possibily PUD) for the corresponding
 * block entry in the next level (tbl) for the given virtual address.
 *
 * Preserves:	tbl, next, virt
 * Corrupts:	tmp1, tmp2
 */
	.macro	create_pgd_entry, tbl, virt, tmp1, tmp2
	create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
279 280 281 282
#if SWAPPER_PGTABLE_LEVELS > 3
	create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
#endif
#if SWAPPER_PGTABLE_LEVELS > 2
283
	create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
284 285 286 287 288 289 290 291 292 293 294
#endif
	.endm

/*
 * Macro to populate block entries in the page table for the start..end
 * virtual range (inclusive).
 *
 * Preserves:	tbl, flags
 * Corrupts:	phys, start, end, pstate
 */
	.macro	create_block_map, tbl, flags, phys, start, end
295 296
	lsr	\phys, \phys, #SWAPPER_BLOCK_SHIFT
	lsr	\start, \start, #SWAPPER_BLOCK_SHIFT
297
	and	\start, \start, #PTRS_PER_PTE - 1	// table index
298 299
	orr	\phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT	// table entry
	lsr	\end, \end, #SWAPPER_BLOCK_SHIFT
300 301 302
	and	\end, \end, #PTRS_PER_PTE - 1		// table end index
9999:	str	\phys, [\tbl, \start, lsl #3]		// store the entry
	add	\start, \start, #1			// next entry
303
	add	\phys, \phys, #SWAPPER_BLOCK_SIZE		// next block
304 305 306 307 308 309 310 311 312
	cmp	\start, \end
	b.ls	9999b
	.endm

/*
 * Setup the initial page tables. We only setup the barest amount which is
 * required to get the kernel running. The following sections are required:
 *   - identity mapping to enable the MMU (low address, TTBR0)
 *   - first few MB of the kernel linear mapping to jump to once the MMU has
313
 *     been enabled
314 315
 */
__create_page_tables:
316 317
	adrp	x25, idmap_pg_dir
	adrp	x26, swapper_pg_dir
318
	mov	x28, lr
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

	/*
	 * Invalidate the idmap and swapper page tables to avoid potential
	 * dirty cache lines being evicted.
	 */
	mov	x0, x25
	add	x1, x26, #SWAPPER_DIR_SIZE
	bl	__inval_cache_range

	/*
	 * Clear the idmap and swapper page tables.
	 */
	mov	x0, x25
	add	x6, x26, #SWAPPER_DIR_SIZE
1:	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	cmp	x0, x6
	b.lo	1b

340
	ldr	x7, =SWAPPER_MM_MMUFLAGS
341 342 343 344 345

	/*
	 * Create the identity mapping.
	 */
	mov	x0, x25				// idmap_pg_dir
346
	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

#ifndef CONFIG_ARM64_VA_BITS_48
#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
#define EXTRA_PTRS	(1 << (48 - EXTRA_SHIFT))

	/*
	 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be
	 * created that covers system RAM if that is located sufficiently high
	 * in the physical address space. So for the ID map, use an extended
	 * virtual range in that case, by configuring an additional translation
	 * level.
	 * First, we have to verify our assumption that the current value of
	 * VA_BITS was chosen such that all translation levels are fully
	 * utilised, and that lowering T0SZ will always result in an additional
	 * translation level to be configured.
	 */
#if VA_BITS != EXTRA_SHIFT
#error "Mismatch between VA_BITS and page size/number of translation levels"
#endif

	/*
	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
369
	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
370
	 * this number conveniently equals the number of leading zeroes in
371
	 * the physical address of __idmap_text_end.
372
	 */
373
	adrp	x5, __idmap_text_end
374 375 376 377
	clz	x5, x5
	cmp	x5, TCR_T0SZ(VA_BITS)	// default T0SZ small enough?
	b.ge	1f			// .. then skip additional level

378 379 380 381
	adr_l	x6, idmap_t0sz
	str	x5, [x6]
	dmb	sy
	dc	ivac, x6		// Invalidate potentially stale cache line
382 383 384 385 386

	create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6
1:
#endif

387
	create_pgd_entry x0, x3, x5, x6
388 389
	mov	x5, x3				// __pa(__idmap_text_start)
	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
390 391 392 393 394 395
	create_block_map x0, x7, x3, x5, x6

	/*
	 * Map the kernel image (starting with PHYS_OFFSET).
	 */
	mov	x0, x26				// swapper_pg_dir
396
	ldr	x5, =KIMAGE_VADDR
397
	add	x5, x5, x23			// add KASLR displacement
398
	create_pgd_entry x0, x5, x3, x6
399
	ldr	w6, =kernel_img_size
400
	add	x6, x6, x5
401 402 403 404 405 406 407 408 409 410
	mov	x3, x24				// phys offset
	create_block_map x0, x7, x3, x5, x6

	/*
	 * Since the page tables have been populated with non-cacheable
	 * accesses (MMU disabled), invalidate the idmap and swapper page
	 * tables again to remove any speculatively loaded cache lines.
	 */
	mov	x0, x25
	add	x1, x26, #SWAPPER_DIR_SIZE
411
	dmb	sy
412 413
	bl	__inval_cache_range

414
	ret	x28
415 416 417 418
ENDPROC(__create_page_tables)
	.ltorg

/*
419
 * The following fragment of code is executed with the MMU enabled.
420
 */
421
	.set	initial_sp, init_thread_union + THREAD_START_SP
422
__primary_switched:
423
	mov	x28, lr				// preserve LR
424 425 426 427
	adr_l	x8, vectors			// load VBAR_EL1 with virtual
	msr	vbar_el1, x8			// vector table address
	isb

428 429 430 431 432 433
	// Clear BSS
	adr_l	x0, __bss_start
	mov	x1, xzr
	adr_l	x2, __bss_stop
	sub	x2, x2, x0
	bl	__pi_memset
434
	dsb	ishst				// Make zero page visible to PTW
435

436
	adr_l	sp, initial_sp, x4
437 438 439
	mov	x4, sp
	and	x4, x4, #~(THREAD_SIZE - 1)
	msr	sp_el0, x4			// Save thread_info
440
	str_l	x21, __fdt_pointer, x5		// Save FDT pointer
441

442
	ldr_l	x4, kimage_vaddr		// Save the offset between
443 444 445
	sub	x4, x4, x24			// the kernel virtual and
	str_l	x4, kimage_voffset, x5		// physical mappings

446
	mov	x29, #0
A
Andrey Ryabinin 已提交
447 448
#ifdef CONFIG_KASAN
	bl	kasan_early_init
449 450 451 452 453 454 455 456 457 458
#endif
#ifdef CONFIG_RANDOMIZE_BASE
	cbnz	x23, 0f				// already running randomized?
	mov	x0, x21				// pass FDT address in x0
	bl	kaslr_early_init		// parse FDT for KASLR options
	cbz	x0, 0f				// KASLR disabled? just proceed
	mov	x23, x0				// record KASLR offset
	ret	x28				// we must enable KASLR, return
						// to __enable_mmu()
0:
A
Andrey Ryabinin 已提交
459
#endif
460
	b	start_kernel
461
ENDPROC(__primary_switched)
462 463 464 465 466 467

/*
 * end early head section, begin head code that is also used for
 * hotplug and needs to have the same protections as the text region
 */
	.section ".text","ax"
468 469 470 471

ENTRY(kimage_vaddr)
	.quad		_text - TEXT_OFFSET

472 473 474
/*
 * If we're fortunate enough to boot at EL2, ensure that the world is
 * sane before dropping to EL1.
475 476 477
 *
 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if
 * booted in EL1 or EL2 respectively.
478 479 480
 */
ENTRY(el2_setup)
	mrs	x0, CurrentEL
481
	cmp	x0, #CurrentEL_EL2
482 483 484 485 486 487 488 489 490 491
	b.ne	1f
	mrs	x0, sctlr_el2
CPU_BE(	orr	x0, x0, #(1 << 25)	)	// Set the EE bit for EL2
CPU_LE(	bic	x0, x0, #(1 << 25)	)	// Clear the EE bit for EL2
	msr	sctlr_el2, x0
	b	2f
1:	mrs	x0, sctlr_el1
CPU_BE(	orr	x0, x0, #(3 << 24)	)	// Set the EE and E0E bits for EL1
CPU_LE(	bic	x0, x0, #(3 << 24)	)	// Clear the EE and E0E bits for EL1
	msr	sctlr_el1, x0
492
	mov	w20, #BOOT_CPU_MODE_EL1		// This cpu booted in EL1
493
	isb
494 495
	ret

496 497 498 499 500 501 502 503 504 505 506 507 508
2:
#ifdef CONFIG_ARM64_VHE
	/*
	 * Check for VHE being present. For the rest of the EL2 setup,
	 * x2 being non-zero indicates that we do have VHE, and that the
	 * kernel is intended to run at EL2.
	 */
	mrs	x2, id_aa64mmfr1_el1
	ubfx	x2, x2, #8, #4
#else
	mov	x2, xzr
#endif

509
	/* Hyp configuration. */
510 511 512 513 514
	mov	x0, #HCR_RW			// 64-bit EL1
	cbz	x2, set_hcr
	orr	x0, x0, #HCR_TGE		// Enable Host Extensions
	orr	x0, x0, #HCR_E2H
set_hcr:
515
	msr	hcr_el2, x0
516
	isb
517 518 519 520 521

	/* Generic timers. */
	mrs	x0, cnthctl_el2
	orr	x0, x0, #3			// Enable EL1 physical timers
	msr	cnthctl_el2, x0
522
	msr	cntvoff_el2, xzr		// Clear virtual offset
523

524 525 526 527 528 529 530
#ifdef CONFIG_ARM_GIC_V3
	/* GICv3 system register access */
	mrs	x0, id_aa64pfr0_el1
	ubfx	x0, x0, #24, #4
	cmp	x0, #1
	b.ne	3f

531
	mrs_s	x0, ICC_SRE_EL2
532 533
	orr	x0, x0, #ICC_SRE_EL2_SRE	// Set ICC_SRE_EL2.SRE==1
	orr	x0, x0, #ICC_SRE_EL2_ENABLE	// Set ICC_SRE_EL2.Enable==1
534
	msr_s	ICC_SRE_EL2, x0
535
	isb					// Make sure SRE is now set
536 537
	mrs_s	x0, ICC_SRE_EL2			// Read SRE back,
	tbz	x0, #0, 3f			// and check that it sticks
538
	msr_s	ICH_HCR_EL2, xzr		// Reset ICC_HCR_EL2 to defaults
539 540 541 542

3:
#endif

543 544 545 546 547 548 549 550
	/* Populate ID registers. */
	mrs	x0, midr_el1
	mrs	x1, mpidr_el1
	msr	vpidr_el2, x0
	msr	vmpidr_el2, x1

	/* sctlr_el1 */
	mov	x0, #0x0800			// Set/clear RES{1,0} bits
551 552
CPU_BE(	movk	x0, #0x33d0, lsl #16	)	// Set EE and E0E on BE systems
CPU_LE(	movk	x0, #0x30d0, lsl #16	)	// Clear EE and E0E on LE systems
553 554 555 556 557 558 559 560 561 562
	msr	sctlr_el1, x0

	/* Coprocessor traps. */
	mov	x0, #0x33ff
	msr	cptr_el2, x0			// Disable copro. traps to EL2

#ifdef CONFIG_COMPAT
	msr	hstr_el2, xzr			// Disable CP15 traps to EL2
#endif

563
	/* EL2 debug */
564 565 566 567
	mrs	x0, id_aa64dfr0_el1		// Check ID_AA64DFR0_EL1 PMUVer
	sbfx	x0, x0, #8, #4
	cmp	x0, #1
	b.lt	4f				// Skip if no PMU present
568 569 570
	mrs	x0, pmcr_el0			// Disable debug access traps
	ubfx	x0, x0, #11, #5			// to EL2 and allow access to
	msr	mdcr_el2, x0			// all PMU counters from EL1
571
4:
572

573 574 575
	/* Stage-2 translation */
	msr	vttbr_el2, xzr

576 577 578 579 580 581 582
	cbz	x2, install_el2_stub

	mov	w20, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
	isb
	ret

install_el2_stub:
M
Marc Zyngier 已提交
583
	/* Hypervisor stub */
584 585
	adrp	x0, __hyp_stub_vectors
	add	x0, x0, #:lo12:__hyp_stub_vectors
M
Marc Zyngier 已提交
586 587
	msr	vbar_el2, x0

588 589 590 591 592
	/* spsr */
	mov	x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
		      PSR_MODE_EL1h)
	msr	spsr_el2, x0
	msr	elr_el2, lr
593
	mov	w20, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
594 595 596
	eret
ENDPROC(el2_setup)

597 598 599 600
/*
 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
 * in x20. See arch/arm64/include/asm/virt.h for more info.
 */
601
set_cpu_boot_mode_flag:
602
	adr_l	x1, __boot_cpu_mode
603 604 605
	cmp	w20, #BOOT_CPU_MODE_EL2
	b.ne	1f
	add	x1, x1, #4
606 607 608
1:	str	w20, [x1]			// This CPU has booted in EL1
	dmb	sy
	dc	ivac, x1			// Invalidate potentially stale cache line
609 610 611
	ret
ENDPROC(set_cpu_boot_mode_flag)

612 613 614 615 616 617 618
/*
 * We need to find out the CPU boot mode long after boot, so we need to
 * store it in a writable variable.
 *
 * This is not in .bss, because we set it sufficiently early that the boot-time
 * zeroing of .bss would clobber it.
 */
619 620
	.pushsection	.data..cacheline_aligned
	.align	L1_CACHE_SHIFT
621
ENTRY(__boot_cpu_mode)
622
	.long	BOOT_CPU_MODE_EL2
623
	.long	BOOT_CPU_MODE_EL1
624 625
	.popsection

626 627 628 629 630
	/*
	 * This provides a "holding pen" for platforms to hold all secondary
	 * cores are held until we're ready for them to initialise.
	 */
ENTRY(secondary_holding_pen)
631 632
	bl	el2_setup			// Drop to EL1, w20=cpu_boot_mode
	bl	set_cpu_boot_mode_flag
633
	mrs	x0, mpidr_el1
634 635
	ldr     x1, =MPIDR_HWID_BITMASK
	and	x0, x0, x1
636
	adr_l	x3, secondary_holding_pen_release
637 638 639 640 641 642
pen:	ldr	x4, [x3]
	cmp	x4, x0
	b.eq	secondary_startup
	wfe
	b	pen
ENDPROC(secondary_holding_pen)
643 644 645 646 647 648 649

	/*
	 * Secondary entry point that jumps straight into the kernel. Only to
	 * be used where CPUs are brought online dynamically by the kernel.
	 */
ENTRY(secondary_entry)
	bl	el2_setup			// Drop to EL1
650
	bl	set_cpu_boot_mode_flag
651 652
	b	secondary_startup
ENDPROC(secondary_entry)
653

654
secondary_startup:
655 656 657
	/*
	 * Common entry point for secondary CPUs.
	 */
658 659
	adrp	x25, idmap_pg_dir
	adrp	x26, swapper_pg_dir
660
	bl	__cpu_setup			// initialise processor
661

662
	adr_l	x27, __secondary_switch		// address to jump to after enabling the MMU
663 664 665
	b	__enable_mmu
ENDPROC(secondary_startup)

666
__secondary_switched:
667 668 669 670
	adr_l	x5, vectors
	msr	vbar_el1, x5
	isb

671 672
	adr_l	x0, secondary_data
	ldr	x0, [x0, #CPU_BOOT_STACK]	// get secondary_data.stack
673
	mov	sp, x0
674 675
	and	x0, x0, #~(THREAD_SIZE - 1)
	msr	sp_el0, x0			// save thread_info
676 677 678 679
	mov	x29, #0
	b	secondary_start_kernel
ENDPROC(__secondary_switched)

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/*
 * The booting CPU updates the failed status @__early_cpu_boot_status,
 * with MMU turned off.
 *
 * update_early_cpu_boot_status tmp, status
 *  - Corrupts tmp1, tmp2
 *  - Writes 'status' to __early_cpu_boot_status and makes sure
 *    it is committed to memory.
 */

	.macro	update_early_cpu_boot_status status, tmp1, tmp2
	mov	\tmp2, #\status
	str_l	\tmp2, __early_cpu_boot_status, \tmp1
	dmb	sy
	dc	ivac, \tmp1			// Invalidate potentially stale cache line
	.endm

	.pushsection	.data..cacheline_aligned
	.align	L1_CACHE_SHIFT
ENTRY(__early_cpu_boot_status)
	.long 	0
	.popsection

703
/*
704
 * Enable the MMU.
705
 *
706 707 708
 *  x0  = SCTLR_EL1 value for turning on the MMU.
 *  x27 = *virtual* address to jump to upon completion
 *
709 710 711 712
 * Other registers depend on the function called upon completion.
 *
 * Checks if the selected granule size is supported by the CPU.
 * If it isn't, park the CPU
713
 */
714
	.section	".idmap.text", "ax"
715
__enable_mmu:
716
	mrs	x22, sctlr_el1			// preserve old SCTLR_EL1 value
717 718 719 720
	mrs	x1, ID_AA64MMFR0_EL1
	ubfx	x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4
	cmp	x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
	b.ne	__no_granule_support
721
	update_early_cpu_boot_status 0, x1, x2
722 723 724 725 726
	msr	ttbr0_el1, x25			// load TTBR0
	msr	ttbr1_el1, x26			// load TTBR1
	isb
	msr	sctlr_el1, x0
	isb
727 728 729 730 731 732 733 734
	/*
	 * Invalidate the local I-cache so that any instructions fetched
	 * speculatively from the PoC are discarded, since they may have
	 * been dynamically patched at the PoU.
	 */
	ic	iallu
	dsb	nsh
	isb
735 736 737 738 739 740 741 742 743
#ifdef CONFIG_RANDOMIZE_BASE
	mov	x19, x0				// preserve new SCTLR_EL1 value
	blr	x27

	/*
	 * If we return here, we have a KASLR displacement in x23 which we need
	 * to take into account by discarding the current kernel mapping and
	 * creating a new one.
	 */
744
	msr	sctlr_el1, x22			// disable the MMU
745 746 747 748 749
	isb
	bl	__create_page_tables		// recreate kernel mapping

	msr	sctlr_el1, x19			// re-enable the MMU
	isb
750 751 752
	ic	iallu				// flush instructions fetched
	dsb	nsh				// via old mapping
	isb
753
#endif
754
	br	x27
755
ENDPROC(__enable_mmu)
756 757

__no_granule_support:
758 759 760
	/* Indicate that this CPU can't boot and is stuck in the kernel */
	update_early_cpu_boot_status CPU_STUCK_IN_KERNEL, x1, x2
1:
761
	wfe
762 763
	wfi
	b 1b
764
ENDPROC(__no_granule_support)
765

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
__primary_switch:
#ifdef CONFIG_RELOCATABLE
	/*
	 * Iterate over each entry in the relocation table, and apply the
	 * relocations in place.
	 */
	ldr	w8, =__dynsym_offset		// offset to symbol table
	ldr	w9, =__rela_offset		// offset to reloc table
	ldr	w10, =__rela_size		// size of reloc table

	ldr	x11, =KIMAGE_VADDR		// default virtual offset
	add	x11, x11, x23			// actual virtual offset
	add	x8, x8, x11			// __va(.dynsym)
	add	x9, x9, x11			// __va(.rela)
	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)

0:	cmp	x9, x10
	b.hs	2f
	ldp	x11, x12, [x9], #24
	ldr	x13, [x9, #-8]
	cmp	w12, #R_AARCH64_RELATIVE
	b.ne	1f
	add	x13, x13, x23			// relocate
	str	x13, [x11, x23]
	b	0b

1:	cmp	w12, #R_AARCH64_ABS64
	b.ne	0b
	add	x12, x12, x12, lsl #1		// symtab offset: 24x top word
	add	x12, x8, x12, lsr #(32 - 3)	// ... shifted into bottom word
	ldrsh	w14, [x12, #6]			// Elf64_Sym::st_shndx
	ldr	x15, [x12, #8]			// Elf64_Sym::st_value
	cmp	w14, #-0xf			// SHN_ABS (0xfff1) ?
	add	x14, x15, x23			// relocate
	csel	x15, x14, x15, ne
	add	x15, x13, x15
	str	x15, [x11, x23]
	b	0b

2:
#endif
	ldr	x8, =__primary_switched
	br	x8
ENDPROC(__primary_switch)

811 812 813 814
__secondary_switch:
	ldr	x8, =__secondary_switched
	br	x8
ENDPROC(__secondary_switch)