process.c 19.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

4 5 6 7
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
8
#include <linux/prctl.h>
9 10
#include <linux/slab.h>
#include <linux/sched.h>
11
#include <linux/sched/idle.h>
12
#include <linux/sched/debug.h>
13
#include <linux/sched/task.h>
14
#include <linux/sched/task_stack.h>
15 16
#include <linux/init.h>
#include <linux/export.h>
17
#include <linux/pm.h>
18
#include <linux/tick.h>
A
Amerigo Wang 已提交
19
#include <linux/random.h>
A
Avi Kivity 已提交
20
#include <linux/user-return-notifier.h>
21 22
#include <linux/dmi.h>
#include <linux/utsname.h>
23 24
#include <linux/stackprotector.h>
#include <linux/cpuidle.h>
25
#include <trace/events/power.h>
26
#include <linux/hw_breakpoint.h>
27
#include <asm/cpu.h>
28
#include <asm/apic.h>
29
#include <asm/syscalls.h>
30
#include <linux/uaccess.h>
31
#include <asm/mwait.h>
32
#include <asm/fpu/internal.h>
33
#include <asm/debugreg.h>
34
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
35
#include <asm/tlbflush.h>
36
#include <asm/mce.h>
37
#include <asm/vm86.h>
38
#include <asm/switch_to.h>
39
#include <asm/desc.h>
40
#include <asm/prctl.h>
41
#include <asm/spec-ctrl.h>
42

T
Thomas Gleixner 已提交
43 44 45 46 47 48 49
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
50
__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51
	.x86_tss = {
52 53 54 55 56 57 58
		/*
		 * .sp0 is only used when entering ring 0 from a lower
		 * privilege level.  Since the init task never runs anything
		 * but ring 0 code, there is no need for a valid value here.
		 * Poison it.
		 */
		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 60 61 62 63 64 65 66

		/*
		 * .sp1 is cpu_current_top_of_stack.  The init task never
		 * runs user code, but cpu_current_top_of_stack should still
		 * be well defined before the first context switch.
		 */
		.sp1 = TOP_OF_INIT_STACK,

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
};
83
EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
T
Thomas Gleixner 已提交
84

85 86
DEFINE_PER_CPU(bool, __tss_limit_invalid);
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
87

88 89 90 91
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
92 93
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
94
	memcpy(dst, src, arch_task_struct_size);
95 96 97
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
98

99
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
100
}
101

102 103 104
/*
 * Free current thread data structures etc..
 */
105
void exit_thread(struct task_struct *tsk)
106
{
107
	struct thread_struct *t = &tsk->thread;
108
	unsigned long *bp = t->io_bitmap_ptr;
109
	struct fpu *fpu = &t->fpu;
110

111
	if (bp) {
112
		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
113 114 115 116 117 118 119 120 121

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
122
		kfree(bp);
123
	}
124

125 126
	free_vm86(t);

127
	fpu__drop(fpu);
128 129 130 131 132 133
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

134
	flush_ptrace_hw_breakpoint(tsk);
135
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
136

137
	fpu__clear(&tsk->thread.fpu);
138 139 140 141 142 143 144 145 146 147
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
148
		cr4_set_bits(X86_CR4_TSD);
149 150 151 152 153 154 155 156 157 158 159
	preempt_enable();
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
160
		cr4_clear_bits(X86_CR4_TSD);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
DEFINE_PER_CPU(u64, msr_misc_features_shadow);

static void set_cpuid_faulting(bool on)
{
	u64 msrval;

	msrval = this_cpu_read(msr_misc_features_shadow);
	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
	this_cpu_write(msr_misc_features_shadow, msrval);
	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
}

static void disable_cpuid(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(true);
	}
	preempt_enable();
}

static void enable_cpuid(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(false);
	}
	preempt_enable();
}

static int get_cpuid_mode(void)
{
	return !test_thread_flag(TIF_NOCPUID);
}

static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
{
	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
		return -ENODEV;

	if (cpuid_enabled)
		enable_cpuid();
	else
		disable_cpuid();

	return 0;
}

/*
 * Called immediately after a successful exec.
 */
void arch_setup_new_exec(void)
{
	/* If cpuid was previously disabled for this task, re-enable it. */
	if (test_thread_flag(TIF_NOCPUID))
		enable_cpuid();
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static inline void switch_to_bitmap(struct tss_struct *tss,
				    struct thread_struct *prev,
				    struct thread_struct *next,
				    unsigned long tifp, unsigned long tifn)
{
	if (tifn & _TIF_IO_BITMAP) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
		/*
		 * Make sure that the TSS limit is correct for the CPU
		 * to notice the IO bitmap.
		 */
		refresh_tss_limit();
	} else if (tifp & _TIF_IO_BITMAP) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293
#ifdef CONFIG_SMP

struct ssb_state {
	struct ssb_state	*shared_state;
	raw_spinlock_t		lock;
	unsigned int		disable_state;
	unsigned long		local_state;
};

#define LSTATE_SSB	0

static DEFINE_PER_CPU(struct ssb_state, ssb_state);

void speculative_store_bypass_ht_init(void)
294
{
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
	unsigned int this_cpu = smp_processor_id();
	unsigned int cpu;

	st->local_state = 0;

	/*
	 * Shared state setup happens once on the first bringup
	 * of the CPU. It's not destroyed on CPU hotunplug.
	 */
	if (st->shared_state)
		return;

	raw_spin_lock_init(&st->lock);

	/*
	 * Go over HT siblings and check whether one of them has set up the
	 * shared state pointer already.
	 */
	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
		if (cpu == this_cpu)
			continue;

		if (!per_cpu(ssb_state, cpu).shared_state)
			continue;

		/* Link it to the state of the sibling: */
		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
		return;
	}

	/*
	 * First HT sibling to come up on the core.  Link shared state of
	 * the first HT sibling to itself. The siblings on the same core
	 * which come up later will see the shared state pointer and link
	 * themself to the state of this CPU.
	 */
	st->shared_state = st;
}
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Logic is: First HT sibling enables SSBD for both siblings in the core
 * and last sibling to disable it, disables it for the whole core. This how
 * MSR_SPEC_CTRL works in "hardware":
 *
 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 */
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
{
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
	u64 msr = x86_amd_ls_cfg_base;

	if (!static_cpu_has(X86_FEATURE_ZEN)) {
		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
349
		wrmsrl(MSR_AMD64_LS_CFG, msr);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		return;
	}

	if (tifn & _TIF_SSBD) {
		/*
		 * Since this can race with prctl(), block reentry on the
		 * same CPU.
		 */
		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
			return;

		msr |= x86_amd_ls_cfg_ssbd_mask;

		raw_spin_lock(&st->shared_state->lock);
		/* First sibling enables SSBD: */
		if (!st->shared_state->disable_state)
			wrmsrl(MSR_AMD64_LS_CFG, msr);
		st->shared_state->disable_state++;
		raw_spin_unlock(&st->shared_state->lock);
369
	} else {
370 371 372 373 374 375 376 377
		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
			return;

		raw_spin_lock(&st->shared_state->lock);
		st->shared_state->disable_state--;
		if (!st->shared_state->disable_state)
			wrmsrl(MSR_AMD64_LS_CFG, msr);
		raw_spin_unlock(&st->shared_state->lock);
378 379
	}
}
380 381 382 383 384 385 386 387 388
#else
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
{
	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);

	wrmsrl(MSR_AMD64_LS_CFG, msr);
}
#endif

389 390 391 392 393 394 395 396 397
static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
{
	/*
	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
	 * so ssbd_tif_to_spec_ctrl() just works.
	 */
	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
}

398 399 400 401 402 403 404 405
/*
 * Update the MSRs managing speculation control, during context switch.
 *
 * tifp: Previous task's thread flags
 * tifn: Next task's thread flags
 */
static __always_inline void __speculation_ctrl_update(unsigned long tifp,
						      unsigned long tifn)
406
{
407
	unsigned long tif_diff = tifp ^ tifn;
408 409 410
	u64 msr = x86_spec_ctrl_base;
	bool updmsr = false;

411 412 413 414 415 416 417
	/*
	 * If TIF_SSBD is different, select the proper mitigation
	 * method. Note that if SSBD mitigation is disabled or permanentely
	 * enabled this branch can't be taken because nothing can set
	 * TIF_SSBD.
	 */
	if (tif_diff & _TIF_SSBD) {
418 419 420 421 422 423 424 425 426 427
		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
			amd_set_ssb_virt_state(tifn);
		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
			amd_set_core_ssb_state(tifn);
		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
			msr |= ssbd_tif_to_spec_ctrl(tifn);
			updmsr  = true;
		}
	}
428

429 430 431 432 433 434 435 436 437 438
	/*
	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
	 * otherwise avoid the MSR write.
	 */
	if (IS_ENABLED(CONFIG_SMP) &&
	    static_branch_unlikely(&switch_to_cond_stibp)) {
		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
		msr |= stibp_tif_to_spec_ctrl(tifn);
	}

439 440
	if (updmsr)
		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
441
}
442

443
void speculation_ctrl_update(unsigned long tif)
444
{
445
	/* Forced update. Make sure all relevant TIF flags are different */
446
	preempt_disable();
447
	__speculation_ctrl_update(~tif, tif);
448
	preempt_enable();
449 450
}

451 452 453 454
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;
455
	unsigned long tifp, tifn;
456 457 458 459

	prev = &prev_p->thread;
	next = &next_p->thread;

460 461 462 463 464 465
	tifn = READ_ONCE(task_thread_info(next_p)->flags);
	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
	switch_to_bitmap(tss, prev, next, tifp, tifn);

	propagate_user_return_notify(prev_p, next_p);

466 467 468
	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
	    arch_has_block_step()) {
		unsigned long debugctl, msk;
P
Peter Zijlstra 已提交
469

470
		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
471
		debugctl &= ~DEBUGCTLMSR_BTF;
472 473 474
		msk = tifn & _TIF_BLOCKSTEP;
		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
475
	}
476

477
	if ((tifp ^ tifn) & _TIF_NOTSC)
478
		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
479 480 481

	if ((tifp ^ tifn) & _TIF_NOCPUID)
		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
482

483
	__speculation_ctrl_update(tifp, tifn);
484 485
}

486 487 488
/*
 * Idle related variables and functions
 */
489
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
490 491
EXPORT_SYMBOL(boot_option_idle_override);

492
static void (*x86_idle)(void);
493

494 495 496 497 498 499 500
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

T
Thomas Gleixner 已提交
501 502
void arch_cpu_idle_enter(void)
{
503
	tsc_verify_tsc_adjust(false);
T
Thomas Gleixner 已提交
504 505
	local_touch_nmi();
}
506

T
Thomas Gleixner 已提交
507 508 509 510
void arch_cpu_idle_dead(void)
{
	play_dead();
}
511

T
Thomas Gleixner 已提交
512 513 514 515 516
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
517
	x86_idle();
518 519
}

520
/*
T
Thomas Gleixner 已提交
521
 * We use this if we don't have any better idle routine..
522
 */
523
void __cpuidle default_idle(void)
524
{
525
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
526
	safe_halt();
527
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
528
}
529
#ifdef CONFIG_APM_MODULE
530 531 532
EXPORT_SYMBOL(default_idle);
#endif

533 534
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
535
{
536
	bool ret = !!x86_idle;
537

538
	x86_idle = default_idle;
539 540 541

	return ret;
}
542
#endif
543

544 545 546 547 548 549
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
550
	set_cpu_online(smp_processor_id(), false);
551
	disable_local_APIC();
552
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
553

554 555 556 557 558 559 560 561 562 563 564
	/*
	 * Use wbinvd on processors that support SME. This provides support
	 * for performing a successful kexec when going from SME inactive
	 * to SME active (or vice-versa). The cache must be cleared so that
	 * if there are entries with the same physical address, both with and
	 * without the encryption bit, they don't race each other when flushed
	 * and potentially end up with the wrong entry being committed to
	 * memory.
	 */
	if (boot_cpu_has(X86_FEATURE_SME))
		native_wbinvd();
565 566
	for (;;) {
		/*
567 568 569
		 * Use native_halt() so that memory contents don't change
		 * (stack usage and variables) after possibly issuing the
		 * native_wbinvd() above.
570
		 */
571
		native_halt();
572
	}
573 574
}

575
/*
576 577
 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 * states (local apic timer and TSC stop).
578
 */
579
static void amd_e400_idle(void)
580
{
581 582 583 584 585 586 587 588
	/*
	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
	 * gets set after static_cpu_has() places have been converted via
	 * alternatives.
	 */
	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		default_idle();
		return;
589 590
	}

591
	tick_broadcast_enter();
592

593
	default_idle();
594

595 596 597 598 599 600 601
	/*
	 * The switch back from broadcast mode needs to be called with
	 * interrupts disabled.
	 */
	local_irq_disable();
	tick_broadcast_exit();
	local_irq_enable();
602 603
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

619
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
620 621 622 623 624 625
		return 0;

	return 1;
}

/*
626 627 628
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
629
 */
630
static __cpuidle void mwait_idle(void)
631
{
632
	if (!current_set_polling_and_test()) {
633
		trace_cpu_idle_rcuidle(1, smp_processor_id());
634
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
635
			mb(); /* quirk */
636
			clflush((void *)&current_thread_info()->flags);
637
			mb(); /* quirk */
638
		}
639 640 641 642 643 644

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
645
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
646
	} else {
647
		local_irq_enable();
648 649
	}
	__current_clr_polling();
650 651
}

652
void select_idle_routine(const struct cpuinfo_x86 *c)
653
{
654
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
655
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
656
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
657
#endif
T
Thomas Gleixner 已提交
658
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
659 660
		return;

661
	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
662
		pr_info("using AMD E400 aware idle routine\n");
663
		x86_idle = amd_e400_idle;
664 665 666
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
667
	} else
668
		x86_idle = default_idle;
669 670
}

671
void amd_e400_c1e_apic_setup(void)
672
{
673 674 675 676 677 678
	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
		local_irq_disable();
		tick_broadcast_force();
		local_irq_enable();
	}
679 680
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
void __init arch_post_acpi_subsys_init(void)
{
	u32 lo, hi;

	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
		return;

	/*
	 * AMD E400 detection needs to happen after ACPI has been enabled. If
	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
	 * MSR_K8_INT_PENDING_MSG.
	 */
	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
		return;

	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);

	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
		mark_tsc_unstable("TSC halt in AMD C1E");
	pr_info("System has AMD C1E enabled\n");
}

704 705
static int __init idle_setup(char *str)
{
706 707 708
	if (!str)
		return -EINVAL;

709
	if (!strcmp(str, "poll")) {
710
		pr_info("using polling idle threads\n");
711
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
712
		cpu_idle_poll_ctrl(true);
713
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
714 715 716 717 718 719 720
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
721
		x86_idle = default_idle;
722
		boot_option_idle_override = IDLE_HALT;
723 724 725 726 727 728 729
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
730
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
731
	} else
732 733 734 735 736 737
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
738 739 740 741 742 743 744 745 746
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
747
	return randomize_page(mm->brk, 0x02000000);
A
Amerigo Wang 已提交
748 749
}

750 751 752 753 754 755 756 757
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
758
	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
759 760 761 762 763
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

764 765 766
	if (!try_get_task_stack(p))
		return 0;

767 768
	start = (unsigned long)task_stack_page(p);
	if (!start)
769
		goto out;
770 771 772 773 774 775 776 777

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
778
	 * ----------- bottom = start
779 780 781 782 783 784 785 786 787 788
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
789
	bottom = start;
790 791 792

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
793
		goto out;
794

795
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
796 797
	do {
		if (fp < bottom || fp > top)
798
			goto out;
799
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
800 801 802 803
		if (!in_sched_functions(ip)) {
			ret = ip;
			goto out;
		}
804
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
805
	} while (count++ < 16 && p->state != TASK_RUNNING);
806 807 808 809

out:
	put_task_stack(p);
	return ret;
810
}
811 812 813 814

long do_arch_prctl_common(struct task_struct *task, int option,
			  unsigned long cpuid_enabled)
{
815 816 817 818 819 820 821
	switch (option) {
	case ARCH_GET_CPUID:
		return get_cpuid_mode();
	case ARCH_SET_CPUID:
		return set_cpuid_mode(task, cpuid_enabled);
	}

822 823
	return -EINVAL;
}