process.c 12.8 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

3 4 5 6
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
7
#include <linux/prctl.h>
8 9
#include <linux/slab.h>
#include <linux/sched.h>
10
#include <linux/sched/idle.h>
11
#include <linux/sched/debug.h>
12
#include <linux/sched/task.h>
13
#include <linux/sched/task_stack.h>
14 15
#include <linux/init.h>
#include <linux/export.h>
16
#include <linux/pm.h>
17
#include <linux/tick.h>
A
Amerigo Wang 已提交
18
#include <linux/random.h>
A
Avi Kivity 已提交
19
#include <linux/user-return-notifier.h>
20 21
#include <linux/dmi.h>
#include <linux/utsname.h>
22 23 24
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
25
#include <trace/events/power.h>
26
#include <linux/hw_breakpoint.h>
27
#include <asm/cpu.h>
28
#include <asm/apic.h>
29
#include <asm/syscalls.h>
30
#include <linux/uaccess.h>
31
#include <asm/mwait.h>
32
#include <asm/fpu/internal.h>
33
#include <asm/debugreg.h>
34
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
35
#include <asm/tlbflush.h>
36
#include <asm/mce.h>
37
#include <asm/vm86.h>
38
#include <asm/switch_to.h>
39
#include <asm/desc.h>
40

T
Thomas Gleixner 已提交
41 42 43 44 45 46 47
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
48 49
__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
	.x86_tss = {
50
		.sp0 = TOP_OF_INIT_STACK,
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
66 67 68
#ifdef CONFIG_X86_32
	.SYSENTER_stack_canary	= STACK_END_MAGIC,
#endif
69
};
70
EXPORT_PER_CPU_SYMBOL(cpu_tss);
T
Thomas Gleixner 已提交
71

72 73
DEFINE_PER_CPU(bool, __tss_limit_invalid);
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
74

75 76 77 78
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
79 80
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
81
	memcpy(dst, src, arch_task_struct_size);
82 83 84
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
85

86
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
87
}
88

89 90 91
/*
 * Free current thread data structures etc..
 */
92
void exit_thread(struct task_struct *tsk)
93
{
94
	struct thread_struct *t = &tsk->thread;
95
	unsigned long *bp = t->io_bitmap_ptr;
96
	struct fpu *fpu = &t->fpu;
97

98
	if (bp) {
99
		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
100 101 102 103 104 105 106 107 108

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
109
		kfree(bp);
110
	}
111

112 113
	free_vm86(t);

114
	fpu__drop(fpu);
115 116 117 118 119 120
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

121
	flush_ptrace_hw_breakpoint(tsk);
122
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
123

124
	fpu__clear(&tsk->thread.fpu);
125 126 127 128 129 130 131 132 133 134
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
135
		cr4_set_bits(X86_CR4_TSD);
136 137 138 139 140 141 142 143 144 145 146
	preempt_enable();
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
147
		cr4_clear_bits(X86_CR4_TSD);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static inline void switch_to_bitmap(struct tss_struct *tss,
				    struct thread_struct *prev,
				    struct thread_struct *next,
				    unsigned long tifp, unsigned long tifn)
{
	if (tifn & _TIF_IO_BITMAP) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
		/*
		 * Make sure that the TSS limit is correct for the CPU
		 * to notice the IO bitmap.
		 */
		refresh_tss_limit();
	} else if (tifp & _TIF_IO_BITMAP) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
}

200 201 202 203
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;
204
	unsigned long tifp, tifn;
205 206 207 208

	prev = &prev_p->thread;
	next = &next_p->thread;

209 210 211 212 213 214
	tifn = READ_ONCE(task_thread_info(next_p)->flags);
	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
	switch_to_bitmap(tss, prev, next, tifp, tifn);

	propagate_user_return_notify(prev_p, next_p);

215 216 217
	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
	    arch_has_block_step()) {
		unsigned long debugctl, msk;
P
Peter Zijlstra 已提交
218

219
		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
220
		debugctl &= ~DEBUGCTLMSR_BTF;
221 222 223
		msk = tifn & _TIF_BLOCKSTEP;
		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
224
	}
225

226 227
	if ((tifp ^ tifn) & _TIF_NOTSC)
		cr4_toggle_bits(X86_CR4_TSD);
228 229
}

230 231 232
/*
 * Idle related variables and functions
 */
233
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
234 235
EXPORT_SYMBOL(boot_option_idle_override);

236
static void (*x86_idle)(void);
237

238 239 240 241 242 243 244
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

T
Thomas Gleixner 已提交
245 246
void arch_cpu_idle_enter(void)
{
247
	tsc_verify_tsc_adjust(false);
T
Thomas Gleixner 已提交
248 249
	local_touch_nmi();
}
250

T
Thomas Gleixner 已提交
251 252 253 254
void arch_cpu_idle_dead(void)
{
	play_dead();
}
255

T
Thomas Gleixner 已提交
256 257 258 259 260
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
261
	x86_idle();
262 263
}

264
/*
T
Thomas Gleixner 已提交
265
 * We use this if we don't have any better idle routine..
266
 */
267
void __cpuidle default_idle(void)
268
{
269
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
270
	safe_halt();
271
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
272
}
273
#ifdef CONFIG_APM_MODULE
274 275 276
EXPORT_SYMBOL(default_idle);
#endif

277 278
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
279
{
280
	bool ret = !!x86_idle;
281

282
	x86_idle = default_idle;
283 284 285

	return ret;
}
286
#endif
287 288 289 290 291 292
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
293
	set_cpu_online(smp_processor_id(), false);
294
	disable_local_APIC();
295
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
296

297 298
	for (;;)
		halt();
299 300
}

301
/*
302 303
 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 * states (local apic timer and TSC stop).
304
 */
305
static void amd_e400_idle(void)
306
{
307 308 309 310 311 312 313 314
	/*
	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
	 * gets set after static_cpu_has() places have been converted via
	 * alternatives.
	 */
	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		default_idle();
		return;
315 316
	}

317
	tick_broadcast_enter();
318

319
	default_idle();
320

321 322 323 324 325 326 327
	/*
	 * The switch back from broadcast mode needs to be called with
	 * interrupts disabled.
	 */
	local_irq_disable();
	tick_broadcast_exit();
	local_irq_enable();
328 329
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

345
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
346 347 348 349 350 351
		return 0;

	return 1;
}

/*
352 353 354
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
355
 */
356
static __cpuidle void mwait_idle(void)
357
{
358
	if (!current_set_polling_and_test()) {
359
		trace_cpu_idle_rcuidle(1, smp_processor_id());
360
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
361
			mb(); /* quirk */
362
			clflush((void *)&current_thread_info()->flags);
363
			mb(); /* quirk */
364
		}
365 366 367 368 369 370

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
371
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
372
	} else {
373
		local_irq_enable();
374 375
	}
	__current_clr_polling();
376 377
}

378
void select_idle_routine(const struct cpuinfo_x86 *c)
379
{
380
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
381
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
382
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
383
#endif
T
Thomas Gleixner 已提交
384
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
385 386
		return;

387
	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
388
		pr_info("using AMD E400 aware idle routine\n");
389
		x86_idle = amd_e400_idle;
390 391 392
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
393
	} else
394
		x86_idle = default_idle;
395 396
}

397
void amd_e400_c1e_apic_setup(void)
398
{
399 400 401 402 403 404
	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
		local_irq_disable();
		tick_broadcast_force();
		local_irq_enable();
	}
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
void __init arch_post_acpi_subsys_init(void)
{
	u32 lo, hi;

	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
		return;

	/*
	 * AMD E400 detection needs to happen after ACPI has been enabled. If
	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
	 * MSR_K8_INT_PENDING_MSG.
	 */
	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
		return;

	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);

	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
		mark_tsc_unstable("TSC halt in AMD C1E");
	pr_info("System has AMD C1E enabled\n");
}

430 431
static int __init idle_setup(char *str)
{
432 433 434
	if (!str)
		return -EINVAL;

435
	if (!strcmp(str, "poll")) {
436
		pr_info("using polling idle threads\n");
437
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
438
		cpu_idle_poll_ctrl(true);
439
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
440 441 442 443 444 445 446
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
447
		x86_idle = default_idle;
448
		boot_option_idle_override = IDLE_HALT;
449 450 451 452 453 454 455
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
456
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
457
	} else
458 459 460 461 462 463
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
464 465 466 467 468 469 470 471 472
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
473
	return randomize_page(mm->brk, 0x02000000);
A
Amerigo Wang 已提交
474 475
}

B
Brian Gerst 已提交
476 477 478 479 480 481 482 483 484 485 486
/*
 * Return saved PC of a blocked thread.
 * What is this good for? it will be always the scheduler or ret_from_fork.
 */
unsigned long thread_saved_pc(struct task_struct *tsk)
{
	struct inactive_task_frame *frame =
		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
	return READ_ONCE_NOCHECK(frame->ret_addr);
}

487 488 489 490 491 492 493 494
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
495
	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
496 497 498 499 500
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

501 502 503
	if (!try_get_task_stack(p))
		return 0;

504 505
	start = (unsigned long)task_stack_page(p);
	if (!start)
506
		goto out;
507 508 509 510 511 512 513 514

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
515
	 * ----------- bottom = start
516 517 518 519 520 521 522 523 524 525
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
526
	bottom = start;
527 528 529

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
530
		goto out;
531

532
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
533 534
	do {
		if (fp < bottom || fp > top)
535
			goto out;
536
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
537 538 539 540
		if (!in_sched_functions(ip)) {
			ret = ip;
			goto out;
		}
541
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
542
	} while (count++ < 16 && p->state != TASK_RUNNING);
543 544 545 546

out:
	put_task_stack(p);
	return ret;
547
}