process.c 18.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

4 5 6 7
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
8
#include <linux/prctl.h>
9 10
#include <linux/slab.h>
#include <linux/sched.h>
11
#include <linux/sched/idle.h>
12
#include <linux/sched/debug.h>
13
#include <linux/sched/task.h>
14
#include <linux/sched/task_stack.h>
15 16
#include <linux/init.h>
#include <linux/export.h>
17
#include <linux/pm.h>
18
#include <linux/tick.h>
A
Amerigo Wang 已提交
19
#include <linux/random.h>
A
Avi Kivity 已提交
20
#include <linux/user-return-notifier.h>
21 22
#include <linux/dmi.h>
#include <linux/utsname.h>
23 24
#include <linux/stackprotector.h>
#include <linux/cpuidle.h>
25
#include <trace/events/power.h>
26
#include <linux/hw_breakpoint.h>
27
#include <asm/cpu.h>
28
#include <asm/apic.h>
29
#include <asm/syscalls.h>
30
#include <linux/uaccess.h>
31
#include <asm/mwait.h>
32
#include <asm/fpu/internal.h>
33
#include <asm/debugreg.h>
34
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
35
#include <asm/tlbflush.h>
36
#include <asm/mce.h>
37
#include <asm/vm86.h>
38
#include <asm/switch_to.h>
39
#include <asm/desc.h>
40
#include <asm/prctl.h>
41
#include <asm/spec-ctrl.h>
42

T
Thomas Gleixner 已提交
43 44 45 46 47 48 49
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
50
__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51
	.x86_tss = {
52 53 54 55 56 57 58
		/*
		 * .sp0 is only used when entering ring 0 from a lower
		 * privilege level.  Since the init task never runs anything
		 * but ring 0 code, there is no need for a valid value here.
		 * Poison it.
		 */
		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 60 61 62 63 64 65 66

		/*
		 * .sp1 is cpu_current_top_of_stack.  The init task never
		 * runs user code, but cpu_current_top_of_stack should still
		 * be well defined before the first context switch.
		 */
		.sp1 = TOP_OF_INIT_STACK,

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
};
83
EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
T
Thomas Gleixner 已提交
84

85 86
DEFINE_PER_CPU(bool, __tss_limit_invalid);
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
87

88 89 90 91
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
92 93
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
94
	memcpy(dst, src, arch_task_struct_size);
95 96 97
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
98

99
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
100
}
101

102 103 104
/*
 * Free current thread data structures etc..
 */
105
void exit_thread(struct task_struct *tsk)
106
{
107
	struct thread_struct *t = &tsk->thread;
108
	unsigned long *bp = t->io_bitmap_ptr;
109
	struct fpu *fpu = &t->fpu;
110

111
	if (bp) {
112
		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
113 114 115 116 117 118 119 120 121

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
122
		kfree(bp);
123
	}
124

125 126
	free_vm86(t);

127
	fpu__drop(fpu);
128 129 130 131 132 133
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

134
	flush_ptrace_hw_breakpoint(tsk);
135
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
136

137
	fpu__clear(&tsk->thread.fpu);
138 139 140 141 142 143 144 145 146 147
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
148
		cr4_set_bits(X86_CR4_TSD);
149 150 151 152 153 154 155 156 157 158 159
	preempt_enable();
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
160
		cr4_clear_bits(X86_CR4_TSD);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
DEFINE_PER_CPU(u64, msr_misc_features_shadow);

static void set_cpuid_faulting(bool on)
{
	u64 msrval;

	msrval = this_cpu_read(msr_misc_features_shadow);
	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
	this_cpu_write(msr_misc_features_shadow, msrval);
	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
}

static void disable_cpuid(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(true);
	}
	preempt_enable();
}

static void enable_cpuid(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(false);
	}
	preempt_enable();
}

static int get_cpuid_mode(void)
{
	return !test_thread_flag(TIF_NOCPUID);
}

static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
{
	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
		return -ENODEV;

	if (cpuid_enabled)
		enable_cpuid();
	else
		disable_cpuid();

	return 0;
}

/*
 * Called immediately after a successful exec.
 */
void arch_setup_new_exec(void)
{
	/* If cpuid was previously disabled for this task, re-enable it. */
	if (test_thread_flag(TIF_NOCPUID))
		enable_cpuid();
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static inline void switch_to_bitmap(struct tss_struct *tss,
				    struct thread_struct *prev,
				    struct thread_struct *next,
				    unsigned long tifp, unsigned long tifn)
{
	if (tifn & _TIF_IO_BITMAP) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
		/*
		 * Make sure that the TSS limit is correct for the CPU
		 * to notice the IO bitmap.
		 */
		refresh_tss_limit();
	} else if (tifp & _TIF_IO_BITMAP) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293
#ifdef CONFIG_SMP

struct ssb_state {
	struct ssb_state	*shared_state;
	raw_spinlock_t		lock;
	unsigned int		disable_state;
	unsigned long		local_state;
};

#define LSTATE_SSB	0

static DEFINE_PER_CPU(struct ssb_state, ssb_state);

void speculative_store_bypass_ht_init(void)
294
{
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
	unsigned int this_cpu = smp_processor_id();
	unsigned int cpu;

	st->local_state = 0;

	/*
	 * Shared state setup happens once on the first bringup
	 * of the CPU. It's not destroyed on CPU hotunplug.
	 */
	if (st->shared_state)
		return;

	raw_spin_lock_init(&st->lock);

	/*
	 * Go over HT siblings and check whether one of them has set up the
	 * shared state pointer already.
	 */
	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
		if (cpu == this_cpu)
			continue;

		if (!per_cpu(ssb_state, cpu).shared_state)
			continue;

		/* Link it to the state of the sibling: */
		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
		return;
	}

	/*
	 * First HT sibling to come up on the core.  Link shared state of
	 * the first HT sibling to itself. The siblings on the same core
	 * which come up later will see the shared state pointer and link
	 * themself to the state of this CPU.
	 */
	st->shared_state = st;
}
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Logic is: First HT sibling enables SSBD for both siblings in the core
 * and last sibling to disable it, disables it for the whole core. This how
 * MSR_SPEC_CTRL works in "hardware":
 *
 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 */
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
{
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
	u64 msr = x86_amd_ls_cfg_base;

	if (!static_cpu_has(X86_FEATURE_ZEN)) {
		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
349
		wrmsrl(MSR_AMD64_LS_CFG, msr);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		return;
	}

	if (tifn & _TIF_SSBD) {
		/*
		 * Since this can race with prctl(), block reentry on the
		 * same CPU.
		 */
		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
			return;

		msr |= x86_amd_ls_cfg_ssbd_mask;

		raw_spin_lock(&st->shared_state->lock);
		/* First sibling enables SSBD: */
		if (!st->shared_state->disable_state)
			wrmsrl(MSR_AMD64_LS_CFG, msr);
		st->shared_state->disable_state++;
		raw_spin_unlock(&st->shared_state->lock);
369
	} else {
370 371 372 373 374 375 376 377
		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
			return;

		raw_spin_lock(&st->shared_state->lock);
		st->shared_state->disable_state--;
		if (!st->shared_state->disable_state)
			wrmsrl(MSR_AMD64_LS_CFG, msr);
		raw_spin_unlock(&st->shared_state->lock);
378 379
	}
}
380 381 382 383 384 385 386 387 388
#else
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
{
	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);

	wrmsrl(MSR_AMD64_LS_CFG, msr);
}
#endif

389 390 391 392 393 394 395 396 397
static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
{
	/*
	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
	 * so ssbd_tif_to_spec_ctrl() just works.
	 */
	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
}

398 399 400 401 402 403 404 405 406
static __always_inline void intel_set_ssb_state(unsigned long tifn)
{
	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);

	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
}

static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
{
407 408 409
	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
		amd_set_ssb_virt_state(tifn);
	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
410 411 412 413
		amd_set_core_ssb_state(tifn);
	else
		intel_set_ssb_state(tifn);
}
414

415
void speculative_store_bypass_update(unsigned long tif)
416
{
417
	preempt_disable();
418
	__speculative_store_bypass_update(tif);
419
	preempt_enable();
420 421
}

422 423 424 425
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;
426
	unsigned long tifp, tifn;
427 428 429 430

	prev = &prev_p->thread;
	next = &next_p->thread;

431 432 433 434 435 436
	tifn = READ_ONCE(task_thread_info(next_p)->flags);
	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
	switch_to_bitmap(tss, prev, next, tifp, tifn);

	propagate_user_return_notify(prev_p, next_p);

437 438 439
	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
	    arch_has_block_step()) {
		unsigned long debugctl, msk;
P
Peter Zijlstra 已提交
440

441
		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
442
		debugctl &= ~DEBUGCTLMSR_BTF;
443 444 445
		msk = tifn & _TIF_BLOCKSTEP;
		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
446
	}
447

448
	if ((tifp ^ tifn) & _TIF_NOTSC)
449
		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
450 451 452

	if ((tifp ^ tifn) & _TIF_NOCPUID)
		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
453

454
	if ((tifp ^ tifn) & _TIF_SSBD)
455
		__speculative_store_bypass_update(tifn);
456 457
}

458 459 460
/*
 * Idle related variables and functions
 */
461
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
462 463
EXPORT_SYMBOL(boot_option_idle_override);

464
static void (*x86_idle)(void);
465

466 467 468 469 470 471 472
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

T
Thomas Gleixner 已提交
473 474
void arch_cpu_idle_enter(void)
{
475
	tsc_verify_tsc_adjust(false);
T
Thomas Gleixner 已提交
476 477
	local_touch_nmi();
}
478

T
Thomas Gleixner 已提交
479 480 481 482
void arch_cpu_idle_dead(void)
{
	play_dead();
}
483

T
Thomas Gleixner 已提交
484 485 486 487 488
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
489
	x86_idle();
490 491
}

492
/*
T
Thomas Gleixner 已提交
493
 * We use this if we don't have any better idle routine..
494
 */
495
void __cpuidle default_idle(void)
496
{
497
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
498
	safe_halt();
499
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
500
}
501
#ifdef CONFIG_APM_MODULE
502 503 504
EXPORT_SYMBOL(default_idle);
#endif

505 506
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
507
{
508
	bool ret = !!x86_idle;
509

510
	x86_idle = default_idle;
511 512 513

	return ret;
}
514
#endif
515

516 517 518 519 520 521
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
522
	set_cpu_online(smp_processor_id(), false);
523
	disable_local_APIC();
524
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
525

526 527 528 529 530 531 532 533 534 535 536
	/*
	 * Use wbinvd on processors that support SME. This provides support
	 * for performing a successful kexec when going from SME inactive
	 * to SME active (or vice-versa). The cache must be cleared so that
	 * if there are entries with the same physical address, both with and
	 * without the encryption bit, they don't race each other when flushed
	 * and potentially end up with the wrong entry being committed to
	 * memory.
	 */
	if (boot_cpu_has(X86_FEATURE_SME))
		native_wbinvd();
537 538
	for (;;) {
		/*
539 540 541
		 * Use native_halt() so that memory contents don't change
		 * (stack usage and variables) after possibly issuing the
		 * native_wbinvd() above.
542
		 */
543
		native_halt();
544
	}
545 546
}

547
/*
548 549
 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 * states (local apic timer and TSC stop).
550
 */
551
static void amd_e400_idle(void)
552
{
553 554 555 556 557 558 559 560
	/*
	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
	 * gets set after static_cpu_has() places have been converted via
	 * alternatives.
	 */
	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		default_idle();
		return;
561 562
	}

563
	tick_broadcast_enter();
564

565
	default_idle();
566

567 568 569 570 571 572 573
	/*
	 * The switch back from broadcast mode needs to be called with
	 * interrupts disabled.
	 */
	local_irq_disable();
	tick_broadcast_exit();
	local_irq_enable();
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

591
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
592 593 594 595 596 597
		return 0;

	return 1;
}

/*
598 599 600
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
601
 */
602
static __cpuidle void mwait_idle(void)
603
{
604
	if (!current_set_polling_and_test()) {
605
		trace_cpu_idle_rcuidle(1, smp_processor_id());
606
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
607
			mb(); /* quirk */
608
			clflush((void *)&current_thread_info()->flags);
609
			mb(); /* quirk */
610
		}
611 612 613 614 615 616

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
617
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
618
	} else {
619
		local_irq_enable();
620 621
	}
	__current_clr_polling();
622 623
}

624
void select_idle_routine(const struct cpuinfo_x86 *c)
625
{
626
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
627
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
628
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
629
#endif
T
Thomas Gleixner 已提交
630
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
631 632
		return;

633
	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
634
		pr_info("using AMD E400 aware idle routine\n");
635
		x86_idle = amd_e400_idle;
636 637 638
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
639
	} else
640
		x86_idle = default_idle;
641 642
}

643
void amd_e400_c1e_apic_setup(void)
644
{
645 646 647 648 649 650
	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
		local_irq_disable();
		tick_broadcast_force();
		local_irq_enable();
	}
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
void __init arch_post_acpi_subsys_init(void)
{
	u32 lo, hi;

	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
		return;

	/*
	 * AMD E400 detection needs to happen after ACPI has been enabled. If
	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
	 * MSR_K8_INT_PENDING_MSG.
	 */
	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
		return;

	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);

	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
		mark_tsc_unstable("TSC halt in AMD C1E");
	pr_info("System has AMD C1E enabled\n");
}

676 677
static int __init idle_setup(char *str)
{
678 679 680
	if (!str)
		return -EINVAL;

681
	if (!strcmp(str, "poll")) {
682
		pr_info("using polling idle threads\n");
683
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
684
		cpu_idle_poll_ctrl(true);
685
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
686 687 688 689 690 691 692
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
693
		x86_idle = default_idle;
694
		boot_option_idle_override = IDLE_HALT;
695 696 697 698 699 700 701
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
702
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
703
	} else
704 705 706 707 708 709
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
710 711 712 713 714 715 716 717 718
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
719
	return randomize_page(mm->brk, 0x02000000);
A
Amerigo Wang 已提交
720 721
}

722 723 724 725 726 727 728 729
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
730
	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
731 732 733 734 735
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

736 737 738
	if (!try_get_task_stack(p))
		return 0;

739 740
	start = (unsigned long)task_stack_page(p);
	if (!start)
741
		goto out;
742 743 744 745 746 747 748 749

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
750
	 * ----------- bottom = start
751 752 753 754 755 756 757 758 759 760
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
761
	bottom = start;
762 763 764

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
765
		goto out;
766

767
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
768 769
	do {
		if (fp < bottom || fp > top)
770
			goto out;
771
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
772 773 774 775
		if (!in_sched_functions(ip)) {
			ret = ip;
			goto out;
		}
776
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
777
	} while (count++ < 16 && p->state != TASK_RUNNING);
778 779 780 781

out:
	put_task_stack(p);
	return ret;
782
}
783 784 785 786

long do_arch_prctl_common(struct task_struct *task, int option,
			  unsigned long cpuid_enabled)
{
787 788 789 790 791 792 793
	switch (option) {
	case ARCH_GET_CPUID:
		return get_cpuid_mode();
	case ARCH_SET_CPUID:
		return set_cpuid_mode(task, cpuid_enabled);
	}

794 795
	return -EINVAL;
}