process.c 12.9 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

3 4 5 6
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
7
#include <linux/prctl.h>
8 9
#include <linux/slab.h>
#include <linux/sched.h>
10
#include <linux/sched/idle.h>
11
#include <linux/sched/debug.h>
12
#include <linux/sched/task.h>
13
#include <linux/sched/task_stack.h>
14 15
#include <linux/init.h>
#include <linux/export.h>
16
#include <linux/pm.h>
17
#include <linux/tick.h>
A
Amerigo Wang 已提交
18
#include <linux/random.h>
A
Avi Kivity 已提交
19
#include <linux/user-return-notifier.h>
20 21
#include <linux/dmi.h>
#include <linux/utsname.h>
22 23 24
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
25
#include <trace/events/power.h>
26
#include <linux/hw_breakpoint.h>
27
#include <asm/cpu.h>
28
#include <asm/apic.h>
29
#include <asm/syscalls.h>
30
#include <linux/uaccess.h>
31
#include <asm/mwait.h>
32
#include <asm/fpu/internal.h>
33
#include <asm/debugreg.h>
34
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
35
#include <asm/tlbflush.h>
36
#include <asm/mce.h>
37
#include <asm/vm86.h>
38
#include <asm/switch_to.h>
39
#include <asm/desc.h>
40

T
Thomas Gleixner 已提交
41 42 43 44 45 46 47
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
48 49
__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
	.x86_tss = {
50
		.sp0 = TOP_OF_INIT_STACK,
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
66 67 68
#ifdef CONFIG_X86_32
	.SYSENTER_stack_canary	= STACK_END_MAGIC,
#endif
69
};
70
EXPORT_PER_CPU_SYMBOL(cpu_tss);
T
Thomas Gleixner 已提交
71

72 73
DEFINE_PER_CPU(bool, __tss_limit_invalid);
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
74

75 76 77 78
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
79 80
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
81
	memcpy(dst, src, arch_task_struct_size);
82 83 84
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
85

86
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
87
}
88

89 90 91
/*
 * Free current thread data structures etc..
 */
92
void exit_thread(struct task_struct *tsk)
93
{
94
	struct thread_struct *t = &tsk->thread;
95
	unsigned long *bp = t->io_bitmap_ptr;
96
	struct fpu *fpu = &t->fpu;
97

98
	if (bp) {
99
		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
100 101 102 103 104 105 106 107 108

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
109
		kfree(bp);
110
	}
111

112 113
	free_vm86(t);

114
	fpu__drop(fpu);
115 116 117 118 119 120
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

121
	flush_ptrace_hw_breakpoint(tsk);
122
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
123

124
	fpu__clear(&tsk->thread.fpu);
125 126 127 128
}

static void hard_disable_TSC(void)
{
A
Andy Lutomirski 已提交
129
	cr4_set_bits(X86_CR4_TSD);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
A
Andy Lutomirski 已提交
146
	cr4_clear_bits(X86_CR4_TSD);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static inline void switch_to_bitmap(struct tss_struct *tss,
				    struct thread_struct *prev,
				    struct thread_struct *next,
				    unsigned long tifp, unsigned long tifn)
{
	if (tifn & _TIF_IO_BITMAP) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
		/*
		 * Make sure that the TSS limit is correct for the CPU
		 * to notice the IO bitmap.
		 */
		refresh_tss_limit();
	} else if (tifp & _TIF_IO_BITMAP) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
}

210 211 212 213
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;
214
	unsigned long tifp, tifn;
215 216 217 218

	prev = &prev_p->thread;
	next = &next_p->thread;

219 220 221 222 223 224 225
	tifn = READ_ONCE(task_thread_info(next_p)->flags);
	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
	switch_to_bitmap(tss, prev, next, tifp, tifn);

	propagate_user_return_notify(prev_p, next_p);

	if ((tifp ^ tifn) & _TIF_BLOCKSTEP) {
P
Peter Zijlstra 已提交
226 227 228
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
229
		if (tifn & _TIF_BLOCKSTEP)
P
Peter Zijlstra 已提交
230 231 232
			debugctl |= DEBUGCTLMSR_BTF;
		update_debugctlmsr(debugctl);
	}
233

234 235
	if ((tifp ^ tifn) & _TIF_NOTSC) {
		if (tifn & _TIF_NOTSC)
236 237 238 239 240 241
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}
}

242 243 244
/*
 * Idle related variables and functions
 */
245
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
246 247
EXPORT_SYMBOL(boot_option_idle_override);

248
static void (*x86_idle)(void);
249

250 251 252 253 254 255 256
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

T
Thomas Gleixner 已提交
257 258
void arch_cpu_idle_enter(void)
{
259
	tsc_verify_tsc_adjust(false);
T
Thomas Gleixner 已提交
260 261
	local_touch_nmi();
}
262

T
Thomas Gleixner 已提交
263 264 265 266
void arch_cpu_idle_dead(void)
{
	play_dead();
}
267

T
Thomas Gleixner 已提交
268 269 270 271 272
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
273
	x86_idle();
274 275
}

276
/*
T
Thomas Gleixner 已提交
277
 * We use this if we don't have any better idle routine..
278
 */
279
void __cpuidle default_idle(void)
280
{
281
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
282
	safe_halt();
283
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
284
}
285
#ifdef CONFIG_APM_MODULE
286 287 288
EXPORT_SYMBOL(default_idle);
#endif

289 290
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
291
{
292
	bool ret = !!x86_idle;
293

294
	x86_idle = default_idle;
295 296 297

	return ret;
}
298
#endif
299 300 301 302 303 304
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
305
	set_cpu_online(smp_processor_id(), false);
306
	disable_local_APIC();
307
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
308

309 310
	for (;;)
		halt();
311 312
}

313
/*
314 315
 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 * states (local apic timer and TSC stop).
316
 */
317
static void amd_e400_idle(void)
318
{
319 320 321 322 323 324 325 326
	/*
	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
	 * gets set after static_cpu_has() places have been converted via
	 * alternatives.
	 */
	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		default_idle();
		return;
327 328
	}

329
	tick_broadcast_enter();
330

331
	default_idle();
332

333 334 335 336 337 338 339
	/*
	 * The switch back from broadcast mode needs to be called with
	 * interrupts disabled.
	 */
	local_irq_disable();
	tick_broadcast_exit();
	local_irq_enable();
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

357
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
358 359 360 361 362 363
		return 0;

	return 1;
}

/*
364 365 366
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
367
 */
368
static __cpuidle void mwait_idle(void)
369
{
370
	if (!current_set_polling_and_test()) {
371
		trace_cpu_idle_rcuidle(1, smp_processor_id());
372
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
373
			mb(); /* quirk */
374
			clflush((void *)&current_thread_info()->flags);
375
			mb(); /* quirk */
376
		}
377 378 379 380 381 382

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
383
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
384
	} else {
385
		local_irq_enable();
386 387
	}
	__current_clr_polling();
388 389
}

390
void select_idle_routine(const struct cpuinfo_x86 *c)
391
{
392
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
393
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
394
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
395
#endif
T
Thomas Gleixner 已提交
396
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
397 398
		return;

399
	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
400
		pr_info("using AMD E400 aware idle routine\n");
401
		x86_idle = amd_e400_idle;
402 403 404
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
405
	} else
406
		x86_idle = default_idle;
407 408
}

409
void amd_e400_c1e_apic_setup(void)
410
{
411 412 413 414 415 416
	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
		local_irq_disable();
		tick_broadcast_force();
		local_irq_enable();
	}
417 418
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
void __init arch_post_acpi_subsys_init(void)
{
	u32 lo, hi;

	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
		return;

	/*
	 * AMD E400 detection needs to happen after ACPI has been enabled. If
	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
	 * MSR_K8_INT_PENDING_MSG.
	 */
	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
		return;

	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);

	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
		mark_tsc_unstable("TSC halt in AMD C1E");
	pr_info("System has AMD C1E enabled\n");
}

442 443
static int __init idle_setup(char *str)
{
444 445 446
	if (!str)
		return -EINVAL;

447
	if (!strcmp(str, "poll")) {
448
		pr_info("using polling idle threads\n");
449
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
450
		cpu_idle_poll_ctrl(true);
451
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
452 453 454 455 456 457 458
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
459
		x86_idle = default_idle;
460
		boot_option_idle_override = IDLE_HALT;
461 462 463 464 465 466 467
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
468
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
469
	} else
470 471 472 473 474 475
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
476 477 478 479 480 481 482 483 484
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
485
	return randomize_page(mm->brk, 0x02000000);
A
Amerigo Wang 已提交
486 487
}

B
Brian Gerst 已提交
488 489 490 491 492 493 494 495 496 497 498
/*
 * Return saved PC of a blocked thread.
 * What is this good for? it will be always the scheduler or ret_from_fork.
 */
unsigned long thread_saved_pc(struct task_struct *tsk)
{
	struct inactive_task_frame *frame =
		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
	return READ_ONCE_NOCHECK(frame->ret_addr);
}

499 500 501 502 503 504 505 506
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
507
	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
508 509 510 511 512
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

513 514 515
	if (!try_get_task_stack(p))
		return 0;

516 517
	start = (unsigned long)task_stack_page(p);
	if (!start)
518
		goto out;
519 520 521 522 523 524 525 526

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
527
	 * ----------- bottom = start
528 529 530 531 532 533 534 535 536 537
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
538
	bottom = start;
539 540 541

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
542
		goto out;
543

544
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
545 546
	do {
		if (fp < bottom || fp > top)
547
			goto out;
548
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
549 550 551 552
		if (!in_sched_functions(ip)) {
			ret = ip;
			goto out;
		}
553
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
554
	} while (count++ < 16 && p->state != TASK_RUNNING);
555 556 557 558

out:
	put_task_stack(p);
	return ret;
559
}