vmscan.c 98.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
98
	int order;
99

100
	/*
101 102
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
103
	 */
104
	reclaim_mode_t reclaim_mode;
105

106 107 108
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

109 110 111 112 113
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
150
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
151 152 153 154

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

155
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157
#else
158
#define scanning_global_lru(sc)	(1)
159 160
#endif

161 162 163
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
164
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
165 166
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

167 168 169
	return &zone->reclaim_stat;
}

170 171
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
172
{
173
	if (!scanning_global_lru(sc))
174 175
		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176

177 178 179 180
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
181 182 183
/*
 * Add a shrinker callback to be called from the vm
 */
184
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
185
{
186 187 188 189
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
190
}
191
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
192 193 194 195

/*
 * Remove one
 */
196
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
197 198 199 200 201
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
202
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
203

204 205 206 207 208 209 210 211
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
221
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
222 223 224 225 226 227 228
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
229 230
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
231
 */
232
unsigned long shrink_slab(struct shrink_control *shrink,
233
			  unsigned long nr_pages_scanned,
234
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
235 236
{
	struct shrinker *shrinker;
237
	unsigned long ret = 0;
L
Linus Torvalds 已提交
238

239 240
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
241

242 243 244 245 246
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
247 248 249

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
250 251
		long total_scan;
		long max_pass;
252
		int shrink_ret = 0;
253 254
		long nr;
		long new_nr;
255 256
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
257

258 259 260 261
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

262 263 264 265 266 267 268 269 270 271
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
		do {
			nr = shrinker->nr;
		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);

		total_scan = nr;
272
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
273
		delta *= max_pass;
L
Linus Torvalds 已提交
274
		do_div(delta, lru_pages + 1);
275 276
		total_scan += delta;
		if (total_scan < 0) {
277 278
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
279 280
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
281 282
		}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

298 299 300 301 302
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
303 304
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
305

306
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
307 308 309
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

310
		while (total_scan >= batch_size) {
311
			int nr_before;
L
Linus Torvalds 已提交
312

313 314
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
315
							batch_size);
L
Linus Torvalds 已提交
316 317
			if (shrink_ret == -1)
				break;
318 319
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
320 321
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
322 323 324 325

			cond_resched();
		}

326 327 328 329 330 331 332 333 334 335 336 337 338
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
		do {
			nr = shrinker->nr;
			new_nr = total_scan + nr;
			if (total_scan <= 0)
				break;
		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
339 340
	}
	up_read(&shrinker_rwsem);
341 342
out:
	cond_resched();
343
	return ret;
L
Linus Torvalds 已提交
344 345
}

346
static void set_reclaim_mode(int priority, struct scan_control *sc,
347 348
				   bool sync)
{
349
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
350 351

	/*
352 353 354
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
355
	 */
356
	if (COMPACTION_BUILD)
357
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
358
	else
359
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
360 361

	/*
362 363 364
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
365 366
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
367
		sc->reclaim_mode |= syncmode;
368
	else if (sc->order && priority < DEF_PRIORITY - 2)
369
		sc->reclaim_mode |= syncmode;
370
	else
371
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
372 373
}

374
static void reset_reclaim_mode(struct scan_control *sc)
375
{
376
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
377 378
}

L
Linus Torvalds 已提交
379 380
static inline int is_page_cache_freeable(struct page *page)
{
381 382 383 384 385
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
386
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
387 388
}

389 390
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
391
{
392
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
393 394 395 396 397
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
398 399 400 401

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
420
	lock_page(page);
421 422
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
423 424 425
	unlock_page(page);
}

426 427 428 429 430 431 432 433 434 435 436 437
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
438
/*
A
Andrew Morton 已提交
439 440
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
441
 */
442
static pageout_t pageout(struct page *page, struct address_space *mapping,
443
			 struct scan_control *sc)
L
Linus Torvalds 已提交
444 445 446 447 448 449 450 451
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
452
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
468
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
469 470
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
471
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
472 473 474 475 476 477 478
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
479
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
480 481 482 483 484 485 486
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
487 488
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
489 490 491 492 493 494 495
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
496
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
497 498 499
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
500

L
Linus Torvalds 已提交
501 502 503 504
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
505
		trace_mm_vmscan_writepage(page,
506
			trace_reclaim_flags(page, sc->reclaim_mode));
507
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
508 509 510 511 512 513
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

514
/*
N
Nick Piggin 已提交
515 516
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
517
 */
N
Nick Piggin 已提交
518
static int __remove_mapping(struct address_space *mapping, struct page *page)
519
{
520 521
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
522

N
Nick Piggin 已提交
523
	spin_lock_irq(&mapping->tree_lock);
524
	/*
N
Nick Piggin 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
548
	 */
N
Nick Piggin 已提交
549
	if (!page_freeze_refs(page, 2))
550
		goto cannot_free;
N
Nick Piggin 已提交
551 552 553
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
554
		goto cannot_free;
N
Nick Piggin 已提交
555
	}
556 557 558 559

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
560
		spin_unlock_irq(&mapping->tree_lock);
561
		swapcache_free(swap, page);
N
Nick Piggin 已提交
562
	} else {
563 564 565 566
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

567
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
568
		spin_unlock_irq(&mapping->tree_lock);
569
		mem_cgroup_uncharge_cache_page(page);
570 571 572

		if (freepage != NULL)
			freepage(page);
573 574 575 576 577
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
578
	spin_unlock_irq(&mapping->tree_lock);
579 580 581
	return 0;
}

N
Nick Piggin 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
615
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
629
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
630 631 632 633 634 635 636 637
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
638
		/*
639 640 641 642 643
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
		 * isolation/check_move_unevictable_page,
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
644 645
		 * the page back to the evictable list.
		 *
646
		 * The other side is TestClearPageMlocked() or shmem_lock().
647 648
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

667 668 669 670 671
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
672 673 674
	put_page(page);		/* drop ref from isolate */
}

675 676 677
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
678
	PAGEREF_KEEP,
679 680 681 682 683 684
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
685
	int referenced_ptes, referenced_page;
686 687
	unsigned long vm_flags;

688 689
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
690 691

	/* Lumpy reclaim - ignore references */
692
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
693 694 695 696 697 698 699 700 701
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
726 727

	/* Reclaim if clean, defer dirty pages to writeback */
728
	if (referenced_page && !PageSwapBacked(page))
729 730 731
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
732 733
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
752
/*
A
Andrew Morton 已提交
753
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
754
 */
A
Andrew Morton 已提交
755
static unsigned long shrink_page_list(struct list_head *page_list,
756
				      struct zone *zone,
757
				      struct scan_control *sc,
758 759 760
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
761 762
{
	LIST_HEAD(ret_pages);
763
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
764
	int pgactivate = 0;
765 766
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
767
	unsigned long nr_reclaimed = 0;
768
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
769 770 771 772

	cond_resched();

	while (!list_empty(page_list)) {
773
		enum page_references references;
L
Linus Torvalds 已提交
774 775 776 777 778 779 780 781 782
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
783
		if (!trylock_page(page))
L
Linus Torvalds 已提交
784 785
			goto keep;

N
Nick Piggin 已提交
786
		VM_BUG_ON(PageActive(page));
787
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
788 789

		sc->nr_scanned++;
790

N
Nick Piggin 已提交
791 792
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
793

794
		if (!sc->may_unmap && page_mapped(page))
795 796
			goto keep_locked;

L
Linus Torvalds 已提交
797 798 799 800
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

801 802 803 804
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
805
			nr_writeback++;
806
			/*
807 808 809 810
			 * Synchronous reclaim cannot queue pages for
			 * writeback due to the possibility of stack overflow
			 * but if it encounters a page under writeback, wait
			 * for the IO to complete.
811
			 */
812
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
813
			    may_enter_fs)
814
				wait_on_page_writeback(page);
815 816 817 818
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
819
		}
L
Linus Torvalds 已提交
820

821 822 823
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
824
			goto activate_locked;
825 826
		case PAGEREF_KEEP:
			goto keep_locked;
827 828 829 830
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
831 832 833 834 835

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
836
		if (PageAnon(page) && !PageSwapCache(page)) {
837 838
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
839
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
840
				goto activate_locked;
841
			may_enter_fs = 1;
N
Nick Piggin 已提交
842
		}
L
Linus Torvalds 已提交
843 844 845 846 847 848 849 850

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
851
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
852 853 854 855
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
856 857
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
858 859 860 861 862 863
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
864 865
			nr_dirty++;

866 867
			/*
			 * Only kswapd can writeback filesystem pages to
868 869
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
870
			 */
871 872
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
873 874 875 876 877 878 879 880 881
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

882 883 884
				goto keep_locked;
			}

885
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
886
				goto keep_locked;
887
			if (!may_enter_fs)
L
Linus Torvalds 已提交
888
				goto keep_locked;
889
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
890 891 892
				goto keep_locked;

			/* Page is dirty, try to write it out here */
893
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
894
			case PAGE_KEEP:
895
				nr_congested++;
L
Linus Torvalds 已提交
896 897 898 899
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
900 901 902
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
903
					goto keep;
904

L
Linus Torvalds 已提交
905 906 907 908
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
909
				if (!trylock_page(page))
L
Linus Torvalds 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
929
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
930 931 932 933 934 935 936 937 938 939
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
940
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
941 942
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
959 960
		}

N
Nick Piggin 已提交
961
		if (!mapping || !__remove_mapping(mapping, page))
962
			goto keep_locked;
L
Linus Torvalds 已提交
963

N
Nick Piggin 已提交
964 965 966 967 968 969 970 971
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
972
free_it:
973
		nr_reclaimed++;
974 975 976 977 978 979

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
980 981
		continue;

N
Nick Piggin 已提交
982
cull_mlocked:
983 984
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
985 986
		unlock_page(page);
		putback_lru_page(page);
987
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
988 989
		continue;

L
Linus Torvalds 已提交
990
activate_locked:
991 992
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
993
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
994
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
995 996 997 998 999
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
1000
		reset_reclaim_mode(sc);
1001
keep_lumpy:
L
Linus Torvalds 已提交
1002
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1003
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1004
	}
1005

1006 1007 1008 1009 1010 1011
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
1012
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1013 1014
		zone_set_flag(zone, ZONE_CONGESTED);

1015 1016
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
1017
	list_splice(&ret_pages, page_list);
1018
	count_vm_events(PGACTIVATE, pgactivate);
1019 1020
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
1021
	return nr_reclaimed;
L
Linus Torvalds 已提交
1022 1023
}

A
Andy Whitcroft 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1034
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1035
{
1036
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1037 1038 1039 1040 1041 1042
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1043 1044 1045
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1046 1047 1048 1049 1050
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1051
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1052 1053
		return ret;

1054
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1055 1056
		return ret;

L
Lee Schermerhorn 已提交
1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1065
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1066

1067 1068 1069
	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
		return ret;

1070 1071 1072
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1100 1101
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1102
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1103 1104 1105
 *
 * returns how many pages were moved onto *@dst.
 */
1106 1107
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1108 1109
		unsigned long *scanned, int order, isolate_mode_t mode,
		int file)
L
Linus Torvalds 已提交
1110
{
1111
	unsigned long nr_taken = 0;
1112 1113 1114
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1115
	unsigned long scan;
L
Linus Torvalds 已提交
1116

1117
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1118 1119 1120 1121 1122 1123
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1124 1125 1126
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1127
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1128

1129
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1130 1131
		case 0:
			list_move(&page->lru, dst);
1132
			mem_cgroup_del_lru(page);
1133
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1134 1135 1136 1137 1138
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1139
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1140
			continue;
1141

A
Andy Whitcroft 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1154
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1174

A
Andy Whitcroft 已提交
1175 1176
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1177
				break;
1178 1179 1180 1181 1182 1183 1184

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1185 1186
			    !PageSwapCache(cursor_page))
				break;
1187

1188
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1189
				list_move(&cursor_page->lru, dst);
1190
				mem_cgroup_del_lru(cursor_page);
1191
				nr_taken += hpage_nr_pages(page);
1192 1193 1194
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1195
				scan++;
1196
			} else {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1211 1212
					continue;
				break;
A
Andy Whitcroft 已提交
1213 1214
			}
		}
1215 1216 1217 1218

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1219 1220 1221
	}

	*scanned = scan;
1222 1223 1224 1225 1226 1227

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1228 1229 1230
	return nr_taken;
}

1231 1232 1233
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
1234 1235
					isolate_mode_t mode,
					struct zone *z,	int active, int file)
1236
{
1237
	int lru = LRU_BASE;
1238
	if (active)
1239 1240 1241 1242
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1243
								mode, file);
1244 1245
}

A
Andy Whitcroft 已提交
1246 1247 1248 1249
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1250 1251
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1252 1253
{
	int nr_active = 0;
1254
	int lru;
A
Andy Whitcroft 已提交
1255 1256
	struct page *page;

1257
	list_for_each_entry(page, page_list, lru) {
1258
		int numpages = hpage_nr_pages(page);
1259
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1260
		if (PageActive(page)) {
1261
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1262
			ClearPageActive(page);
1263
			nr_active += numpages;
A
Andy Whitcroft 已提交
1264
		}
1265
		if (count)
1266
			count[lru] += numpages;
1267
	}
A
Andy Whitcroft 已提交
1268 1269 1270 1271

	return nr_active;
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1283 1284 1285
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1301 1302
	VM_BUG_ON(!page_count(page));

1303 1304 1305 1306
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1307
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1308
			int lru = page_lru(page);
1309
			ret = 0;
1310
			get_page(page);
1311
			ClearPageLRU(page);
1312 1313

			del_page_from_lru_list(zone, page, lru);
1314 1315 1316 1317 1318 1319
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1345 1346 1347 1348
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1349
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1350 1351 1352 1353 1354
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1355
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1374
		SetPageLRU(page);
1375
		lru = page_lru(page);
1376
		add_page_to_lru_list(zone, page, lru);
1377 1378
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1379 1380
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1426
/*
1427
 * Returns true if a direct reclaim should wait on pages under writeback.
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1446
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1447 1448
		return false;

1449
	/* If we have reclaimed everything on the isolated list, no stall */
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1467
/*
A
Andrew Morton 已提交
1468 1469
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1470
 */
1471 1472 1473
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1474 1475
{
	LIST_HEAD(page_list);
1476
	unsigned long nr_scanned;
1477
	unsigned long nr_reclaimed = 0;
1478 1479 1480
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1481 1482
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1483
	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1484

1485
	while (unlikely(too_many_isolated(zone, file, sc))) {
1486
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1487 1488 1489 1490 1491 1492

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1493
	set_reclaim_mode(priority, sc, false);
1494 1495 1496
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
		reclaim_mode |= ISOLATE_ACTIVE;

L
Linus Torvalds 已提交
1497
	lru_add_drain();
1498 1499 1500 1501 1502 1503

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1504
	spin_lock_irq(&zone->lru_lock);
1505

1506
	if (scanning_global_lru(sc)) {
1507 1508
		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1509 1510 1511 1512 1513 1514 1515 1516
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
1517 1518 1519
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone,
			sc->mem_cgroup, 0, file);
1520 1521 1522 1523 1524
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1525

1526 1527 1528 1529
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1530

1531
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1532

1533
	spin_unlock_irq(&zone->lru_lock);
1534

1535 1536
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
						&nr_dirty, &nr_writeback);
1537

1538 1539
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1540
		set_reclaim_mode(priority, sc, true);
1541 1542
		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
					priority, &nr_dirty, &nr_writeback);
1543
	}
1544

1545 1546 1547 1548
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1549

1550
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1578 1579 1580 1581
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1582
		trace_shrink_flags(file, sc->reclaim_mode));
1583
	return nr_reclaimed;
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1603

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1622
		pgmoved += hpage_nr_pages(page);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1636

A
Andrew Morton 已提交
1637
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1638
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1639
{
1640
	unsigned long nr_taken;
1641
	unsigned long pgscanned;
1642
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1643
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1644
	LIST_HEAD(l_active);
1645
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1646
	struct page *page;
1647
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1648
	unsigned long nr_rotated = 0;
1649
	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
L
Linus Torvalds 已提交
1650 1651

	lru_add_drain();
1652 1653 1654 1655 1656 1657

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1658
	spin_lock_irq(&zone->lru_lock);
1659
	if (scanning_global_lru(sc)) {
1660 1661
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
1662
						reclaim_mode, zone,
1663
						1, file);
1664
		zone->pages_scanned += pgscanned;
1665 1666 1667
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
1668
						reclaim_mode, zone,
1669 1670 1671 1672 1673
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1674
	}
1675

1676
	reclaim_stat->recent_scanned[file] += nr_taken;
1677

1678
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1679
	if (file)
1680
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1681
	else
1682
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1683
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1690

L
Lee Schermerhorn 已提交
1691 1692 1693 1694 1695
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1696
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1697
			nr_rotated += hpage_nr_pages(page);
1698 1699 1700 1701 1702 1703 1704 1705 1706
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1707
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1708 1709 1710 1711
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1712

1713
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1714 1715 1716
		list_add(&page->lru, &l_inactive);
	}

1717
	/*
1718
	 * Move pages back to the lru list.
1719
	 */
1720
	spin_lock_irq(&zone->lru_lock);
1721
	/*
1722 1723 1724 1725
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1726
	 */
1727
	reclaim_stat->recent_rotated[file] += nr_rotated;
1728

1729 1730 1731 1732
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1733
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1734
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1735 1736
}

1737
#ifdef CONFIG_SWAP
1738
static int inactive_anon_is_low_global(struct zone *zone)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1763 1764 1765 1766 1767 1768 1769
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1770
	if (scanning_global_lru(sc))
1771 1772
		low = inactive_anon_is_low_global(zone);
	else
1773
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1774 1775
	return low;
}
1776 1777 1778 1779 1780 1781 1782
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
1816
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1817 1818 1819
	return low;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1829
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1830 1831
	struct zone *zone, struct scan_control *sc, int priority)
{
1832 1833
	int file = is_file_lru(lru);

1834 1835 1836
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1837 1838 1839
		return 0;
	}

R
Rik van Riel 已提交
1840
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1841 1842
}

1843 1844 1845 1846 1847 1848 1849
static int vmscan_swappiness(struct scan_control *sc)
{
	if (scanning_global_lru(sc))
		return vm_swappiness;
	return mem_cgroup_swappiness(sc->mem_cgroup);
}

1850 1851 1852 1853 1854 1855
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1856
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1857
 */
1858 1859
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1860 1861 1862 1863
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1864
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1865 1866 1867
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1868
	bool force_scan = false;
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1880 1881 1882 1883
	if (scanning_global_lru(sc) && current_is_kswapd())
		force_scan = true;
	if (!scanning_global_lru(sc))
		force_scan = true;
1884 1885 1886 1887 1888 1889 1890 1891 1892

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1893

1894 1895 1896 1897 1898
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);

1899
	if (scanning_global_lru(sc)) {
1900 1901 1902
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1903
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1904 1905 1906 1907
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1908
		}
1909 1910
	}

1911 1912 1913 1914
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1915 1916
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1929
	spin_lock_irq(&zone->lru_lock);
1930 1931 1932
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1933 1934
	}

1935 1936 1937
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1938 1939 1940
	}

	/*
1941 1942 1943
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1944
	 */
1945 1946
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1947

1948 1949
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1950
	spin_unlock_irq(&zone->lru_lock);
1951

1952 1953 1954 1955 1956 1957 1958
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1959

1960 1961 1962
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
1963 1964
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1965 1966
			scan = div64_u64(scan * fraction[file], denominator);
		}
1967
		nr[l] = scan;
1968
	}
1969
}
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1987
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1988 1989
		return false;

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
2034 2035 2036
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2037
static void shrink_zone(int priority, struct zone *zone,
2038
				struct scan_control *sc)
L
Linus Torvalds 已提交
2039
{
2040
	unsigned long nr[NR_LRU_LISTS];
2041
	unsigned long nr_to_scan;
2042
	enum lru_list l;
2043
	unsigned long nr_reclaimed, nr_scanned;
2044
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2045
	struct blk_plug plug;
2046

2047 2048
restart:
	nr_reclaimed = 0;
2049
	nr_scanned = sc->nr_scanned;
2050
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
2051

2052
	blk_start_plug(&plug);
2053 2054
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
2055
		for_each_evictable_lru(l) {
2056
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
2057 2058
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
2059
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
2060

2061 2062
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
2063
			}
L
Linus Torvalds 已提交
2064
		}
2065 2066 2067 2068 2069 2070 2071 2072
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2073
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2074
			break;
L
Linus Torvalds 已提交
2075
	}
2076
	blk_finish_plug(&plug);
2077
	sc->nr_reclaimed += nr_reclaimed;
2078

2079 2080 2081 2082
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2083
	if (inactive_anon_is_low(zone, sc))
2084 2085
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

2086 2087 2088 2089 2090
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2091
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2092 2093 2094 2095 2096 2097 2098
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2099 2100
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2101 2102
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2103 2104 2105
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2106 2107 2108
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2109 2110 2111 2112
 *
 * This function returns true if a zone is being reclaimed for a costly
 * high-order allocation and compaction is either ready to begin or deferred.
 * This indicates to the caller that it should retry the allocation or fail.
L
Linus Torvalds 已提交
2113
 */
2114
static bool shrink_zones(int priority, struct zonelist *zonelist,
2115
					struct scan_control *sc)
L
Linus Torvalds 已提交
2116
{
2117
	struct zoneref *z;
2118
	struct zone *zone;
2119 2120
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2121
	bool should_abort_reclaim = false;
2122

2123 2124
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2125
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2126
			continue;
2127 2128 2129 2130
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2131
		if (scanning_global_lru(sc)) {
2132 2133
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2134
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2135
				continue;	/* Let kswapd poll it */
2136 2137
			if (COMPACTION_BUILD) {
				/*
2138 2139 2140 2141 2142 2143 2144
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
				 * noticable problem, like transparent huge page
				 * allocations.
2145 2146 2147
				 */
				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
					(compaction_suitable(zone, sc->order) ||
2148 2149
					 compaction_deferred(zone))) {
					should_abort_reclaim = true;
2150
					continue;
2151
				}
2152
			}
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2166
		}
2167

2168
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2169
	}
2170 2171

	return should_abort_reclaim;
2172 2173 2174 2175 2176 2177 2178
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2179
/* All zones in zonelist are unreclaimable? */
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2192 2193
		if (!zone->all_unreclaimable)
			return false;
2194 2195
	}

2196
	return true;
L
Linus Torvalds 已提交
2197
}
2198

L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204 2205 2206
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2207 2208 2209 2210
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2211 2212 2213
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2214
 */
2215
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2216 2217
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2218 2219
{
	int priority;
2220
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2221
	struct reclaim_state *reclaim_state = current->reclaim_state;
2222
	struct zoneref *z;
2223
	struct zone *zone;
2224
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2225

2226
	get_mems_allowed();
2227 2228
	delayacct_freepages_start();

2229
	if (scanning_global_lru(sc))
2230
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2231 2232

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2233
		sc->nr_scanned = 0;
2234
		if (!priority)
2235
			disable_swap_token(sc->mem_cgroup);
2236 2237 2238
		if (shrink_zones(priority, zonelist, sc))
			break;

2239 2240 2241 2242
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2243
		if (scanning_global_lru(sc)) {
2244
			unsigned long lru_pages = 0;
2245 2246
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2247 2248 2249 2250 2251 2252
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2253
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2254
			if (reclaim_state) {
2255
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2256 2257
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2258
		}
2259
		total_scanned += sc->nr_scanned;
2260
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2270 2271
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2272 2273
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2274
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2275 2276 2277
		}

		/* Take a nap, wait for some writeback to complete */
2278
		if (!sc->hibernation_mode && sc->nr_scanned &&
2279 2280 2281 2282
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2283 2284
						&cpuset_current_mems_allowed,
						&preferred_zone);
2285 2286
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2287
	}
2288

L
Linus Torvalds 已提交
2289
out:
2290
	delayacct_freepages_end();
2291
	put_mems_allowed();
2292

2293 2294 2295
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2296 2297 2298 2299 2300 2301 2302 2303
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2304
	/* top priority shrink_zones still had more to do? don't OOM, then */
2305
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2306 2307 2308
		return 1;

	return 0;
L
Linus Torvalds 已提交
2309 2310
}

2311
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2312
				gfp_t gfp_mask, nodemask_t *nodemask)
2313
{
2314
	unsigned long nr_reclaimed;
2315 2316 2317
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2318
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2319
		.may_unmap = 1,
2320
		.may_swap = 1,
2321 2322
		.order = order,
		.mem_cgroup = NULL,
2323
		.nodemask = nodemask,
2324
	};
2325 2326 2327
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2328

2329 2330 2331 2332
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2333
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2334 2335 2336 2337

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2338 2339
}

2340
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2341

2342 2343
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
2344 2345
						struct zone *zone,
						unsigned long *nr_scanned)
2346 2347
{
	struct scan_control sc = {
2348
		.nr_scanned = 0,
2349
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2350 2351 2352 2353 2354 2355
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
		.mem_cgroup = mem,
	};
2356

2357 2358
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2359 2360 2361 2362 2363

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2372 2373 2374

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2375
	*nr_scanned = sc.nr_scanned;
2376 2377 2378
	return sc.nr_reclaimed;
}

2379
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2380
					   gfp_t gfp_mask,
2381
					   bool noswap)
2382
{
2383
	struct zonelist *zonelist;
2384
	unsigned long nr_reclaimed;
2385
	int nid;
2386 2387
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2388
		.may_unmap = 1,
2389
		.may_swap = !noswap,
2390
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2391 2392
		.order = 0,
		.mem_cgroup = mem_cont,
2393
		.nodemask = NULL, /* we don't care the placement */
2394 2395 2396 2397 2398
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2399 2400
	};

2401 2402 2403 2404 2405 2406 2407 2408
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
	nid = mem_cgroup_select_victim_node(mem_cont);

	zonelist = NODE_DATA(nid)->node_zonelists;
2409 2410 2411 2412 2413

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2414
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2415 2416 2417 2418

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2419 2420 2421
}
#endif

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2433
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2447 2448
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2449 2450
}

2451
/* is kswapd sleeping prematurely? */
2452 2453
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2454
{
2455
	int i;
2456 2457
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2458 2459 2460

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2461
		return true;
2462

2463
	/* Check the watermark levels */
2464
	for (i = 0; i <= classzone_idx; i++) {
2465 2466 2467 2468 2469
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2470 2471 2472 2473 2474 2475 2476 2477
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2478
			continue;
2479
		}
2480

2481
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2482
							i, 0))
2483 2484 2485
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2486
	}
2487

2488 2489 2490 2491 2492 2493
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2494
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2495 2496
	else
		return !all_zones_ok;
2497 2498
}

L
Linus Torvalds 已提交
2499 2500
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2501
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2502
 *
2503
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2514 2515 2516 2517 2518
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2519
 */
2520
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2521
							int *classzone_idx)
L
Linus Torvalds 已提交
2522 2523
{
	int all_zones_ok;
2524
	unsigned long balanced;
L
Linus Torvalds 已提交
2525 2526
	int priority;
	int i;
2527
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2528
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2529
	struct reclaim_state *reclaim_state = current->reclaim_state;
2530 2531
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2532 2533
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2534
		.may_unmap = 1,
2535
		.may_swap = 1,
2536 2537 2538 2539 2540
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2541
		.order = order,
2542
		.mem_cgroup = NULL,
2543
	};
2544 2545 2546
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2547 2548
loop_again:
	total_scanned = 0;
2549
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2550
	sc.may_writepage = !laptop_mode;
2551
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2552 2553 2554

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2555
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2556

2557 2558
		/* The swap token gets in the way of swapout... */
		if (!priority)
2559
			disable_swap_token(NULL);
2560

L
Linus Torvalds 已提交
2561
		all_zones_ok = 1;
2562
		balanced = 0;
L
Linus Torvalds 已提交
2563

2564 2565 2566 2567 2568 2569
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2570

2571 2572
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2573

2574
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2575
				continue;
L
Linus Torvalds 已提交
2576

2577 2578 2579 2580
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2581
			if (inactive_anon_is_low(zone, &sc))
2582 2583 2584
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2585
			if (!zone_watermark_ok_safe(zone, order,
2586
					high_wmark_pages(zone), 0, 0)) {
2587
				end_zone = i;
A
Andrew Morton 已提交
2588
				break;
2589 2590 2591
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2592 2593
			}
		}
A
Andrew Morton 已提交
2594 2595 2596
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2597 2598 2599
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2600
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2614
			int nr_slab;
2615
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2616

2617
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2618 2619
				continue;

2620
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2621 2622 2623
				continue;

			sc.nr_scanned = 0;
2624

2625
			nr_soft_scanned = 0;
2626 2627 2628
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2629 2630 2631 2632 2633
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2634

2635
			/*
2636 2637 2638 2639 2640 2641
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2642
			 */
2643 2644 2645 2646
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2647
			if (!zone_watermark_ok_safe(zone, order,
2648
					high_wmark_pages(zone) + balance_gap,
2649
					end_zone, 0)) {
2650
				shrink_zone(priority, zone, &sc);
2651

2652 2653 2654 2655 2656 2657 2658 2659 2660
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2667
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2668
				sc.may_writepage = 1;
2669

2670 2671 2672
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2673
				continue;
2674
			}
2675

2676
			if (!zone_watermark_ok_safe(zone, order,
2677 2678 2679 2680 2681 2682 2683
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2684
				if (!zone_watermark_ok_safe(zone, order,
2685 2686
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2687 2688 2689 2690 2691 2692 2693 2694 2695
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2696
				if (i <= *classzone_idx)
2697
					balanced += zone->present_pages;
2698
			}
2699

L
Linus Torvalds 已提交
2700
		}
2701
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2707 2708 2709 2710 2711 2712
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718 2719

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2720
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2721 2722 2723
			break;
	}
out:
2724 2725 2726

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2727 2728
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2729
	 */
2730
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2731
		cond_resched();
2732 2733 2734

		try_to_freeze();

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2752 2753 2754
		goto loop_again;
	}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
2782 2783
			if (i <= *classzone_idx)
				balanced += zone->present_pages;
2784 2785 2786
		}
	}

2787 2788 2789 2790 2791 2792
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2793
	*classzone_idx = end_zone;
2794
	return order;
L
Linus Torvalds 已提交
2795 2796
}

2797
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2808
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2809 2810 2811 2812 2813 2814 2815 2816 2817
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2818
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2841 2842
/*
 * The background pageout daemon, started as a kernel thread
2843
 * from the init process.
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2856
	unsigned long order, new_order;
2857
	unsigned balanced_order;
2858
	int classzone_idx, new_classzone_idx;
2859
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2860 2861
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2862

L
Linus Torvalds 已提交
2863 2864 2865
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2866
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2867

2868 2869
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2870
	if (!cpumask_empty(cpumask))
2871
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2886
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2887
	set_freezable();
L
Linus Torvalds 已提交
2888

2889
	order = new_order = 0;
2890
	balanced_order = 0;
2891
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2892
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2893
	for ( ; ; ) {
2894
		int ret;
2895

2896 2897 2898 2899 2900
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2901 2902
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2903 2904 2905 2906 2907 2908
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2909
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2910 2911
			/*
			 * Don't sleep if someone wants a larger 'order'
2912
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2913 2914
			 */
			order = new_order;
2915
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2916
		} else {
2917 2918
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2919
			order = pgdat->kswapd_max_order;
2920
			classzone_idx = pgdat->classzone_idx;
2921 2922
			new_order = order;
			new_classzone_idx = classzone_idx;
2923
			pgdat->kswapd_max_order = 0;
2924
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2925 2926
		}

2927 2928 2929 2930 2931 2932 2933 2934
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2935 2936
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2937 2938 2939
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2940
		}
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945 2946 2947
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2948
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2949 2950 2951
{
	pg_data_t *pgdat;

2952
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2953 2954
		return;

2955
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2956
		return;
2957
	pgdat = zone->zone_pgdat;
2958
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2959
		pgdat->kswapd_max_order = order;
2960 2961
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2962
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2963
		return;
2964 2965 2966 2967
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2968
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2969 2970
}

2971 2972 2973 2974 2975 2976 2977 2978
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2979
{
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3004 3005
}

3006
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3007
/*
3008
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3009 3010 3011 3012 3013
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3014
 */
3015
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3016
{
3017 3018
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3019 3020 3021
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3022
		.may_writepage = 1,
3023 3024 3025
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
3026
	};
3027 3028 3029 3030
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3031 3032
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3033

3034 3035 3036 3037
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3038

3039
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3040

3041 3042 3043
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3044

3045
	return nr_reclaimed;
L
Linus Torvalds 已提交
3046
}
3047
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3053
static int __devinit cpu_callback(struct notifier_block *nfb,
3054
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3055
{
3056
	int nid;
L
Linus Torvalds 已提交
3057

3058
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3059
		for_each_node_state(nid, N_HIGH_MEMORY) {
3060
			pg_data_t *pgdat = NODE_DATA(nid);
3061 3062 3063
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3064

3065
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3066
				/* One of our CPUs online: restore mask */
3067
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3068 3069 3070 3071 3072
		}
	}
	return NOTIFY_OK;
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3106 3107
static int __init kswapd_init(void)
{
3108
	int nid;
3109

L
Linus Torvalds 已提交
3110
	swap_setup();
3111
	for_each_node_state(nid, N_HIGH_MEMORY)
3112
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3113 3114 3115 3116 3117
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3128
#define RECLAIM_OFF 0
3129
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3130 3131 3132
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3133 3134 3135 3136 3137 3138 3139
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3140 3141 3142 3143 3144 3145
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3146 3147 3148 3149 3150 3151
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3194 3195 3196
/*
 * Try to free up some pages from this zone through reclaim.
 */
3197
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3198
{
3199
	/* Minimum pages needed in order to stay on node */
3200
	const unsigned long nr_pages = 1 << order;
3201 3202
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3203
	int priority;
3204 3205
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3206
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3207
		.may_swap = 1,
3208 3209
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3210
		.gfp_mask = gfp_mask,
3211
		.order = order,
3212
	};
3213 3214 3215
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3216
	unsigned long nr_slab_pages0, nr_slab_pages1;
3217 3218

	cond_resched();
3219 3220 3221 3222 3223 3224
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3225
	lockdep_set_current_reclaim_state(gfp_mask);
3226 3227
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3228

3229
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3230 3231 3232 3233 3234 3235
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3236
			shrink_zone(priority, zone, &sc);
3237
			priority--;
3238
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3239
	}
3240

3241 3242
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3243
		/*
3244
		 * shrink_slab() does not currently allow us to determine how
3245 3246 3247 3248
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3249
		 *
3250 3251
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3252
		 */
3253 3254 3255 3256
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3257
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3258 3259 3260 3261 3262 3263 3264 3265
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3266 3267 3268 3269 3270

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3271 3272 3273
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3274 3275
	}

3276
	p->reclaim_state = NULL;
3277
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3278
	lockdep_clear_current_reclaim_state();
3279
	return sc.nr_reclaimed >= nr_pages;
3280
}
3281 3282 3283 3284

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3285
	int ret;
3286 3287

	/*
3288 3289
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3290
	 *
3291 3292 3293 3294 3295
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3296
	 */
3297 3298
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3299
		return ZONE_RECLAIM_FULL;
3300

3301
	if (zone->all_unreclaimable)
3302
		return ZONE_RECLAIM_FULL;
3303

3304
	/*
3305
	 * Do not scan if the allocation should not be delayed.
3306
	 */
3307
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3308
		return ZONE_RECLAIM_NOSCAN;
3309 3310 3311 3312 3313 3314 3315

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3316
	node_id = zone_to_nid(zone);
3317
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3318
		return ZONE_RECLAIM_NOSCAN;
3319 3320

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3321 3322
		return ZONE_RECLAIM_NOSCAN;

3323 3324 3325
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3326 3327 3328
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3329
	return ret;
3330
}
3331
#endif
L
Lee Schermerhorn 已提交
3332 3333 3334 3335 3336 3337 3338

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3339 3340
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3341 3342
 *
 * Reasons page might not be evictable:
3343
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3344
 * (2) page is part of an mlocked VMA
3345
 *
L
Lee Schermerhorn 已提交
3346 3347 3348 3349
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3350 3351 3352
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3353 3354
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3355 3356 3357

	return 1;
}
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3377
		enum lru_list l = page_lru_base_type(page);
3378

3379 3380
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3381
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3382 3383 3384 3385 3386 3387 3388 3389
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3390
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3450

3451
static void warn_scan_unevictable_pages(void)
3452
{
3453 3454 3455 3456
	printk_once(KERN_WARNING
		    "The scan_unevictable_pages sysctl/node-interface has been "
		    "disabled for lack of a legitimate use case.  If you have "
		    "one, please send an email to linux-mm@kvack.org.\n");
3457 3458 3459 3460 3461 3462 3463 3464 3465
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3466
			   void __user *buffer,
3467 3468
			   size_t *length, loff_t *ppos)
{
3469
	warn_scan_unevictable_pages();
3470
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3471 3472 3473 3474
	scan_unevictable_pages = 0;
	return 0;
}

3475
#ifdef CONFIG_NUMA
3476 3477 3478 3479 3480 3481 3482 3483 3484
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
3485
	warn_scan_unevictable_pages();
3486 3487 3488 3489 3490 3491 3492
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
3493
	warn_scan_unevictable_pages();
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3511
#endif