vmscan.c 81.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

51 52 53
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
54 55 56 57
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

58 59 60
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

61 62 63
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

64 65
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68 69 70

	int may_writepage;

71 72
	/* Can mapped pages be reclaimed? */
	int may_unmap;
73

74 75 76
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

77
	int swappiness;
78

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83 84 85 86
	/*
	 * Intend to reclaim enough contenious memory rather than to reclaim
	 * enough amount memory. I.e, it's the mode for high order allocation.
	 */
	bool lumpy_reclaim_mode;

87 88 89
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

136
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138
#else
139
#define scanning_global_lru(sc)	(1)
140 141
#endif

142 143 144
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
145
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
146 147
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

148 149 150
	return &zone->reclaim_stat;
}

151 152
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
153
{
154
	if (!scanning_global_lru(sc))
155 156
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

157 158 159 160
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
161 162 163
/*
 * Add a shrinker callback to be called from the vm
 */
164
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
165
{
166 167 168 169
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
170
}
171
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
172 173 174 175

/*
 * Remove one
 */
176
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
177 178 179 180 181
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
182
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
193
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
194 195 196 197 198 199 200
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
201 202
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
203
 */
204 205
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
206 207
{
	struct shrinker *shrinker;
208
	unsigned long ret = 0;
L
Linus Torvalds 已提交
209 210 211 212 213

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
214
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
215 216 217 218

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
219
		unsigned long max_pass;
L
Linus Torvalds 已提交
220

221
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
222
		delta = (4 * scanned) / shrinker->seeks;
223
		delta *= max_pass;
L
Linus Torvalds 已提交
224 225
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
226
		if (shrinker->nr < 0) {
227 228 229
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
230 231 232 233 234 235 236 237 238 239
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
240 241 242 243 244 245 246

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
247
			int nr_before;
L
Linus Torvalds 已提交
248

249 250 251
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
252 253
			if (shrink_ret == -1)
				break;
254 255
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
256
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
265
	return ret;
L
Linus Torvalds 已提交
266 267 268 269
}

static inline int is_page_cache_freeable(struct page *page)
{
270 271 272 273 274
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
275
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
276 277 278 279
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
280
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
304
	lock_page_nosync(page);
305 306
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
307 308 309
	unlock_page(page);
}

310 311 312 313 314 315
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

316 317 318 319 320 321 322 323 324 325 326 327
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
328
/*
A
Andrew Morton 已提交
329 330
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
331
 */
332 333
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
334 335 336 337 338 339 340 341
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
342
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
358
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
359 360
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
361
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
377 378
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
387
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
388 389 390
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
391 392 393 394 395 396 397 398 399

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
400 401 402 403
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
404 405
		trace_mm_vmscan_writepage(page,
			trace_reclaim_flags(page, sync_writeback));
406
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
407 408 409 410 411 412
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

413
/*
N
Nick Piggin 已提交
414 415
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
416
 */
N
Nick Piggin 已提交
417
static int __remove_mapping(struct address_space *mapping, struct page *page)
418
{
419 420
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
421

N
Nick Piggin 已提交
422
	spin_lock_irq(&mapping->tree_lock);
423
	/*
N
Nick Piggin 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
447
	 */
N
Nick Piggin 已提交
448
	if (!page_freeze_refs(page, 2))
449
		goto cannot_free;
N
Nick Piggin 已提交
450 451 452
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
453
		goto cannot_free;
N
Nick Piggin 已提交
454
	}
455 456 457 458

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
459
		spin_unlock_irq(&mapping->tree_lock);
460
		swapcache_free(swap, page);
N
Nick Piggin 已提交
461 462
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
463
		spin_unlock_irq(&mapping->tree_lock);
464
		mem_cgroup_uncharge_cache_page(page);
465 466 467 468 469
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
470
	spin_unlock_irq(&mapping->tree_lock);
471 472 473
	return 0;
}

N
Nick Piggin 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
507
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
521
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
522 523 524 525 526 527 528 529
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
530 531 532 533 534 535 536 537 538 539
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

558 559 560 561 562
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
563 564 565
	put_page(page);		/* drop ref from isolate */
}

566 567 568
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
569
	PAGEREF_KEEP,
570 571 572 573 574 575
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
576
	int referenced_ptes, referenced_page;
577 578
	unsigned long vm_flags;

579 580
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
581 582

	/* Lumpy reclaim - ignore references */
583
	if (sc->lumpy_reclaim_mode)
584 585 586 587 588 589 590 591 592
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
617 618

	/* Reclaim if clean, defer dirty pages to writeback */
619 620 621 622
	if (referenced_page)
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
643
/*
A
Andrew Morton 已提交
644
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
645
 */
A
Andrew Morton 已提交
646
static unsigned long shrink_page_list(struct list_head *page_list,
647 648
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
649 650
{
	LIST_HEAD(ret_pages);
651
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
652
	int pgactivate = 0;
653
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
654 655 656 657

	cond_resched();

	while (!list_empty(page_list)) {
658
		enum page_references references;
L
Linus Torvalds 已提交
659 660 661 662 663 664 665 666 667
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
668
		if (!trylock_page(page))
L
Linus Torvalds 已提交
669 670
			goto keep;

N
Nick Piggin 已提交
671
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
672 673

		sc->nr_scanned++;
674

N
Nick Piggin 已提交
675 676
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
677

678
		if (!sc->may_unmap && page_mapped(page))
679 680
			goto keep_locked;

L
Linus Torvalds 已提交
681 682 683 684
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

685 686 687 688 689 690 691 692 693 694 695 696 697 698
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
699
			else
700 701
				goto keep_locked;
		}
L
Linus Torvalds 已提交
702

703 704 705
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
706
			goto activate_locked;
707 708
		case PAGEREF_KEEP:
			goto keep_locked;
709 710 711 712
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
713 714 715 716 717

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
718
		if (PageAnon(page) && !PageSwapCache(page)) {
719 720
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
721
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
722
				goto activate_locked;
723
			may_enter_fs = 1;
N
Nick Piggin 已提交
724
		}
L
Linus Torvalds 已提交
725 726 727 728 729 730 731 732

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
733
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
734 735 736 737
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
738 739
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
740 741 742 743 744 745
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
746
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
747
				goto keep_locked;
748
			if (!may_enter_fs)
L
Linus Torvalds 已提交
749
				goto keep_locked;
750
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
751 752 753
				goto keep_locked;

			/* Page is dirty, try to write it out here */
754
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
755 756 757 758 759
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
760
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
761 762 763 764 765
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
766
				if (!trylock_page(page))
L
Linus Torvalds 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
786
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
787 788 789 790 791 792 793 794 795 796
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
797
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
798 799
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
816 817
		}

N
Nick Piggin 已提交
818
		if (!mapping || !__remove_mapping(mapping, page))
819
			goto keep_locked;
L
Linus Torvalds 已提交
820

N
Nick Piggin 已提交
821 822 823 824 825 826 827 828
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
829
free_it:
830
		nr_reclaimed++;
831 832 833 834 835 836

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
837 838
		continue;

N
Nick Piggin 已提交
839
cull_mlocked:
840 841
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
842 843 844 845
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
846
activate_locked:
847 848
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
849
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
850
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
851 852 853 854 855 856
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
857
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
858
	}
859 860 861

	free_page_list(&free_pages);

L
Linus Torvalds 已提交
862
	list_splice(&ret_pages, page_list);
863
	count_vm_events(PGACTIVATE, pgactivate);
864
	return nr_reclaimed;
L
Linus Torvalds 已提交
865 866
}

A
Andy Whitcroft 已提交
867 868 869 870 871 872 873 874 875 876
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
877
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

893
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
894 895
		return ret;

L
Lee Schermerhorn 已提交
896 897 898 899 900 901 902 903
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
904
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
905

A
Andy Whitcroft 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
933 934
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
935
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
936 937 938
 *
 * returns how many pages were moved onto *@dst.
 */
939 940
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
941
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
942
{
943
	unsigned long nr_taken = 0;
944 945 946
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
947
	unsigned long scan;
L
Linus Torvalds 已提交
948

949
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
950 951 952 953 954 955
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
956 957 958
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
959
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
960

961
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
962 963
		case 0:
			list_move(&page->lru, dst);
964
			mem_cgroup_del_lru(page);
965
			nr_taken++;
A
Andy Whitcroft 已提交
966 967 968 969 970
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
971
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
972
			continue;
973

A
Andy Whitcroft 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1006

A
Andy Whitcroft 已提交
1007 1008 1009
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

1020
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1021
				list_move(&cursor_page->lru, dst);
1022
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
1023
				nr_taken++;
1024 1025 1026
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1027
				scan++;
1028 1029 1030 1031
			} else {
				if (mode == ISOLATE_BOTH &&
						page_count(cursor_page))
					nr_lumpy_failed++;
A
Andy Whitcroft 已提交
1032 1033
			}
		}
L
Linus Torvalds 已提交
1034 1035 1036
	}

	*scanned = scan;
1037 1038 1039 1040 1041 1042

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1043 1044 1045
	return nr_taken;
}

1046 1047 1048 1049
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1050
					int active, int file)
1051
{
1052
	int lru = LRU_BASE;
1053
	if (active)
1054 1055 1056 1057
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1058
								mode, file);
1059 1060
}

A
Andy Whitcroft 已提交
1061 1062 1063 1064
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1065 1066
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1067 1068
{
	int nr_active = 0;
1069
	int lru;
A
Andy Whitcroft 已提交
1070 1071
	struct page *page;

1072
	list_for_each_entry(page, page_list, lru) {
1073
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1074
		if (PageActive(page)) {
1075
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1076 1077 1078
			ClearPageActive(page);
			nr_active++;
		}
1079 1080
		if (count)
			count[lru]++;
1081
	}
A
Andy Whitcroft 已提交
1082 1083 1084 1085

	return nr_active;
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1097 1098 1099
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1120
			int lru = page_lru(page);
1121 1122
			ret = 0;
			ClearPageLRU(page);
1123 1124

			del_page_from_lru_list(zone, page, lru);
1125 1126 1127 1128 1129 1130
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1156 1157 1158 1159
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1160
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1161 1162 1163 1164 1165
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1166
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
		SetPageLRU(page);
		lru = page_lru(page);
		add_page_to_lru_list(zone, page, lru);
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
			reclaim_stat->recent_rotated[file]++;
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
	if (!sc->lumpy_reclaim_mode)
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1277
/*
A
Andrew Morton 已提交
1278 1279
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1280
 */
1281 1282 1283
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1284 1285
{
	LIST_HEAD(page_list);
1286
	unsigned long nr_scanned;
1287
	unsigned long nr_reclaimed = 0;
1288 1289 1290 1291
	unsigned long nr_taken;
	unsigned long nr_active;
	unsigned long nr_anon;
	unsigned long nr_file;
1292

1293
	while (unlikely(too_many_isolated(zone, file, sc))) {
1294
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1295 1296 1297 1298 1299 1300

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1301 1302 1303

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
			sc->lumpy_reclaim_mode ?
				ISOLATE_BOTH : ISOLATE_INACTIVE,
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
			sc->lumpy_reclaim_mode ?
				ISOLATE_BOTH : ISOLATE_INACTIVE,
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1330

1331 1332 1333 1334
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1335

1336
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1337

1338
	spin_unlock_irq(&zone->lru_lock);
1339

1340
	nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1341

1342 1343
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1344
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1345

1346 1347 1348 1349
		/*
		 * The attempt at page out may have made some
		 * of the pages active, mark them inactive again.
		 */
1350
		nr_active = clear_active_flags(&page_list, NULL);
1351
		count_vm_events(PGDEACTIVATE, nr_active);
1352

1353 1354
		nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
	}
1355

1356 1357 1358 1359
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1360

1361
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1362
	return nr_reclaimed;
L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1415

A
Andrew Morton 已提交
1416
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1417
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1418
{
1419
	unsigned long nr_taken;
1420
	unsigned long pgscanned;
1421
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1422
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1423
	LIST_HEAD(l_active);
1424
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1425
	struct page *page;
1426
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1427
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1428 1429 1430

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1431
	if (scanning_global_lru(sc)) {
1432 1433 1434 1435
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1436
		zone->pages_scanned += pgscanned;
1437 1438 1439 1440 1441 1442 1443 1444 1445
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1446
	}
1447

1448
	reclaim_stat->recent_scanned[file] += nr_taken;
1449

1450
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1451
	if (file)
1452
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1453
	else
1454
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1455
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1462

L
Lee Schermerhorn 已提交
1463 1464 1465 1466 1467
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1468
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1469
			nr_rotated++;
1470 1471 1472 1473 1474 1475 1476 1477 1478
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1479
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1480 1481 1482 1483
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1484

1485
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1486 1487 1488
		list_add(&page->lru, &l_inactive);
	}

1489
	/*
1490
	 * Move pages back to the lru list.
1491
	 */
1492
	spin_lock_irq(&zone->lru_lock);
1493
	/*
1494 1495 1496 1497
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1498
	 */
1499
	reclaim_stat->recent_rotated[file] += nr_rotated;
1500

1501 1502 1503 1504
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1505
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1506
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1507 1508
}

1509
static int inactive_anon_is_low_global(struct zone *zone)
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1534
	if (scanning_global_lru(sc))
1535 1536
		low = inactive_anon_is_low_global(zone);
	else
1537
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1538 1539 1540
	return low;
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1577 1578 1579 1580 1581 1582 1583 1584 1585
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1586
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1587 1588
	struct zone *zone, struct scan_control *sc, int priority)
{
1589 1590
	int file = is_file_lru(lru);

1591 1592 1593
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1594 1595 1596
		return 0;
	}

R
Rik van Riel 已提交
1597
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1620 1621 1622 1623 1624 1625
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1626
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1627
 */
1628 1629
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1630 1631 1632 1633
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1634
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1647

1648 1649 1650 1651
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1652

1653
	if (scanning_global_lru(sc)) {
1654 1655 1656
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1657
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1658 1659 1660 1661
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1662
		}
1663 1664
	}

1665 1666 1667 1668 1669 1670 1671
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1683
	spin_lock_irq(&zone->lru_lock);
1684 1685 1686
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1687 1688
	}

1689 1690 1691
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1692 1693 1694
	}

	/*
1695 1696 1697
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1698
	 */
1699 1700
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1701

1702 1703
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1704
	spin_unlock_irq(&zone->lru_lock);
1705

1706 1707 1708 1709 1710 1711 1712
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1713

1714 1715 1716 1717 1718 1719 1720 1721
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1722
}
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
{
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		sc->lumpy_reclaim_mode = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		sc->lumpy_reclaim_mode = 1;
	else
		sc->lumpy_reclaim_mode = 0;
}

L
Linus Torvalds 已提交
1739 1740 1741
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1742
static void shrink_zone(int priority, struct zone *zone,
1743
				struct scan_control *sc)
L
Linus Torvalds 已提交
1744
{
1745
	unsigned long nr[NR_LRU_LISTS];
1746
	unsigned long nr_to_scan;
1747
	enum lru_list l;
1748
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1749
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1750

1751
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1752

1753 1754
	set_lumpy_reclaim_mode(priority, sc);

1755 1756
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1757
		for_each_evictable_lru(l) {
1758
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1759 1760
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1761
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1762

1763 1764
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1765
			}
L
Linus Torvalds 已提交
1766
		}
1767 1768 1769 1770 1771 1772 1773 1774
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1775
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1776
			break;
L
Linus Torvalds 已提交
1777 1778
	}

1779 1780
	sc->nr_reclaimed = nr_reclaimed;

1781 1782 1783 1784
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1785
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1786 1787
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1788
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793 1794 1795
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1796 1797
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1798 1799
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1800 1801 1802
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1803 1804 1805 1806
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1807
static bool shrink_zones(int priority, struct zonelist *zonelist,
1808
					struct scan_control *sc)
L
Linus Torvalds 已提交
1809
{
1810
	struct zoneref *z;
1811
	struct zone *zone;
1812
	bool all_unreclaimable = true;
1813

1814 1815
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1816
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1817
			continue;
1818 1819 1820 1821
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1822
		if (scanning_global_lru(sc)) {
1823 1824
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1825
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1826 1827
				continue;	/* Let kswapd poll it */
		}
1828

1829
		shrink_zone(priority, zone, sc);
1830
		all_unreclaimable = false;
L
Linus Torvalds 已提交
1831
	}
1832
	return all_unreclaimable;
L
Linus Torvalds 已提交
1833
}
1834

L
Linus Torvalds 已提交
1835 1836 1837 1838 1839 1840 1841 1842
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1843 1844 1845 1846
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1847 1848 1849
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1850
 */
1851
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1852
					struct scan_control *sc)
L
Linus Torvalds 已提交
1853 1854
{
	int priority;
1855
	bool all_unreclaimable;
1856
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1857
	struct reclaim_state *reclaim_state = current->reclaim_state;
1858
	struct zoneref *z;
1859
	struct zone *zone;
1860
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1861

1862
	get_mems_allowed();
1863 1864
	delayacct_freepages_start();

1865
	if (scanning_global_lru(sc))
1866
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
1867 1868

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1869
		sc->nr_scanned = 0;
1870 1871
		if (!priority)
			disable_swap_token();
1872
		all_unreclaimable = shrink_zones(priority, zonelist, sc);
1873 1874 1875 1876
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1877
		if (scanning_global_lru(sc)) {
1878
			unsigned long lru_pages = 0;
1879 1880
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
1881 1882 1883 1884 1885 1886
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

1887
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1888
			if (reclaim_state) {
1889
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1890 1891
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1892
		}
1893
		total_scanned += sc->nr_scanned;
1894
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1904 1905
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1906
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1907
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1908 1909 1910
		}

		/* Take a nap, wait for some writeback to complete */
1911 1912
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1913
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1914
	}
1915

L
Linus Torvalds 已提交
1916
out:
1917 1918 1919 1920 1921 1922 1923 1924 1925
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1926

1927
	delayacct_freepages_end();
1928
	put_mems_allowed();
1929

1930 1931 1932 1933 1934 1935 1936 1937
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

	/* top priority shrink_zones still had more to do? don't OOM, then */
	if (scanning_global_lru(sc) && !all_unreclaimable)
		return 1;

	return 0;
L
Linus Torvalds 已提交
1938 1939
}

1940
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1941
				gfp_t gfp_mask, nodemask_t *nodemask)
1942
{
1943
	unsigned long nr_reclaimed;
1944 1945 1946
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1947
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1948
		.may_unmap = 1,
1949
		.may_swap = 1,
1950 1951 1952
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
1953
		.nodemask = nodemask,
1954 1955
	};

1956 1957 1958 1959 1960 1961 1962 1963 1964
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
1965 1966
}

1967
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1968

1969 1970 1971
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
1972
						struct zone *zone)
1973 1974
{
	struct scan_control sc = {
1975
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1976 1977 1978 1979 1980 1981 1982 1983 1984
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1985 1986 1987 1988 1989

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

1990 1991 1992 1993 1994 1995 1996 1997
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
1998 1999 2000

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2001 2002 2003
	return sc.nr_reclaimed;
}

2004
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2005 2006 2007
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2008
{
2009
	struct zonelist *zonelist;
2010
	unsigned long nr_reclaimed;
2011 2012
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2013
		.may_unmap = 1,
2014
		.may_swap = !noswap,
2015
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2016
		.swappiness = swappiness,
2017 2018
		.order = 0,
		.mem_cgroup = mem_cont,
2019
		.nodemask = NULL, /* we don't care the placement */
2020 2021
	};

2022 2023 2024
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2035 2036 2037
}
#endif

2038
/* is kswapd sleeping prematurely? */
2039
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2040
{
2041
	int i;
2042 2043 2044 2045 2046 2047

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
2048 2049 2050 2051 2052 2053
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2054
		if (zone->all_unreclaimable)
2055 2056
			continue;

2057 2058 2059
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
2060
	}
2061 2062 2063 2064

	return 0;
}

L
Linus Torvalds 已提交
2065 2066
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2067
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2080 2081 2082 2083 2084
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2085
 */
2086
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2087 2088 2089 2090
{
	int all_zones_ok;
	int priority;
	int i;
2091
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2092
	struct reclaim_state *reclaim_state = current->reclaim_state;
2093 2094
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2095
		.may_unmap = 1,
2096
		.may_swap = 1,
2097 2098 2099 2100 2101
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2102
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2103
		.order = order,
2104
		.mem_cgroup = NULL,
2105
	};
L
Linus Torvalds 已提交
2106 2107
loop_again:
	total_scanned = 0;
2108
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2109
	sc.may_writepage = !laptop_mode;
2110
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2111 2112 2113 2114

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2115
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2116

2117 2118 2119 2120
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2121 2122
		all_zones_ok = 1;

2123 2124 2125 2126 2127 2128
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2129

2130 2131
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2132

2133
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2134
				continue;
L
Linus Torvalds 已提交
2135

2136 2137 2138 2139
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2140
			if (inactive_anon_is_low(zone, &sc))
2141 2142 2143
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2144 2145
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2146
				end_zone = i;
A
Andrew Morton 已提交
2147
				break;
L
Linus Torvalds 已提交
2148 2149
			}
		}
A
Andrew Morton 已提交
2150 2151 2152
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2153 2154 2155
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2156
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2170
			int nr_slab;
2171
			int nid, zid;
L
Linus Torvalds 已提交
2172

2173
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2174 2175
				continue;

2176
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2177 2178 2179
				continue;

			sc.nr_scanned = 0;
2180 2181 2182 2183 2184 2185 2186 2187 2188

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2189 2190 2191 2192
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2193 2194
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2195
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2196
			reclaim_state->reclaimed_slab = 0;
2197 2198
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2199
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2200
			total_scanned += sc.nr_scanned;
2201
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2202
				continue;
2203 2204 2205
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2212
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2213
				sc.may_writepage = 1;
2214

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2227

L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2235 2236 2237 2238 2239 2240
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2248
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253
			break;
	}
out:
	if (!all_zones_ok) {
		cond_resched();
2254 2255 2256

		try_to_freeze();

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2274 2275 2276
		goto loop_again;
	}

2277
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2278 2279 2280 2281
}

/*
 * The background pageout daemon, started as a kernel thread
2282
 * from the init process.
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2302
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2303

2304 2305
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2306
	if (!cpumask_empty(cpumask))
2307
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2322
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2323
	set_freezable();
L
Linus Torvalds 已提交
2324 2325 2326 2327

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2328
		int ret;
2329

L
Linus Torvalds 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2340 2341 2342 2343
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2344
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2355 2356
				if (!sleeping_prematurely(pgdat, order, remaining)) {
					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2357
					schedule();
2358
				} else {
2359
					if (remaining)
2360
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2361
					else
2362
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2363 2364
				}
			}
2365

L
Linus Torvalds 已提交
2366 2367 2368 2369
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2370 2371 2372 2373 2374 2375 2376 2377
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2378 2379
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2380
			balance_pgdat(pgdat, order);
2381
		}
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2393
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2394 2395 2396
		return;

	pgdat = zone->zone_pgdat;
2397
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2398 2399 2400
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2401
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2402
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2403
		return;
2404
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2405
		return;
2406
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2417
{
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2442 2443
}

2444
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2445
/*
2446
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2447 2448 2449 2450 2451
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2452
 */
2453
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2454
{
2455 2456
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2457 2458 2459
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2460
		.may_writepage = 1,
2461 2462 2463 2464
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2465
	};
2466 2467 2468
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2469

2470 2471 2472 2473
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2474

2475
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2476

2477 2478 2479
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2480

2481
	return nr_reclaimed;
L
Linus Torvalds 已提交
2482
}
2483
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2484 2485 2486 2487 2488

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2489
static int __devinit cpu_callback(struct notifier_block *nfb,
2490
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2491
{
2492
	int nid;
L
Linus Torvalds 已提交
2493

2494
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2495
		for_each_node_state(nid, N_HIGH_MEMORY) {
2496
			pg_data_t *pgdat = NODE_DATA(nid);
2497 2498 2499
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2500

2501
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2502
				/* One of our CPUs online: restore mask */
2503
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508
		}
	}
	return NOTIFY_OK;
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2542 2543
static int __init kswapd_init(void)
{
2544
	int nid;
2545

L
Linus Torvalds 已提交
2546
	swap_setup();
2547
	for_each_node_state(nid, N_HIGH_MEMORY)
2548
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2549 2550 2551 2552 2553
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2564
#define RECLAIM_OFF 0
2565
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2566 2567 2568
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2569 2570 2571 2572 2573 2574 2575
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2576 2577 2578 2579 2580 2581
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2582 2583 2584 2585 2586 2587
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2630 2631 2632
/*
 * Try to free up some pages from this zone through reclaim.
 */
2633
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2634
{
2635
	/* Minimum pages needed in order to stay on node */
2636
	const unsigned long nr_pages = 1 << order;
2637 2638
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2639
	int priority;
2640 2641
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2642
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2643
		.may_swap = 1,
2644 2645
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2646
		.gfp_mask = gfp_mask,
2647
		.swappiness = vm_swappiness,
2648
		.order = order,
2649
	};
2650
	unsigned long nr_slab_pages0, nr_slab_pages1;
2651 2652

	cond_resched();
2653 2654 2655 2656 2657 2658
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2659
	lockdep_set_current_reclaim_state(gfp_mask);
2660 2661
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2662

2663
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2664 2665 2666 2667 2668 2669
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2670
			shrink_zone(priority, zone, &sc);
2671
			priority--;
2672
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2673
	}
2674

2675 2676
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
2677
		/*
2678
		 * shrink_slab() does not currently allow us to determine how
2679 2680 2681 2682
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2683
		 *
2684 2685
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2686
		 */
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
2700 2701 2702 2703 2704

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2705 2706 2707
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2708 2709
	}

2710
	p->reclaim_state = NULL;
2711
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2712
	lockdep_clear_current_reclaim_state();
2713
	return sc.nr_reclaimed >= nr_pages;
2714
}
2715 2716 2717 2718

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2719
	int ret;
2720 2721

	/*
2722 2723
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2724
	 *
2725 2726 2727 2728 2729
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2730
	 */
2731 2732
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2733
		return ZONE_RECLAIM_FULL;
2734

2735
	if (zone->all_unreclaimable)
2736
		return ZONE_RECLAIM_FULL;
2737

2738
	/*
2739
	 * Do not scan if the allocation should not be delayed.
2740
	 */
2741
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2742
		return ZONE_RECLAIM_NOSCAN;
2743 2744 2745 2746 2747 2748 2749

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2750
	node_id = zone_to_nid(zone);
2751
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2752
		return ZONE_RECLAIM_NOSCAN;
2753 2754

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2755 2756
		return ZONE_RECLAIM_NOSCAN;

2757 2758 2759
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2760 2761 2762
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2763
	return ret;
2764
}
2765
#endif
L
Lee Schermerhorn 已提交
2766 2767 2768 2769 2770 2771 2772

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2773 2774
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2775 2776
 *
 * Reasons page might not be evictable:
2777
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2778
 * (2) page is part of an mlocked VMA
2779
 *
L
Lee Schermerhorn 已提交
2780 2781 2782 2783
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2784 2785 2786
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2787 2788
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2789 2790 2791

	return 1;
}
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2811
		enum lru_list l = page_lru_base_type(page);
2812

2813 2814
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2815
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2816 2817 2818 2819 2820 2821 2822 2823
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2824
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2896
static void scan_zone_unevictable_pages(struct zone *zone)
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2938
static void scan_all_zones_unevictable_pages(void)
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2954
			   void __user *buffer,
2955 2956
			   size_t *length, loff_t *ppos)
{
2957
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}