vmscan.c 96.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

98
	int swappiness;
99

A
Andy Whitcroft 已提交
100
	int order;
101

102
	/*
103 104
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
105
	 */
106
	reclaim_mode_t reclaim_mode;
107

108 109 110
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

111 112 113 114 115
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
153 154 155 156

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

157
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159
#else
160
#define scanning_global_lru(sc)	(1)
161 162
#endif

163 164 165
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
166
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
167 168
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

169 170 171
	return &zone->reclaim_stat;
}

172 173
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
174
{
175
	if (!scanning_global_lru(sc))
176
		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177

178 179 180 181
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
182 183 184
/*
 * Add a shrinker callback to be called from the vm
 */
185
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
186
{
187 188 189 190
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
191
}
192
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
193 194 195 196

/*
 * Remove one
 */
197
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
198 199 200 201 202
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
203
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
204

205 206 207 208 209 210 211 212
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
213 214 215 216 217 218 219 220 221
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
222
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
223 224 225 226 227 228 229
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
230 231
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
232
 */
233
unsigned long shrink_slab(struct shrink_control *shrink,
234
			  unsigned long nr_pages_scanned,
235
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
236 237
{
	struct shrinker *shrinker;
238
	unsigned long ret = 0;
L
Linus Torvalds 已提交
239

240 241
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
242

243 244 245 246 247
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
248 249 250 251

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
252
		unsigned long max_pass;
253
		int shrink_ret = 0;
254 255
		long nr;
		long new_nr;
L
Linus Torvalds 已提交
256

257 258 259 260 261 262 263 264 265 266
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
		do {
			nr = shrinker->nr;
		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);

		total_scan = nr;
267 268
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
269
		delta *= max_pass;
L
Linus Torvalds 已提交
270
		do_div(delta, lru_pages + 1);
271 272
		total_scan += delta;
		if (total_scan < 0) {
273 274
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
275 276
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
277 278 279 280 281 282 283
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
284 285
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
286

287
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
288 289 290
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

L
Linus Torvalds 已提交
291 292
		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
293
			int nr_before;
L
Linus Torvalds 已提交
294

295 296 297
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
							this_scan);
L
Linus Torvalds 已提交
298 299
			if (shrink_ret == -1)
				break;
300 301
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
302
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
303 304 305 306 307
			total_scan -= this_scan;

			cond_resched();
		}

308 309 310 311 312 313 314 315 316 317 318 319 320
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
		do {
			nr = shrinker->nr;
			new_nr = total_scan + nr;
			if (total_scan <= 0)
				break;
		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
321 322
	}
	up_read(&shrinker_rwsem);
323 324
out:
	cond_resched();
325
	return ret;
L
Linus Torvalds 已提交
326 327
}

328
static void set_reclaim_mode(int priority, struct scan_control *sc,
329 330
				   bool sync)
{
331
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
332 333

	/*
334 335 336
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
337
	 */
338
	if (COMPACTION_BUILD)
339
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
340
	else
341
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
342 343

	/*
344 345 346
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
347 348
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
349
		sc->reclaim_mode |= syncmode;
350
	else if (sc->order && priority < DEF_PRIORITY - 2)
351
		sc->reclaim_mode |= syncmode;
352
	else
353
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
354 355
}

356
static void reset_reclaim_mode(struct scan_control *sc)
357
{
358
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
359 360
}

L
Linus Torvalds 已提交
361 362
static inline int is_page_cache_freeable(struct page *page)
{
363 364 365 366 367
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
368
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
369 370
}

371 372
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
373
{
374
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
375 376 377 378 379
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
380 381 382 383

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
402
	lock_page(page);
403 404
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
405 406 407
	unlock_page(page);
}

408 409 410 411 412 413 414 415 416 417 418 419
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
420
/*
A
Andrew Morton 已提交
421 422
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
423
 */
424
static pageout_t pageout(struct page *page, struct address_space *mapping,
425
			 struct scan_control *sc)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
434
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
450
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
451 452
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
453
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
454 455 456 457 458 459 460
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
461
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
462 463 464 465 466 467 468
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
469 470
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
471 472 473 474 475 476 477
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
478
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
479 480 481
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
482 483 484 485 486 487

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
488
		if (PageWriteback(page) &&
489
		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
490 491
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
492 493 494 495
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
496
		trace_mm_vmscan_writepage(page,
497
			trace_reclaim_flags(page, sc->reclaim_mode));
498
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
499 500 501 502 503 504
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

505
/*
N
Nick Piggin 已提交
506 507
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
508
 */
N
Nick Piggin 已提交
509
static int __remove_mapping(struct address_space *mapping, struct page *page)
510
{
511 512
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
513

N
Nick Piggin 已提交
514
	spin_lock_irq(&mapping->tree_lock);
515
	/*
N
Nick Piggin 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
539
	 */
N
Nick Piggin 已提交
540
	if (!page_freeze_refs(page, 2))
541
		goto cannot_free;
N
Nick Piggin 已提交
542 543 544
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
545
		goto cannot_free;
N
Nick Piggin 已提交
546
	}
547 548 549 550

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
551
		spin_unlock_irq(&mapping->tree_lock);
552
		swapcache_free(swap, page);
N
Nick Piggin 已提交
553
	} else {
554 555 556 557
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

558
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
559
		spin_unlock_irq(&mapping->tree_lock);
560
		mem_cgroup_uncharge_cache_page(page);
561 562 563

		if (freepage != NULL)
			freepage(page);
564 565 566 567 568
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
569
	spin_unlock_irq(&mapping->tree_lock);
570 571 572
	return 0;
}

N
Nick Piggin 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
606
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
620
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
621 622 623 624 625 626 627 628
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
629 630 631 632 633 634 635 636 637 638
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

657 658 659 660 661
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
662 663 664
	put_page(page);		/* drop ref from isolate */
}

665 666 667
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
668
	PAGEREF_KEEP,
669 670 671 672 673 674
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
675
	int referenced_ptes, referenced_page;
676 677
	unsigned long vm_flags;

678 679
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
680 681

	/* Lumpy reclaim - ignore references */
682
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
683 684 685 686 687 688 689 690 691
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
716 717

	/* Reclaim if clean, defer dirty pages to writeback */
718
	if (referenced_page && !PageSwapBacked(page))
719 720 721
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
722 723
}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
742
/*
A
Andrew Morton 已提交
743
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
744
 */
A
Andrew Morton 已提交
745
static unsigned long shrink_page_list(struct list_head *page_list,
746
				      struct zone *zone,
747
				      struct scan_control *sc)
L
Linus Torvalds 已提交
748 749
{
	LIST_HEAD(ret_pages);
750
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
751
	int pgactivate = 0;
752 753
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
754
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
755 756 757 758

	cond_resched();

	while (!list_empty(page_list)) {
759
		enum page_references references;
L
Linus Torvalds 已提交
760 761 762 763 764 765 766 767 768
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
769
		if (!trylock_page(page))
L
Linus Torvalds 已提交
770 771
			goto keep;

N
Nick Piggin 已提交
772
		VM_BUG_ON(PageActive(page));
773
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
774 775

		sc->nr_scanned++;
776

N
Nick Piggin 已提交
777 778
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
779

780
		if (!sc->may_unmap && page_mapped(page))
781 782
			goto keep_locked;

L
Linus Torvalds 已提交
783 784 785 786
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

787 788 789 790 791 792 793 794 795 796 797 798
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
799
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
800
			    may_enter_fs)
801
				wait_on_page_writeback(page);
802 803 804 805
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
806
		}
L
Linus Torvalds 已提交
807

808 809 810
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
811
			goto activate_locked;
812 813
		case PAGEREF_KEEP:
			goto keep_locked;
814 815 816 817
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
818 819 820 821 822

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
823
		if (PageAnon(page) && !PageSwapCache(page)) {
824 825
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
826
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
827
				goto activate_locked;
828
			may_enter_fs = 1;
N
Nick Piggin 已提交
829
		}
L
Linus Torvalds 已提交
830 831 832 833 834 835 836 837

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
838
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
839 840 841 842
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
843 844
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
845 846 847 848 849 850
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
851 852
			nr_dirty++;

853
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
854
				goto keep_locked;
855
			if (!may_enter_fs)
L
Linus Torvalds 已提交
856
				goto keep_locked;
857
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
858 859 860
				goto keep_locked;

			/* Page is dirty, try to write it out here */
861
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
862
			case PAGE_KEEP:
863
				nr_congested++;
L
Linus Torvalds 已提交
864 865 866 867
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
868 869 870
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
871
					goto keep;
872

L
Linus Torvalds 已提交
873 874 875 876
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
877
				if (!trylock_page(page))
L
Linus Torvalds 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
897
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
898 899 900 901 902 903 904 905 906 907
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
908
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
909 910
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
927 928
		}

N
Nick Piggin 已提交
929
		if (!mapping || !__remove_mapping(mapping, page))
930
			goto keep_locked;
L
Linus Torvalds 已提交
931

N
Nick Piggin 已提交
932 933 934 935 936 937 938 939
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
940
free_it:
941
		nr_reclaimed++;
942 943 944 945 946 947

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
948 949
		continue;

N
Nick Piggin 已提交
950
cull_mlocked:
951 952
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
953 954
		unlock_page(page);
		putback_lru_page(page);
955
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
956 957
		continue;

L
Linus Torvalds 已提交
958
activate_locked:
959 960
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
961
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
962
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
963 964 965 966 967
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
968
		reset_reclaim_mode(sc);
969
keep_lumpy:
L
Linus Torvalds 已提交
970
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
971
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
972
	}
973

974 975 976 977 978 979
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
980
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
981 982
		zone_set_flag(zone, ZONE_CONGESTED);

983 984
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
985
	list_splice(&ret_pages, page_list);
986
	count_vm_events(PGACTIVATE, pgactivate);
987
	return nr_reclaimed;
L
Linus Torvalds 已提交
988 989
}

A
Andy Whitcroft 已提交
990 991 992 993 994 995 996 997 998 999
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1000
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

1016
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1017 1018
		return ret;

L
Lee Schermerhorn 已提交
1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1027
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1028

A
Andy Whitcroft 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1056 1057
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1058
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1059 1060 1061
 *
 * returns how many pages were moved onto *@dst.
 */
1062 1063
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1064
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1065
{
1066
	unsigned long nr_taken = 0;
1067 1068 1069
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1070
	unsigned long scan;
L
Linus Torvalds 已提交
1071

1072
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1073 1074 1075 1076 1077 1078
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1079 1080 1081
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1082
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1083

1084
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1085 1086
		case 0:
			list_move(&page->lru, dst);
1087
			mem_cgroup_del_lru(page);
1088
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1089 1090 1091 1092 1093
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1094
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1095
			continue;
1096

A
Andy Whitcroft 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1109
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1129

A
Andy Whitcroft 已提交
1130 1131
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1132
				break;
1133 1134 1135 1136 1137 1138 1139

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1140 1141
			    !PageSwapCache(cursor_page))
				break;
1142

1143
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1144
				list_move(&cursor_page->lru, dst);
1145
				mem_cgroup_del_lru(cursor_page);
1146
				nr_taken += hpage_nr_pages(page);
1147 1148 1149
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1150
				scan++;
1151
			} else {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1166 1167
					continue;
				break;
A
Andy Whitcroft 已提交
1168 1169
			}
		}
1170 1171 1172 1173

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1174 1175 1176
	}

	*scanned = scan;
1177 1178 1179 1180 1181 1182

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1183 1184 1185
	return nr_taken;
}

1186 1187 1188 1189
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1190
					int active, int file)
1191
{
1192
	int lru = LRU_BASE;
1193
	if (active)
1194 1195 1196 1197
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1198
								mode, file);
1199 1200
}

A
Andy Whitcroft 已提交
1201 1202 1203 1204
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1205 1206
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1207 1208
{
	int nr_active = 0;
1209
	int lru;
A
Andy Whitcroft 已提交
1210 1211
	struct page *page;

1212
	list_for_each_entry(page, page_list, lru) {
1213
		int numpages = hpage_nr_pages(page);
1214
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1215
		if (PageActive(page)) {
1216
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1217
			ClearPageActive(page);
1218
			nr_active += numpages;
A
Andy Whitcroft 已提交
1219
		}
1220
		if (count)
1221
			count[lru] += numpages;
1222
	}
A
Andy Whitcroft 已提交
1223 1224 1225 1226

	return nr_active;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1238 1239 1240
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1256 1257
	VM_BUG_ON(!page_count(page));

1258 1259 1260 1261
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1262
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1263
			int lru = page_lru(page);
1264
			ret = 0;
1265
			get_page(page);
1266
			ClearPageLRU(page);
1267 1268

			del_page_from_lru_list(zone, page, lru);
1269 1270 1271 1272 1273 1274
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1300 1301 1302 1303
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1304
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1305 1306 1307 1308 1309
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1310
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1329
		SetPageLRU(page);
1330
		lru = page_lru(page);
1331
		add_page_to_lru_list(zone, page, lru);
1332 1333
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1334 1335
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1401
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1422
/*
A
Andrew Morton 已提交
1423 1424
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1425
 */
1426 1427 1428
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1429 1430
{
	LIST_HEAD(page_list);
1431
	unsigned long nr_scanned;
1432
	unsigned long nr_reclaimed = 0;
1433 1434 1435
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1436

1437
	while (unlikely(too_many_isolated(zone, file, sc))) {
1438
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1439 1440 1441 1442 1443 1444

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1445
	set_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1446 1447
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1448

1449 1450 1451
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1452
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1453
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1465
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1466
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1467 1468 1469 1470 1471 1472 1473
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1474

1475 1476 1477 1478
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1479

1480
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1481

1482
	spin_unlock_irq(&zone->lru_lock);
1483

1484
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1485

1486 1487
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1488
		set_reclaim_mode(priority, sc, true);
1489
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1490
	}
1491

1492 1493 1494 1495
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1496

1497
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1498 1499 1500 1501 1502

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1503
		trace_shrink_flags(file, sc->reclaim_mode));
1504
	return nr_reclaimed;
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1543
		pgmoved += hpage_nr_pages(page);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1557

A
Andrew Morton 已提交
1558
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1559
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1560
{
1561
	unsigned long nr_taken;
1562
	unsigned long pgscanned;
1563
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1564
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1565
	LIST_HEAD(l_active);
1566
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1567
	struct page *page;
1568
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1569
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1570 1571 1572

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1573
	if (scanning_global_lru(sc)) {
1574 1575 1576 1577
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1578
		zone->pages_scanned += pgscanned;
1579 1580 1581 1582 1583 1584 1585 1586 1587
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1588
	}
1589

1590
	reclaim_stat->recent_scanned[file] += nr_taken;
1591

1592
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1593
	if (file)
1594
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1595
	else
1596
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1597
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1604

L
Lee Schermerhorn 已提交
1605 1606 1607 1608 1609
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1610
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1611
			nr_rotated += hpage_nr_pages(page);
1612 1613 1614 1615 1616 1617 1618 1619 1620
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1621
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1622 1623 1624 1625
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1626

1627
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1628 1629 1630
		list_add(&page->lru, &l_inactive);
	}

1631
	/*
1632
	 * Move pages back to the lru list.
1633
	 */
1634
	spin_lock_irq(&zone->lru_lock);
1635
	/*
1636 1637 1638 1639
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1640
	 */
1641
	reclaim_stat->recent_rotated[file] += nr_rotated;
1642

1643 1644 1645 1646
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1647
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1648
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1649 1650
}

1651
#ifdef CONFIG_SWAP
1652
static int inactive_anon_is_low_global(struct zone *zone)
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1677 1678 1679 1680 1681 1682 1683
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1684
	if (scanning_global_lru(sc))
1685 1686
		low = inactive_anon_is_low_global(zone);
	else
1687
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1688 1689
	return low;
}
1690 1691 1692 1693 1694 1695 1696
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1734 1735 1736 1737 1738 1739 1740 1741 1742
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1743
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1744 1745
	struct zone *zone, struct scan_control *sc, int priority)
{
1746 1747
	int file = is_file_lru(lru);

1748 1749 1750
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1751 1752 1753
		return 0;
	}

R
Rik van Riel 已提交
1754
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1755 1756 1757 1758 1759 1760 1761 1762
}

/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1763
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1764
 */
1765 1766
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1767 1768 1769 1770
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1771
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1772 1773 1774
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	int force_scan = 0;


	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);

	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
		/* kswapd does zone balancing and need to scan this zone */
		if (scanning_global_lru(sc) && current_is_kswapd())
			force_scan = 1;
		/* memcg may have small limit and need to avoid priority drop */
		if (!scanning_global_lru(sc))
			force_scan = 1;
	}
1791 1792 1793 1794 1795 1796 1797 1798 1799

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1800

1801
	if (scanning_global_lru(sc)) {
1802 1803 1804
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1805
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1806 1807 1808 1809
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1810
		}
1811 1812
	}

1813 1814 1815 1816 1817 1818 1819
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1831
	spin_lock_irq(&zone->lru_lock);
1832 1833 1834
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1835 1836
	}

1837 1838 1839
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1840 1841 1842
	}

	/*
1843 1844 1845
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1846
	 */
1847 1848
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1849

1850 1851
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1852
	spin_unlock_irq(&zone->lru_lock);
1853

1854 1855 1856 1857 1858 1859 1860
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1861

1862 1863 1864 1865 1866
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

		/*
		 * If zone is small or memcg is small, nr[l] can be 0.
		 * This results no-scan on this priority and priority drop down.
		 * For global direct reclaim, it can visit next zone and tend
		 * not to have problems. For global kswapd, it's for zone
		 * balancing and it need to scan a small amounts. When using
		 * memcg, priority drop can cause big latency. So, it's better
		 * to scan small amount. See may_noscan above.
		 */
		if (!scan && force_scan) {
			if (file)
				scan = SWAP_CLUSTER_MAX;
			else if (!noswap)
				scan = SWAP_CLUSTER_MAX;
		}
		nr[l] = scan;
1884
	}
1885
}
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1903
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1904 1905
		return false;

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1950 1951 1952
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1953
static void shrink_zone(int priority, struct zone *zone,
1954
				struct scan_control *sc)
L
Linus Torvalds 已提交
1955
{
1956
	unsigned long nr[NR_LRU_LISTS];
1957
	unsigned long nr_to_scan;
1958
	enum lru_list l;
1959
	unsigned long nr_reclaimed, nr_scanned;
1960
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1961

1962 1963
restart:
	nr_reclaimed = 0;
1964
	nr_scanned = sc->nr_scanned;
1965
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1966

1967 1968
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1969
		for_each_evictable_lru(l) {
1970
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1971 1972
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1973
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1974

1975 1976
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1977
			}
L
Linus Torvalds 已提交
1978
		}
1979 1980 1981 1982 1983 1984 1985 1986
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1987
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1988
			break;
L
Linus Torvalds 已提交
1989
	}
1990
	sc->nr_reclaimed += nr_reclaimed;
1991

1992 1993 1994 1995
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1996
	if (inactive_anon_is_low(zone, sc))
1997 1998
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1999 2000 2001 2002 2003
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2004
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010 2011
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2012 2013
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2014 2015
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2016 2017 2018
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2019 2020 2021 2022
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
2023
static void shrink_zones(int priority, struct zonelist *zonelist,
2024
					struct scan_control *sc)
L
Linus Torvalds 已提交
2025
{
2026
	struct zoneref *z;
2027
	struct zone *zone;
2028 2029
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2030

2031 2032
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2033
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2034
			continue;
2035 2036 2037 2038
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2039
		if (scanning_global_lru(sc)) {
2040 2041
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2042
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2043
				continue;	/* Let kswapd poll it */
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2057
		}
2058

2059
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2060
	}
2061 2062 2063 2064 2065 2066 2067
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2068
/* All zones in zonelist are unreclaimable? */
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2081 2082
		if (!zone->all_unreclaimable)
			return false;
2083 2084
	}

2085
	return true;
L
Linus Torvalds 已提交
2086
}
2087

L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2096 2097 2098 2099
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2100 2101 2102
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2103
 */
2104
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2105 2106
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2107 2108
{
	int priority;
2109
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2110
	struct reclaim_state *reclaim_state = current->reclaim_state;
2111
	struct zoneref *z;
2112
	struct zone *zone;
2113
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2114

2115
	get_mems_allowed();
2116 2117
	delayacct_freepages_start();

2118
	if (scanning_global_lru(sc))
2119
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2120 2121

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2122
		sc->nr_scanned = 0;
2123
		if (!priority)
2124
			disable_swap_token(sc->mem_cgroup);
2125
		shrink_zones(priority, zonelist, sc);
2126 2127 2128 2129
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2130
		if (scanning_global_lru(sc)) {
2131
			unsigned long lru_pages = 0;
2132 2133
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2134 2135 2136 2137 2138 2139
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2140
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2141
			if (reclaim_state) {
2142
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2143 2144
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2145
		}
2146
		total_scanned += sc->nr_scanned;
2147
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2157 2158
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2159
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2160
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2161 2162 2163
		}

		/* Take a nap, wait for some writeback to complete */
2164
		if (!sc->hibernation_mode && sc->nr_scanned &&
2165 2166 2167 2168
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2169 2170
						&cpuset_current_mems_allowed,
						&preferred_zone);
2171 2172
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2173
	}
2174

L
Linus Torvalds 已提交
2175
out:
2176
	delayacct_freepages_end();
2177
	put_mems_allowed();
2178

2179 2180 2181
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2182 2183 2184 2185 2186 2187 2188 2189
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2190
	/* top priority shrink_zones still had more to do? don't OOM, then */
2191
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2192 2193 2194
		return 1;

	return 0;
L
Linus Torvalds 已提交
2195 2196
}

2197
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2198
				gfp_t gfp_mask, nodemask_t *nodemask)
2199
{
2200
	unsigned long nr_reclaimed;
2201 2202 2203
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2204
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2205
		.may_unmap = 1,
2206
		.may_swap = 1,
2207 2208 2209
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
2210
		.nodemask = nodemask,
2211
	};
2212 2213 2214
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2215

2216 2217 2218 2219
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2220
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2221 2222 2223 2224

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2225 2226
}

2227
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2228

2229 2230 2231
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
2232 2233
						struct zone *zone,
						unsigned long *nr_scanned)
2234 2235
{
	struct scan_control sc = {
2236
		.nr_scanned = 0,
2237
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2238 2239 2240 2241 2242 2243 2244
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
2245

2246 2247
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2248 2249 2250 2251 2252

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2253 2254 2255 2256 2257 2258 2259 2260
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2261 2262 2263

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2264
	*nr_scanned = sc.nr_scanned;
2265 2266 2267
	return sc.nr_reclaimed;
}

2268
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2269 2270 2271
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2272
{
2273
	struct zonelist *zonelist;
2274
	unsigned long nr_reclaimed;
2275
	int nid;
2276 2277
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2278
		.may_unmap = 1,
2279
		.may_swap = !noswap,
2280
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2281
		.swappiness = swappiness,
2282 2283
		.order = 0,
		.mem_cgroup = mem_cont,
2284
		.nodemask = NULL, /* we don't care the placement */
2285 2286 2287 2288 2289
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2290 2291
	};

2292 2293 2294 2295 2296 2297 2298 2299
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
	nid = mem_cgroup_select_victim_node(mem_cont);

	zonelist = NODE_DATA(nid)->node_zonelists;
2300 2301 2302 2303 2304

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2305
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2306 2307 2308 2309

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2310 2311 2312
}
#endif

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2324
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2338 2339
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2340 2341
}

2342
/* is kswapd sleeping prematurely? */
2343 2344
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2345
{
2346
	int i;
2347 2348
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2349 2350 2351

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2352
		return true;
2353

2354
	/* Check the watermark levels */
2355
	for (i = 0; i <= classzone_idx; i++) {
2356 2357 2358 2359 2360
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2361 2362 2363 2364 2365 2366 2367 2368
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2369
			continue;
2370
		}
2371

2372
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2373
							i, 0))
2374 2375 2376
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2377
	}
2378

2379 2380 2381 2382 2383 2384
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2385
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2386 2387
	else
		return !all_zones_ok;
2388 2389
}

L
Linus Torvalds 已提交
2390 2391
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2392
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2393
 *
2394
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2405 2406 2407 2408 2409
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2410
 */
2411
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2412
							int *classzone_idx)
L
Linus Torvalds 已提交
2413 2414
{
	int all_zones_ok;
2415
	unsigned long balanced;
L
Linus Torvalds 已提交
2416 2417
	int priority;
	int i;
2418
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2419
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2420
	struct reclaim_state *reclaim_state = current->reclaim_state;
2421 2422
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2423 2424
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2425
		.may_unmap = 1,
2426
		.may_swap = 1,
2427 2428 2429 2430 2431
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2432
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2433
		.order = order,
2434
		.mem_cgroup = NULL,
2435
	};
2436 2437 2438
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2439 2440
loop_again:
	total_scanned = 0;
2441
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2442
	sc.may_writepage = !laptop_mode;
2443
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2444 2445 2446

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2447
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2448

2449 2450
		/* The swap token gets in the way of swapout... */
		if (!priority)
2451
			disable_swap_token(NULL);
2452

L
Linus Torvalds 已提交
2453
		all_zones_ok = 1;
2454
		balanced = 0;
L
Linus Torvalds 已提交
2455

2456 2457 2458 2459 2460 2461
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2462

2463 2464
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2465

2466
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2467
				continue;
L
Linus Torvalds 已提交
2468

2469 2470 2471 2472
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2473
			if (inactive_anon_is_low(zone, &sc))
2474 2475 2476
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2477
			if (!zone_watermark_ok_safe(zone, order,
2478
					high_wmark_pages(zone), 0, 0)) {
2479
				end_zone = i;
A
Andrew Morton 已提交
2480
				break;
L
Linus Torvalds 已提交
2481 2482
			}
		}
A
Andrew Morton 已提交
2483 2484 2485
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2486 2487 2488
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2489
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2503
			int nr_slab;
2504
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2505

2506
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2507 2508
				continue;

2509
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2510 2511 2512
				continue;

			sc.nr_scanned = 0;
2513

2514
			nr_soft_scanned = 0;
2515 2516 2517
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2518 2519 2520 2521 2522
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2523

2524
			/*
2525 2526 2527 2528 2529 2530
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2531
			 */
2532 2533 2534 2535
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2536
			if (!zone_watermark_ok_safe(zone, order,
2537
					high_wmark_pages(zone) + balance_gap,
2538
					end_zone, 0)) {
2539
				shrink_zone(priority, zone, &sc);
2540

2541 2542 2543 2544 2545 2546 2547 2548 2549
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2556
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2557
				sc.may_writepage = 1;
2558

2559 2560 2561
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2562
				continue;
2563
			}
2564

2565
			if (!zone_watermark_ok_safe(zone, order,
2566 2567 2568 2569 2570 2571 2572
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2573
				if (!zone_watermark_ok_safe(zone, order,
2574 2575
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2576 2577 2578 2579 2580 2581 2582 2583 2584
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2585
				if (i <= *classzone_idx)
2586
					balanced += zone->present_pages;
2587
			}
2588

L
Linus Torvalds 已提交
2589
		}
2590
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2591 2592 2593 2594 2595
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2596 2597 2598 2599 2600 2601
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607 2608

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2609
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2610 2611 2612
			break;
	}
out:
2613 2614 2615

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2616 2617
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2618
	 */
2619
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2620
		cond_resched();
2621 2622 2623

		try_to_freeze();

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2641 2642 2643
		goto loop_again;
	}

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
	}

2674 2675 2676 2677 2678 2679
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2680
	*classzone_idx = end_zone;
2681
	return order;
L
Linus Torvalds 已提交
2682 2683
}

2684
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2695
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2696 2697 2698 2699 2700 2701 2702 2703 2704
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2705
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2728 2729
/*
 * The background pageout daemon, started as a kernel thread
2730
 * from the init process.
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2743 2744
	unsigned long order, new_order;
	int classzone_idx, new_classzone_idx;
L
Linus Torvalds 已提交
2745 2746
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2747

L
Linus Torvalds 已提交
2748 2749 2750
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2751
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2752

2753 2754
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2755
	if (!cpumask_empty(cpumask))
2756
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2771
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2772
	set_freezable();
L
Linus Torvalds 已提交
2773

2774 2775
	order = new_order = 0;
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2776
	for ( ; ; ) {
2777
		int ret;
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
		if (classzone_idx >= new_classzone_idx && order == new_order) {
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2791
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2792 2793
			/*
			 * Don't sleep if someone wants a larger 'order'
2794
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2795 2796
			 */
			order = new_order;
2797
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2798
		} else {
2799
			kswapd_try_to_sleep(pgdat, order, classzone_idx);
L
Linus Torvalds 已提交
2800
			order = pgdat->kswapd_max_order;
2801
			classzone_idx = pgdat->classzone_idx;
2802
			pgdat->kswapd_max_order = 0;
2803
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2804 2805
		}

2806 2807 2808 2809 2810 2811 2812 2813
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2814 2815
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2816
			order = balance_pgdat(pgdat, order, &classzone_idx);
2817
		}
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823 2824
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2825
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2826 2827 2828
{
	pg_data_t *pgdat;

2829
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2830 2831
		return;

2832
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2833
		return;
2834
	pgdat = zone->zone_pgdat;
2835
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2836
		pgdat->kswapd_max_order = order;
2837 2838
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2839
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2840
		return;
2841 2842 2843 2844
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2845
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2856
{
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2881 2882
}

2883
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2884
/*
2885
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2886 2887 2888 2889 2890
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2891
 */
2892
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2893
{
2894 2895
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2896 2897 2898
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2899
		.may_writepage = 1,
2900 2901 2902 2903
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2904
	};
2905 2906 2907 2908
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2909 2910
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2911

2912 2913 2914 2915
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2916

2917
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2918

2919 2920 2921
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2922

2923
	return nr_reclaimed;
L
Linus Torvalds 已提交
2924
}
2925
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2926 2927 2928 2929 2930

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2931
static int __devinit cpu_callback(struct notifier_block *nfb,
2932
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2933
{
2934
	int nid;
L
Linus Torvalds 已提交
2935

2936
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2937
		for_each_node_state(nid, N_HIGH_MEMORY) {
2938
			pg_data_t *pgdat = NODE_DATA(nid);
2939 2940 2941
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2942

2943
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2944
				/* One of our CPUs online: restore mask */
2945
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950
		}
	}
	return NOTIFY_OK;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2984 2985
static int __init kswapd_init(void)
{
2986
	int nid;
2987

L
Linus Torvalds 已提交
2988
	swap_setup();
2989
	for_each_node_state(nid, N_HIGH_MEMORY)
2990
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2991 2992 2993 2994 2995
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3006
#define RECLAIM_OFF 0
3007
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3008 3009 3010
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3011 3012 3013 3014 3015 3016 3017
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3018 3019 3020 3021 3022 3023
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3024 3025 3026 3027 3028 3029
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3072 3073 3074
/*
 * Try to free up some pages from this zone through reclaim.
 */
3075
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3076
{
3077
	/* Minimum pages needed in order to stay on node */
3078
	const unsigned long nr_pages = 1 << order;
3079 3080
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3081
	int priority;
3082 3083
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3084
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3085
		.may_swap = 1,
3086 3087
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3088
		.gfp_mask = gfp_mask,
3089
		.swappiness = vm_swappiness,
3090
		.order = order,
3091
	};
3092 3093 3094
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3095
	unsigned long nr_slab_pages0, nr_slab_pages1;
3096 3097

	cond_resched();
3098 3099 3100 3101 3102 3103
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3104
	lockdep_set_current_reclaim_state(gfp_mask);
3105 3106
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3107

3108
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3109 3110 3111 3112 3113 3114
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3115
			shrink_zone(priority, zone, &sc);
3116
			priority--;
3117
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3118
	}
3119

3120 3121
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3122
		/*
3123
		 * shrink_slab() does not currently allow us to determine how
3124 3125 3126 3127
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3128
		 *
3129 3130
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3131
		 */
3132 3133 3134 3135
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3136
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3137 3138 3139 3140 3141 3142 3143 3144
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3145 3146 3147 3148 3149

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3150 3151 3152
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3153 3154
	}

3155
	p->reclaim_state = NULL;
3156
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3157
	lockdep_clear_current_reclaim_state();
3158
	return sc.nr_reclaimed >= nr_pages;
3159
}
3160 3161 3162 3163

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3164
	int ret;
3165 3166

	/*
3167 3168
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3169
	 *
3170 3171 3172 3173 3174
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3175
	 */
3176 3177
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3178
		return ZONE_RECLAIM_FULL;
3179

3180
	if (zone->all_unreclaimable)
3181
		return ZONE_RECLAIM_FULL;
3182

3183
	/*
3184
	 * Do not scan if the allocation should not be delayed.
3185
	 */
3186
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3187
		return ZONE_RECLAIM_NOSCAN;
3188 3189 3190 3191 3192 3193 3194

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3195
	node_id = zone_to_nid(zone);
3196
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3197
		return ZONE_RECLAIM_NOSCAN;
3198 3199

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3200 3201
		return ZONE_RECLAIM_NOSCAN;

3202 3203 3204
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3205 3206 3207
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3208
	return ret;
3209
}
3210
#endif
L
Lee Schermerhorn 已提交
3211 3212 3213 3214 3215 3216 3217

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3218 3219
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3220 3221
 *
 * Reasons page might not be evictable:
3222
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3223
 * (2) page is part of an mlocked VMA
3224
 *
L
Lee Schermerhorn 已提交
3225 3226 3227 3228
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3229 3230 3231
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3232 3233
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3234 3235 3236

	return 1;
}
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3256
		enum lru_list l = page_lru_base_type(page);
3257

3258 3259
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3260
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3261 3262 3263 3264 3265 3266 3267 3268
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3269
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3341
static void scan_zone_unevictable_pages(struct zone *zone)
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3383
static void scan_all_zones_unevictable_pages(void)
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3399
			   void __user *buffer,
3400 3401
			   size_t *length, loff_t *ppos)
{
3402
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3403 3404 3405 3406 3407 3408 3409 3410

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3411
#ifdef CONFIG_NUMA
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3458
#endif