vmscan.c 80.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

L
Linus Torvalds 已提交
51 52 53 54
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

55 56 57
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

58 59 60
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

61 62
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
63
	/* This context's GFP mask */
A
Al Viro 已提交
64
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
65 66 67

	int may_writepage;

68 69
	/* Can mapped pages be reclaimed? */
	int may_unmap;
70

71 72 73
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

L
Linus Torvalds 已提交
74 75 76 77 78
	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
79 80

	int swappiness;
81 82

	int all_unreclaimable;
A
Andy Whitcroft 已提交
83 84

	int order;
85 86 87 88

	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

89 90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;

95 96 97 98
	/* Pluggable isolate pages callback */
	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
			unsigned long *scanned, int order, int mode,
			struct zone *z, struct mem_cgroup *mem_cont,
99
			int active, int file);
L
Linus Torvalds 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
136
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
137 138 139 140

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

141
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
142
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
143
#else
144
#define scanning_global_lru(sc)	(1)
145 146
#endif

147 148 149
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
150
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
151 152
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

153 154 155
	return &zone->reclaim_stat;
}

156 157
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
158
{
159
	if (!scanning_global_lru(sc))
160 161
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

162 163 164 165
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
166 167 168
/*
 * Add a shrinker callback to be called from the vm
 */
169
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
170
{
171 172 173 174
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
175
}
176
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
177 178 179 180

/*
 * Remove one
 */
181
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
182 183 184 185 186
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
187
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196 197

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
198
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
199 200 201 202 203 204 205
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
206 207
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
208
 */
209 210
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214 215 216 217 218

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
219
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
220 221 222 223

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
224
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
225 226

		delta = (4 * scanned) / shrinker->seeks;
227
		delta *= max_pass;
L
Linus Torvalds 已提交
228 229
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
230
		if (shrinker->nr < 0) {
231 232 233
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
234 235 236 237 238 239 240 241 242 243
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
244 245 246 247 248 249 250

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
251
			int nr_before;
L
Linus Torvalds 已提交
252

253 254
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
255 256
			if (shrink_ret == -1)
				break;
257 258
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
259
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
260 261 262 263 264 265 266 267
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
268
	return ret;
L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
294 295 296 297 298
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
299
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
300 301 302 303
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
304
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
329 330
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
331 332 333
	unlock_page(page);
}

334 335 336 337 338 339
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

340 341 342 343 344 345 346 347 348 349 350 351
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
352
/*
A
Andrew Morton 已提交
353 354
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
355
 */
356 357
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
358 359 360 361 362 363 364 365
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
366
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
382
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
383 384
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
385
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
401 402
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
403 404 405 406 407 408 409 410
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
411
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
412 413 414
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
415 416 417 418 419 420 421 422 423

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
424 425 426 427
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
428
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
429 430 431 432 433 434
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

435
/*
N
Nick Piggin 已提交
436 437
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
438
 */
N
Nick Piggin 已提交
439
static int __remove_mapping(struct address_space *mapping, struct page *page)
440
{
441 442
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
443

N
Nick Piggin 已提交
444
	spin_lock_irq(&mapping->tree_lock);
445
	/*
N
Nick Piggin 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
469
	 */
N
Nick Piggin 已提交
470
	if (!page_freeze_refs(page, 2))
471
		goto cannot_free;
N
Nick Piggin 已提交
472 473 474
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
475
		goto cannot_free;
N
Nick Piggin 已提交
476
	}
477 478 479 480

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
481
		spin_unlock_irq(&mapping->tree_lock);
482
		swapcache_free(swap, page);
N
Nick Piggin 已提交
483 484
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
485
		spin_unlock_irq(&mapping->tree_lock);
486
		mem_cgroup_uncharge_cache_page(page);
487 488 489 490 491
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
492
	spin_unlock_irq(&mapping->tree_lock);
493 494 495
	return 0;
}

N
Nick Piggin 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
529
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
543
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
544 545 546 547 548 549 550 551
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
552 553 554 555 556 557 558 559 560 561
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

580 581 582 583 584
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
585 586 587
	put_page(page);		/* drop ref from isolate */
}

L
Linus Torvalds 已提交
588
/*
A
Andrew Morton 已提交
589
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
590
 */
A
Andrew Morton 已提交
591
static unsigned long shrink_page_list(struct list_head *page_list,
592 593
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
594 595 596 597
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
598
	unsigned long nr_reclaimed = 0;
599
	unsigned long vm_flags;
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
615
		if (!trylock_page(page))
L
Linus Torvalds 已提交
616 617
			goto keep;

N
Nick Piggin 已提交
618
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
619 620

		sc->nr_scanned++;
621

N
Nick Piggin 已提交
622 623
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
624

625
		if (!sc->may_unmap && page_mapped(page))
626 627
			goto keep_locked;

L
Linus Torvalds 已提交
628 629 630 631
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

632 633 634 635 636 637 638 639 640 641 642 643 644 645
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
646
			else
647 648
				goto keep_locked;
		}
L
Linus Torvalds 已提交
649

650 651
		referenced = page_referenced(page, 1,
						sc->mem_cgroup, &vm_flags);
652 653 654 655 656
		/*
		 * In active use or really unfreeable?  Activate it.
		 * If page which have PG_mlocked lost isoltation race,
		 * try_to_unmap moves it to unevictable list
		 */
A
Andy Whitcroft 已提交
657
		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
658 659
					referenced && page_mapping_inuse(page)
					&& !(vm_flags & VM_LOCKED))
L
Linus Torvalds 已提交
660 661 662 663 664 665
			goto activate_locked;

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
666
		if (PageAnon(page) && !PageSwapCache(page)) {
667 668
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
669
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
670
				goto activate_locked;
671
			may_enter_fs = 1;
N
Nick Piggin 已提交
672
		}
L
Linus Torvalds 已提交
673 674 675 676 677 678 679 680

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
681
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
682 683 684 685
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
686 687
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
688 689 690 691 692 693
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
A
Andy Whitcroft 已提交
694
			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
L
Linus Torvalds 已提交
695
				goto keep_locked;
696
			if (!may_enter_fs)
L
Linus Torvalds 已提交
697
				goto keep_locked;
698
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
699 700 701
				goto keep_locked;

			/* Page is dirty, try to write it out here */
702
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
703 704 705 706 707
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
708
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
709 710 711 712 713
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
714
				if (!trylock_page(page))
L
Linus Torvalds 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
734
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
735 736 737 738 739 740 741 742 743 744
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
745
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
746 747
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
764 765
		}

N
Nick Piggin 已提交
766
		if (!mapping || !__remove_mapping(mapping, page))
767
			goto keep_locked;
L
Linus Torvalds 已提交
768

N
Nick Piggin 已提交
769 770 771 772 773 774 775 776
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
777
free_it:
778
		nr_reclaimed++;
N
Nick Piggin 已提交
779 780 781 782
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
783 784
		continue;

N
Nick Piggin 已提交
785
cull_mlocked:
786 787
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
788 789 790 791
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
792
activate_locked:
793 794
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
795
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
796
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
797 798 799 800 801 802
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
803
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
804 805 806
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
807
		__pagevec_free(&freed_pvec);
808
	count_vm_events(PGACTIVATE, pgactivate);
809
	return nr_reclaimed;
L
Linus Torvalds 已提交
810 811
}

A
Andy Whitcroft 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/* LRU Isolation modes. */
#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */

/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
827
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

843
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
844 845
		return ret;

L
Lee Schermerhorn 已提交
846 847 848 849 850 851 852 853
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
854
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
855

A
Andy Whitcroft 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
883 884
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
885
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
886 887 888
 *
 * returns how many pages were moved onto *@dst.
 */
889 890
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
891
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
892
{
893
	unsigned long nr_taken = 0;
894
	unsigned long scan;
L
Linus Torvalds 已提交
895

896
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
897 898 899 900 901 902
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
903 904 905
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
906
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
907

908
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
909 910
		case 0:
			list_move(&page->lru, dst);
911
			mem_cgroup_del_lru(page);
912
			nr_taken++;
A
Andy Whitcroft 已提交
913 914 915 916 917
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
918
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
919
			continue;
920

A
Andy Whitcroft 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
953

A
Andy Whitcroft 已提交
954 955 956
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
957 958 959 960 961 962 963 964 965 966

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

967
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
968
				list_move(&cursor_page->lru, dst);
969
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
970 971 972 973
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
974 975 976 977 978 979
	}

	*scanned = scan;
	return nr_taken;
}

980 981 982 983 984
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
985
					int active, int file)
986
{
987
	int lru = LRU_BASE;
988
	if (active)
989 990 991 992
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
993
								mode, file);
994 995
}

A
Andy Whitcroft 已提交
996 997 998 999
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1000 1001
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1002 1003
{
	int nr_active = 0;
1004
	int lru;
A
Andy Whitcroft 已提交
1005 1006
	struct page *page;

1007
	list_for_each_entry(page, page_list, lru) {
1008
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1009
		if (PageActive(page)) {
1010
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1011 1012 1013
			ClearPageActive(page);
			nr_active++;
		}
1014 1015
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1016 1017 1018 1019

	return nr_active;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1031 1032 1033
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1054
			int lru = page_lru(page);
1055 1056
			ret = 0;
			ClearPageLRU(page);
1057 1058

			del_page_from_lru_list(zone, page, lru);
1059 1060 1061 1062 1063 1064
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1090
/*
A
Andrew Morton 已提交
1091 1092
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1093
 */
A
Andrew Morton 已提交
1094
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1095 1096
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1097 1098 1099
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1100
	unsigned long nr_scanned = 0;
1101
	unsigned long nr_reclaimed = 0;
1102
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1103 1104
	int lumpy_reclaim = 0;

1105
	while (unlikely(too_many_isolated(zone, file, sc))) {
1106
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1107 1108 1109 1110 1111 1112

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 *
	 * We use the same threshold as pageout congestion_wait below.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_reclaim = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		lumpy_reclaim = 1;
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1129
	do {
L
Linus Torvalds 已提交
1130
		struct page *page;
1131 1132 1133
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1134
		unsigned long nr_active;
1135
		unsigned int count[NR_LRU_LISTS] = { 0, };
1136
		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1137 1138
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1139

1140
		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1141 1142
			     &page_list, &nr_scan, sc->order, mode,
				zone, sc->mem_cgroup, 0, file);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

		if (scanning_global_lru(sc)) {
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
		}

		if (nr_taken == 0)
			goto done;

1157
		nr_active = clear_active_flags(&page_list, count);
1158
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1169 1170 1171 1172
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1173 1174 1175 1176 1177 1178

		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];

L
Linus Torvalds 已提交
1179 1180
		spin_unlock_irq(&zone->lru_lock);

1181
		nr_scanned += nr_scan;
1182 1183 1184 1185 1186 1187 1188 1189 1190
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1191
		    lumpy_reclaim) {
1192
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1193 1194 1195 1196 1197

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1198
			nr_active = clear_active_flags(&page_list, count);
1199 1200 1201 1202 1203 1204
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1205
		nr_reclaimed += nr_freed;
1206

N
Nick Piggin 已提交
1207
		local_irq_disable();
1208
		if (current_is_kswapd())
1209
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1210
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1211 1212

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1213 1214 1215 1216
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1217
			int lru;
L
Linus Torvalds 已提交
1218
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1219
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1220
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1230
			if (is_active_lru(lru)) {
1231
				int file = is_file_lru(lru);
1232
				reclaim_stat->recent_rotated[file]++;
1233
			}
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238 1239
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1240 1241 1242
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1243
  	} while (nr_scanned < max_scan);
1244

L
Linus Torvalds 已提交
1245
done:
1246
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1247
	pagevec_release(&pvec);
1248
	return nr_reclaimed;
L
Linus Torvalds 已提交
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1315

A
Andrew Morton 已提交
1316
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1317
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1318
{
1319
	unsigned long nr_taken;
1320
	unsigned long pgscanned;
1321
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1322
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1323
	LIST_HEAD(l_active);
1324
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1325
	struct page *page;
1326
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1327
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1328 1329 1330

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1331
	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1332
					ISOLATE_ACTIVE, zone,
1333
					sc->mem_cgroup, 1, file);
1334 1335 1336 1337
	/*
	 * zone->pages_scanned is used for detect zone's oom
	 * mem_cgroup remembers nr_scan by itself.
	 */
1338
	if (scanning_global_lru(sc)) {
1339
		zone->pages_scanned += pgscanned;
1340
	}
1341
	reclaim_stat->recent_scanned[file] += nr_taken;
1342

1343
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1344
	if (file)
1345
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1346
	else
1347
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1348
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1349 1350 1351 1352 1353 1354
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1355

L
Lee Schermerhorn 已提交
1356 1357 1358 1359 1360
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1361 1362
		/* page_referenced clears PageReferenced */
		if (page_mapping_inuse(page) &&
1363
		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1364
			nr_rotated++;
1365 1366 1367 1368 1369 1370 1371 1372 1373
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1374
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1375 1376 1377 1378
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1379

1380
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1381 1382 1383
		list_add(&page->lru, &l_inactive);
	}

1384
	/*
1385
	 * Move pages back to the lru list.
1386
	 */
1387
	spin_lock_irq(&zone->lru_lock);
1388
	/*
1389 1390 1391 1392
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1393
	 */
1394
	reclaim_stat->recent_rotated[file] += nr_rotated;
1395

1396 1397 1398 1399
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1400
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1401
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1402 1403
}

1404
static int inactive_anon_is_low_global(struct zone *zone)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1429
	if (scanning_global_lru(sc))
1430 1431
		low = inactive_anon_is_low_global(zone);
	else
1432
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1433 1434 1435
	return low;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1472
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1473 1474
	struct zone *zone, struct scan_control *sc, int priority)
{
1475 1476
	int file = is_file_lru(lru);

1477
	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1478 1479 1480 1481
		shrink_active_list(nr_to_scan, zone, sc, priority, file);
		return 0;
	}

1482
	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1483
		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1484 1485
		return 0;
	}
R
Rik van Riel 已提交
1486
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
}

/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
 * percent[0] specifies how much pressure to put on ram/swap backed
 * memory, while percent[1] determines pressure on the file LRUs.
 */
static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
					unsigned long *percent)
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1504
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1505

1506 1507 1508 1509
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1510

1511
	if (scanning_global_lru(sc)) {
1512 1513 1514
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1515
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1516 1517 1518 1519
			percent[0] = 100;
			percent[1] = 0;
			return;
		}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1533
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1534
		spin_lock_irq(&zone->lru_lock);
1535 1536
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1537 1538 1539
		spin_unlock_irq(&zone->lru_lock);
	}

1540
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1541
		spin_lock_irq(&zone->lru_lock);
1542 1543
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1555 1556 1557
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1558
	 */
1559 1560
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1561

1562 1563
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1564 1565 1566 1567

	/* Normalize to percentages */
	percent[0] = 100 * ap / (ap + fp + 1);
	percent[1] = 100 - percent[0];
1568 1569
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan,
				       unsigned long swap_cluster_max)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= swap_cluster_max)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}
1590

L
Linus Torvalds 已提交
1591 1592 1593
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1594
static void shrink_zone(int priority, struct zone *zone,
1595
				struct scan_control *sc)
L
Linus Torvalds 已提交
1596
{
1597
	unsigned long nr[NR_LRU_LISTS];
1598
	unsigned long nr_to_scan;
1599
	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1600
	enum lru_list l;
1601 1602
	unsigned long nr_reclaimed = sc->nr_reclaimed;
	unsigned long swap_cluster_max = sc->swap_cluster_max;
1603
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1604
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1605
	int noswap = 0;
L
Linus Torvalds 已提交
1606

1607 1608 1609 1610 1611 1612 1613
	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		percent[0] = 0;
		percent[1] = 100;
	} else
		get_scan_ratio(zone, sc, percent);
1614

L
Lee Schermerhorn 已提交
1615
	for_each_evictable_lru(l) {
1616
		int file = is_file_lru(l);
1617
		unsigned long scan;
1618

1619
		scan = zone_nr_lru_pages(zone, sc, l);
1620
		if (priority || noswap) {
1621 1622 1623
			scan >>= priority;
			scan = (scan * percent[file]) / 100;
		}
1624 1625 1626
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l],
					  swap_cluster_max);
1627
	}
L
Linus Torvalds 已提交
1628

1629 1630
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1631
		for_each_evictable_lru(l) {
1632
			if (nr[l]) {
1633
				nr_to_scan = min(nr[l], swap_cluster_max);
1634
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1635

1636 1637
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1638
			}
L
Linus Torvalds 已提交
1639
		}
1640 1641 1642 1643 1644 1645 1646 1647
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1648
		if (nr_reclaimed > nr_to_reclaim && priority < DEF_PRIORITY)
1649
			break;
L
Linus Torvalds 已提交
1650 1651
	}

1652 1653
	sc->nr_reclaimed = nr_reclaimed;

1654 1655 1656 1657
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1658
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1659 1660
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1661
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1669 1670
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1671 1672
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1673 1674 1675
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1676 1677 1678 1679
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1680
static void shrink_zones(int priority, struct zonelist *zonelist,
1681
					struct scan_control *sc)
L
Linus Torvalds 已提交
1682
{
1683
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1684
	struct zoneref *z;
1685
	struct zone *zone;
1686

1687
	sc->all_unreclaimable = 1;
1688 1689
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1690
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1691
			continue;
1692 1693 1694 1695
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1696
		if (scanning_global_lru(sc)) {
1697 1698 1699
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
			if (zone_is_all_unreclaimable(zone) &&
						priority != DEF_PRIORITY)
				continue;	/* Let kswapd poll it */
			sc->all_unreclaimable = 0;
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			sc->all_unreclaimable = 0;
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1714

1715
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1716 1717
	}
}
1718

L
Linus Torvalds 已提交
1719 1720 1721 1722 1723 1724 1725 1726
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1727 1728 1729 1730
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1731 1732 1733
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1734
 */
1735
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1736
					struct scan_control *sc)
L
Linus Torvalds 已提交
1737 1738
{
	int priority;
1739
	unsigned long ret = 0;
1740
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1741 1742
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
1743
	struct zoneref *z;
1744
	struct zone *zone;
1745
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1746
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1747

1748 1749
	delayacct_freepages_start();

1750
	if (scanning_global_lru(sc))
1751 1752 1753 1754
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
1755
	if (scanning_global_lru(sc)) {
1756
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
L
Linus Torvalds 已提交
1757

1758 1759
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1760

1761
			lru_pages += zone_reclaimable_pages(zone);
1762
		}
L
Linus Torvalds 已提交
1763 1764 1765
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1766
		sc->nr_scanned = 0;
1767 1768
		if (!priority)
			disable_swap_token();
1769
		shrink_zones(priority, zonelist, sc);
1770 1771 1772 1773
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1774
		if (scanning_global_lru(sc)) {
1775
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1776
			if (reclaim_state) {
1777
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1778 1779
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1780
		}
1781
		total_scanned += sc->nr_scanned;
1782
		if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1783
			ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1794 1795
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1796
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1797
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1798 1799 1800
		}

		/* Take a nap, wait for some writeback to complete */
1801 1802
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1803
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1804
	}
1805
	/* top priority shrink_zones still had more to do? don't OOM, then */
1806
	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1807
		ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1808
out:
1809 1810 1811 1812 1813 1814 1815 1816 1817
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1818

1819
	if (scanning_global_lru(sc)) {
1820
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1821 1822 1823 1824 1825 1826 1827 1828

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1829

1830 1831
	delayacct_freepages_end();

L
Linus Torvalds 已提交
1832 1833 1834
	return ret;
}

1835
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1836
				gfp_t gfp_mask, nodemask_t *nodemask)
1837 1838 1839 1840 1841
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
1842
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1843
		.may_unmap = 1,
1844
		.may_swap = 1,
1845 1846 1847 1848
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1849
		.nodemask = nodemask,
1850 1851
	};

1852
	return do_try_to_free_pages(zonelist, &sc);
1853 1854
}

1855
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
		.isolate_pages = mem_cgroup_isolate_pages,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1890
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1891 1892 1893
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1894
{
1895
	struct zonelist *zonelist;
1896 1897
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1898
		.may_unmap = 1,
1899
		.may_swap = !noswap,
1900
		.swap_cluster_max = SWAP_CLUSTER_MAX,
1901
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1902
		.swappiness = swappiness,
1903 1904 1905
		.order = 0,
		.mem_cgroup = mem_cont,
		.isolate_pages = mem_cgroup_isolate_pages,
1906
		.nodemask = NULL, /* we don't care the placement */
1907 1908
	};

1909 1910 1911 1912
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1913 1914 1915
}
#endif

1916
/* is kswapd sleeping prematurely? */
1917
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1918
{
1919
	int i;
1920 1921 1922 1923 1924 1925

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1926 1927 1928 1929 1930 1931
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1932 1933 1934
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1935
	}
1936 1937 1938 1939

	return 0;
}

L
Linus Torvalds 已提交
1940 1941
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1942
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1955 1956 1957 1958 1959
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
1960
 */
1961
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
1962 1963 1964 1965
{
	int all_zones_ok;
	int priority;
	int i;
1966
	unsigned long total_scanned;
L
Linus Torvalds 已提交
1967
	struct reclaim_state *reclaim_state = current->reclaim_state;
1968 1969
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
1970
		.may_unmap = 1,
1971
		.may_swap = 1,
1972
		.swap_cluster_max = SWAP_CLUSTER_MAX,
1973 1974 1975 1976 1977
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
1978
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
1979
		.order = order,
1980 1981
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1982
	};
1983 1984
	/*
	 * temp_priority is used to remember the scanning priority at which
1985 1986
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
1987 1988
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
1989 1990 1991

loop_again:
	total_scanned = 0;
1992
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
1993
	sc.may_writepage = !laptop_mode;
1994
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
1995

1996 1997
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
1998 1999 2000 2001

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2002
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2003

2004 2005 2006 2007
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2008 2009
		all_zones_ok = 1;

2010 2011 2012 2013 2014 2015
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2016

2017 2018
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2019

2020 2021
			if (zone_is_all_unreclaimable(zone) &&
			    priority != DEF_PRIORITY)
2022
				continue;
L
Linus Torvalds 已提交
2023

2024 2025 2026 2027
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2028
			if (inactive_anon_is_low(zone, &sc))
2029 2030 2031
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2032 2033
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2034
				end_zone = i;
A
Andrew Morton 已提交
2035
				break;
L
Linus Torvalds 已提交
2036 2037
			}
		}
A
Andrew Morton 已提交
2038 2039 2040
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2041 2042 2043
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2044
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2058
			int nr_slab;
2059
			int nid, zid;
L
Linus Torvalds 已提交
2060

2061
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2062 2063
				continue;

2064 2065
			if (zone_is_all_unreclaimable(zone) &&
					priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2066 2067
				continue;

2068 2069
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0))
2070
				all_zones_ok = 0;
2071
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
2072
			sc.nr_scanned = 0;
2073
			note_zone_scanning_priority(zone, priority);
2074 2075 2076 2077 2078 2079 2080 2081 2082

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2083 2084 2085 2086
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2087 2088
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2089
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2090
			reclaim_state->reclaimed_slab = 0;
2091 2092
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2093
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2094
			total_scanned += sc.nr_scanned;
2095
			if (zone_is_all_unreclaimable(zone))
L
Linus Torvalds 已提交
2096
				continue;
2097
			if (nr_slab == 0 && zone->pages_scanned >=
2098
					(zone_reclaimable_pages(zone) * 6))
2099 2100
					zone_set_flag(zone,
						      ZONE_ALL_UNRECLAIMABLE);
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2107
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2108
				sc.may_writepage = 1;
2109 2110 2111 2112 2113 2114 2115 2116 2117

			/*
			 * We are still under min water mark. it mean we have
			 * GFP_ATOMIC allocation failure risk. Hurry up!
			 */
			if (!zone_watermark_ok(zone, order, min_wmark_pages(zone),
					      end_zone, 0))
				has_under_min_watermark_zone = 1;

L
Linus Torvalds 已提交
2118 2119 2120 2121 2122 2123 2124
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2125 2126 2127 2128 2129 2130
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2131 2132 2133 2134 2135 2136 2137

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2138
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2139 2140 2141
			break;
	}
out:
2142 2143 2144 2145 2146
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2147 2148 2149
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2150
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2151 2152 2153
	}
	if (!all_zones_ok) {
		cond_resched();
2154 2155 2156

		try_to_freeze();

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2174 2175 2176
		goto loop_again;
	}

2177
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2178 2179 2180 2181
}

/*
 * The background pageout daemon, started as a kernel thread
2182
 * from the init process.
L
Linus Torvalds 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2202
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2203

2204 2205
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2206
	if (!cpumask_empty(cpumask))
2207
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2222
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2223
	set_freezable();
L
Linus Torvalds 已提交
2224 2225 2226 2227

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2228
		int ret;
2229

L
Linus Torvalds 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2240 2241 2242 2243
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2244
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2255
				if (!sleeping_prematurely(pgdat, order, remaining))
2256 2257 2258
					schedule();
				else {
					if (remaining)
2259
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2260
					else
2261
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2262 2263
				}
			}
2264

L
Linus Torvalds 已提交
2265 2266 2267 2268
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2269 2270 2271 2272 2273 2274 2275 2276 2277
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
		if (!ret)
2278
			balance_pgdat(pgdat, order);
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2290
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2291 2292 2293
		return;

	pgdat = zone->zone_pgdat;
2294
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2295 2296 2297
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2298
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2299
		return;
2300
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2301
		return;
2302
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2303 2304
}

2305 2306 2307 2308 2309 2310 2311 2312
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2313
{
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2338 2339
}

2340
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2341
/*
2342
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2343 2344 2345 2346 2347
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2348
 */
2349
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2350
{
2351 2352
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2353 2354 2355
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2356
		.may_writepage = 1,
2357 2358 2359 2360 2361
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
2362
		.isolate_pages = isolate_pages_global,
L
Linus Torvalds 已提交
2363
	};
2364 2365 2366
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2367

2368 2369 2370 2371
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2372

2373
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2374

2375 2376 2377
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2378

2379
	return nr_reclaimed;
L
Linus Torvalds 已提交
2380
}
2381
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2387
static int __devinit cpu_callback(struct notifier_block *nfb,
2388
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2389
{
2390
	int nid;
L
Linus Torvalds 已提交
2391

2392
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2393
		for_each_node_state(nid, N_HIGH_MEMORY) {
2394
			pg_data_t *pgdat = NODE_DATA(nid);
2395 2396 2397
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2398

2399
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2400
				/* One of our CPUs online: restore mask */
2401
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2402 2403 2404 2405 2406
		}
	}
	return NOTIFY_OK;
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2440 2441
static int __init kswapd_init(void)
{
2442
	int nid;
2443

L
Linus Torvalds 已提交
2444
	swap_setup();
2445
	for_each_node_state(nid, N_HIGH_MEMORY)
2446
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2447 2448 2449 2450 2451
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2462
#define RECLAIM_OFF 0
2463
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2464 2465 2466
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2467 2468 2469 2470 2471 2472 2473
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2474 2475 2476 2477 2478 2479
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2480 2481 2482 2483 2484 2485
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2528 2529 2530
/*
 * Try to free up some pages from this zone through reclaim.
 */
2531
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2532
{
2533
	/* Minimum pages needed in order to stay on node */
2534
	const unsigned long nr_pages = 1 << order;
2535 2536
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2537
	int priority;
2538 2539
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2540
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2541
		.may_swap = 1,
2542
		.swap_cluster_max = SWAP_CLUSTER_MAX,
2543 2544
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2545
		.gfp_mask = gfp_mask,
2546
		.swappiness = vm_swappiness,
2547
		.order = order,
2548
		.isolate_pages = isolate_pages_global,
2549
	};
2550
	unsigned long slab_reclaimable;
2551 2552 2553

	disable_swap_token();
	cond_resched();
2554 2555 2556 2557 2558 2559
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2560 2561
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2562

2563
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2564 2565 2566 2567 2568 2569
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2570
			note_zone_scanning_priority(zone, priority);
2571
			shrink_zone(priority, zone, &sc);
2572
			priority--;
2573
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2574
	}
2575

2576 2577
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2578
		/*
2579
		 * shrink_slab() does not currently allow us to determine how
2580 2581 2582 2583
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2584
		 *
2585 2586
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2587
		 */
2588
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2589 2590
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2591
			;
2592 2593 2594 2595 2596

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2597
		sc.nr_reclaimed += slab_reclaimable -
2598
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2599 2600
	}

2601
	p->reclaim_state = NULL;
2602
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2603
	return sc.nr_reclaimed >= nr_pages;
2604
}
2605 2606 2607 2608

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2609
	int ret;
2610 2611

	/*
2612 2613
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2614
	 *
2615 2616 2617 2618 2619
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2620
	 */
2621 2622
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2623
		return ZONE_RECLAIM_FULL;
2624

2625
	if (zone_is_all_unreclaimable(zone))
2626
		return ZONE_RECLAIM_FULL;
2627

2628
	/*
2629
	 * Do not scan if the allocation should not be delayed.
2630
	 */
2631
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2632
		return ZONE_RECLAIM_NOSCAN;
2633 2634 2635 2636 2637 2638 2639

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2640
	node_id = zone_to_nid(zone);
2641
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2642
		return ZONE_RECLAIM_NOSCAN;
2643 2644

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2645 2646
		return ZONE_RECLAIM_NOSCAN;

2647 2648 2649
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2650 2651 2652
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2653
	return ret;
2654
}
2655
#endif
L
Lee Schermerhorn 已提交
2656 2657 2658 2659 2660 2661 2662

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2663 2664
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2665 2666
 *
 * Reasons page might not be evictable:
2667
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2668
 * (2) page is part of an mlocked VMA
2669
 *
L
Lee Schermerhorn 已提交
2670 2671 2672 2673
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2674 2675 2676
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2677 2678
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2679 2680 2681

	return 1;
}
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2701
		enum lru_list l = page_lru_base_type(page);
2702

2703 2704
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2705
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2706 2707 2708 2709 2710 2711 2712 2713
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2714
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2786
static void scan_zone_unevictable_pages(struct zone *zone)
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2828
static void scan_all_zones_unevictable_pages(void)
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2844
			   void __user *buffer,
2845 2846
			   size_t *length, loff_t *ppos)
{
2847
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}