vmscan.c 57.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
L
Linus Torvalds 已提交
41 42 43 44 45 46

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

47 48
#include "internal.h"

L
Linus Torvalds 已提交
49 50 51 52 53
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* This context's GFP mask */
A
Al Viro 已提交
54
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
55 56 57

	int may_writepage;

58 59 60
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

L
Linus Torvalds 已提交
61 62 63 64 65
	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
66 67

	int swappiness;
68 69

	int all_unreclaimable;
A
Andy Whitcroft 已提交
70 71

	int order;
72

73 74 75 76 77 78 79
	/*
	 * Pages that have (or should have) IO pending.  If we run into
	 * a lot of these, we're better off waiting a little for IO to
	 * finish rather than scanning more pages in the VM.
	 */
	int nr_io_pages;

80 81 82 83 84 85 86 87
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

	/* Pluggable isolate pages callback */
	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
			unsigned long *scanned, int order, int mode,
			struct zone *z, struct mem_cgroup *mem_cont,
			int active);
L
Linus Torvalds 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
124
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
125 126 127 128

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

129 130 131 132 133 134
#ifdef CONFIG_CGROUP_MEM_CONT
#define scan_global_lru(sc)	(!(sc)->mem_cgroup)
#else
#define scan_global_lru(sc)	(1)
#endif

L
Linus Torvalds 已提交
135 136 137
/*
 * Add a shrinker callback to be called from the vm
 */
138
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
139
{
140 141 142 143
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
144
}
145
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
146 147 148 149

/*
 * Remove one
 */
150
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
151 152 153 154 155
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
156
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
157 158 159 160 161 162 163 164 165 166

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
167
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
168 169 170 171 172 173 174
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
175 176
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
177
 */
178 179
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
180 181
{
	struct shrinker *shrinker;
182
	unsigned long ret = 0;
L
Linus Torvalds 已提交
183 184 185 186 187

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
188
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
189 190 191 192

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
193
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
194 195

		delta = (4 * scanned) / shrinker->seeks;
196
		delta *= max_pass;
L
Linus Torvalds 已提交
197 198
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
199 200 201 202 203 204 205 206 207 208 209 210 211
		if (shrinker->nr < 0) {
			printk(KERN_ERR "%s: nr=%ld\n",
					__FUNCTION__, shrinker->nr);
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
212 213 214 215 216 217 218

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
219
			int nr_before;
L
Linus Torvalds 已提交
220

221 222
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
223 224
			if (shrink_ret == -1)
				break;
225 226
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
227
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
236
	return ret;
L
Linus Torvalds 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
	return page_count(page) - !!PagePrivate(page) == 2;
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
267
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
292 293
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
294 295 296
	unlock_page(page);
}

297 298 299 300 301 302
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

303 304 305 306 307 308 309 310 311 312 313 314
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
315
/*
A
Andrew Morton 已提交
316 317
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
318
 */
319 320
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
	 * If this process is currently in generic_file_write() against
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 * See swapfile.c:page_queue_congested().
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
346
		if (PagePrivate(page)) {
L
Linus Torvalds 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
				printk("%s: orphaned page\n", __FUNCTION__);
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
365 366
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
367 368 369 370 371 372 373 374
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
375
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
376 377 378
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
379 380 381 382 383 384 385 386 387

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
388 389 390 391
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
392
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
393 394 395 396 397 398
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

399 400 401 402 403 404
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
C
Christoph Lameter 已提交
405
int remove_mapping(struct address_space *mapping, struct page *page)
406
{
407 408
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
409 410 411

	write_lock_irq(&mapping->tree_lock);
	/*
N
Nick Piggin 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	 */
	if (unlikely(page_count(page) != 2))
		goto cannot_free;
	smp_rmb();
	if (unlikely(PageDirty(page)))
		goto cannot_free;

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
		write_unlock_irq(&mapping->tree_lock);
		swap_free(swap);
		__put_page(page);	/* The pagecache ref */
		return 1;
	}

	__remove_from_page_cache(page);
	write_unlock_irq(&mapping->tree_lock);
	__put_page(page);
	return 1;

cannot_free:
	write_unlock_irq(&mapping->tree_lock);
	return 0;
}

L
Linus Torvalds 已提交
461
/*
A
Andrew Morton 已提交
462
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
463
 */
A
Andrew Morton 已提交
464
static unsigned long shrink_page_list(struct list_head *page_list,
465 466
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
467 468 469 470
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
471
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

		if (TestSetPageLocked(page))
			goto keep;

N
Nick Piggin 已提交
490
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
491 492

		sc->nr_scanned++;
493 494 495 496

		if (!sc->may_swap && page_mapped(page))
			goto keep_locked;

L
Linus Torvalds 已提交
497 498 499 500
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

501 502 503 504 505 506 507 508 509 510 511 512 513 514
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
515 516
			else {
				sc->nr_io_pages++;
517
				goto keep_locked;
518
			}
519
		}
L
Linus Torvalds 已提交
520

521
		referenced = page_referenced(page, 1, sc->mem_cgroup);
L
Linus Torvalds 已提交
522
		/* In active use or really unfreeable?  Activate it. */
A
Andy Whitcroft 已提交
523 524
		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
					referenced && page_mapping_inuse(page))
L
Linus Torvalds 已提交
525 526 527 528 529 530 531
			goto activate_locked;

#ifdef CONFIG_SWAP
		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
532
		if (PageAnon(page) && !PageSwapCache(page))
533
			if (!add_to_swap(page, GFP_ATOMIC))
L
Linus Torvalds 已提交
534 535 536 537 538 539 540 541 542 543
				goto activate_locked;
#endif /* CONFIG_SWAP */

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
544
			switch (try_to_unmap(page, 0)) {
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552 553 554
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
A
Andy Whitcroft 已提交
555
			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
L
Linus Torvalds 已提交
556
				goto keep_locked;
557 558
			if (!may_enter_fs) {
				sc->nr_io_pages++;
L
Linus Torvalds 已提交
559
				goto keep_locked;
560
			}
561
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
562 563 564
				goto keep_locked;

			/* Page is dirty, try to write it out here */
565
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
566 567 568 569 570
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
571 572
				if (PageWriteback(page) || PageDirty(page)) {
					sc->nr_io_pages++;
L
Linus Torvalds 已提交
573
					goto keep;
574
				}
L
Linus Torvalds 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
				if (TestSetPageLocked(page))
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
		 * will do this, as well as the blockdev mapping. 
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
		if (PagePrivate(page)) {
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
			if (!mapping && page_count(page) == 1)
				goto free_it;
		}

617
		if (!mapping || !remove_mapping(mapping, page))
618
			goto keep_locked;
L
Linus Torvalds 已提交
619 620 621

free_it:
		unlock_page(page);
622
		nr_reclaimed++;
L
Linus Torvalds 已提交
623 624 625 626 627 628 629 630 631 632 633
		if (!pagevec_add(&freed_pvec, page))
			__pagevec_release_nonlru(&freed_pvec);
		continue;

activate_locked:
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
634
		VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
635 636 637 638
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
		__pagevec_release_nonlru(&freed_pvec);
639
	count_vm_events(PGACTIVATE, pgactivate);
640
	return nr_reclaimed;
L
Linus Torvalds 已提交
641 642
}

A
Andy Whitcroft 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
/* LRU Isolation modes. */
#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */

/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
658
int __isolate_lru_page(struct page *page, int mode)
A
Andy Whitcroft 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

	ret = -EBUSY;
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
702 703
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
L
Linus Torvalds 已提交
704 705 706
 *
 * returns how many pages were moved onto *@dst.
 */
707 708
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
A
Andy Whitcroft 已提交
709
		unsigned long *scanned, int order, int mode)
L
Linus Torvalds 已提交
710
{
711
	unsigned long nr_taken = 0;
712
	unsigned long scan;
L
Linus Torvalds 已提交
713

714
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
715 716 717 718 719 720
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
721 722 723
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
724
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
725

A
Andy Whitcroft 已提交
726 727 728
		switch (__isolate_lru_page(page, mode)) {
		case 0:
			list_move(&page->lru, dst);
729
			nr_taken++;
A
Andy Whitcroft 已提交
730 731 732 733 734 735
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
736

A
Andy Whitcroft 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
			switch (__isolate_lru_page(cursor_page, mode)) {
			case 0:
				list_move(&cursor_page->lru, dst);
				nr_taken++;
				scan++;
				break;

			case -EBUSY:
				/* else it is being freed elsewhere */
				list_move(&cursor_page->lru, src);
			default:
				break;
			}
		}
L
Linus Torvalds 已提交
786 787 788 789 790 791
	}

	*scanned = scan;
	return nr_taken;
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	if (active)
		return isolate_lru_pages(nr, &z->active_list, dst,
						scanned, order, mode);
	else
		return isolate_lru_pages(nr, &z->inactive_list, dst,
						scanned, order, mode);
}

A
Andy Whitcroft 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
static unsigned long clear_active_flags(struct list_head *page_list)
{
	int nr_active = 0;
	struct page *page;

	list_for_each_entry(page, page_list, lru)
		if (PageActive(page)) {
			ClearPageActive(page);
			nr_active++;
		}

	return nr_active;
}

L
Linus Torvalds 已提交
825
/*
A
Andrew Morton 已提交
826 827
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
828
 */
A
Andrew Morton 已提交
829 830
static unsigned long shrink_inactive_list(unsigned long max_scan,
				struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
831 832 833
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
834
	unsigned long nr_scanned = 0;
835
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
836 837 838 839 840

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
841
	do {
L
Linus Torvalds 已提交
842
		struct page *page;
843 844 845
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
846
		unsigned long nr_active;
L
Linus Torvalds 已提交
847

848
		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
A
Andy Whitcroft 已提交
849 850
			     &page_list, &nr_scan, sc->order,
			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
851 852
					     ISOLATE_BOTH : ISOLATE_INACTIVE,
				zone, sc->mem_cgroup, 0);
A
Andy Whitcroft 已提交
853
		nr_active = clear_active_flags(&page_list);
854
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
855 856 857 858

		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
		__mod_zone_page_state(zone, NR_INACTIVE,
						-(nr_taken - nr_active));
859 860
		if (scan_global_lru(sc))
			zone->pages_scanned += nr_scan;
L
Linus Torvalds 已提交
861 862
		spin_unlock_irq(&zone->lru_lock);

863
		nr_scanned += nr_scan;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
			congestion_wait(WRITE, HZ/10);

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
			nr_active = clear_active_flags(&page_list);
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

887
		nr_reclaimed += nr_freed;
N
Nick Piggin 已提交
888 889
		local_irq_disable();
		if (current_is_kswapd()) {
890 891
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
			__count_vm_events(KSWAPD_STEAL, nr_freed);
892
		} else if (scan_global_lru(sc))
893
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
894

S
Shantanu Goel 已提交
895
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
896

897 898 899
		if (nr_taken == 0)
			goto done;

N
Nick Piggin 已提交
900
		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
901 902 903 904 905
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
906
			VM_BUG_ON(PageLRU(page));
N
Nick Piggin 已提交
907
			SetPageLRU(page);
L
Linus Torvalds 已提交
908 909 910 911 912 913 914 915 916 917 918
			list_del(&page->lru);
			if (PageActive(page))
				add_page_to_active_list(zone, page);
			else
				add_page_to_inactive_list(zone, page);
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
919
  	} while (nr_scanned < max_scan);
920
	spin_unlock(&zone->lru_lock);
L
Linus Torvalds 已提交
921
done:
922
	local_irq_enable();
L
Linus Torvalds 已提交
923
	pagevec_release(&pvec);
924
	return nr_reclaimed;
L
Linus Torvalds 已提交
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

N
Nick Piggin 已提交
941 942
static inline int zone_is_near_oom(struct zone *zone)
{
943 944
	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
				+ zone_page_state(zone, NR_INACTIVE))*3;
N
Nick Piggin 已提交
945 946
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * Determine we should try to reclaim mapped pages.
 * This is called only when sc->mem_cgroup is NULL.
 */
static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
				int priority)
{
	long mapped_ratio;
	long distress;
	long swap_tendency;
	long imbalance;
	int reclaim_mapped = 0;
	int prev_priority;

	if (scan_global_lru(sc) && zone_is_near_oom(zone))
		return 1;
	/*
	 * `distress' is a measure of how much trouble we're having
	 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
	 */
	if (scan_global_lru(sc))
		prev_priority = zone->prev_priority;
	else
		prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);

	distress = 100 >> min(prev_priority, priority);

	/*
	 * The point of this algorithm is to decide when to start
	 * reclaiming mapped memory instead of just pagecache.  Work out
	 * how much memory
	 * is mapped.
	 */
	if (scan_global_lru(sc))
		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
				global_page_state(NR_ANON_PAGES)) * 100) /
					vm_total_pages;
	else
		mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);

	/*
	 * Now decide how much we really want to unmap some pages.  The
	 * mapped ratio is downgraded - just because there's a lot of
	 * mapped memory doesn't necessarily mean that page reclaim
	 * isn't succeeding.
	 *
	 * The distress ratio is important - we don't want to start
	 * going oom.
	 *
	 * A 100% value of vm_swappiness overrides this algorithm
	 * altogether.
	 */
	swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;

	/*
	 * If there's huge imbalance between active and inactive
	 * (think active 100 times larger than inactive) we should
	 * become more permissive, or the system will take too much
	 * cpu before it start swapping during memory pressure.
	 * Distress is about avoiding early-oom, this is about
	 * making swappiness graceful despite setting it to low
	 * values.
	 *
	 * Avoid div by zero with nr_inactive+1, and max resulting
	 * value is vm_total_pages.
	 */
	if (scan_global_lru(sc)) {
		imbalance  = zone_page_state(zone, NR_ACTIVE);
		imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
	} else
		imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);

	/*
	 * Reduce the effect of imbalance if swappiness is low,
	 * this means for a swappiness very low, the imbalance
	 * must be much higher than 100 for this logic to make
	 * the difference.
	 *
	 * Max temporary value is vm_total_pages*100.
	 */
	imbalance *= (vm_swappiness + 1);
	imbalance /= 100;

	/*
	 * If not much of the ram is mapped, makes the imbalance
	 * less relevant, it's high priority we refill the inactive
	 * list with mapped pages only in presence of high ratio of
	 * mapped pages.
	 *
	 * Max temporary value is vm_total_pages*100.
	 */
	imbalance *= mapped_ratio;
	imbalance /= 100;

	/* apply imbalance feedback to swap_tendency */
	swap_tendency += imbalance;

	/*
	 * Now use this metric to decide whether to start moving mapped
	 * memory onto the inactive list.
	 */
	if (swap_tendency >= 100)
		reclaim_mapped = 1;

	return reclaim_mapped;
}

L
Linus Torvalds 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1071 1072


A
Andrew Morton 已提交
1073
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1074
				struct scan_control *sc, int priority)
L
Linus Torvalds 已提交
1075
{
1076
	unsigned long pgmoved;
L
Linus Torvalds 已提交
1077
	int pgdeactivate = 0;
1078
	unsigned long pgscanned;
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
	struct page *page;
	struct pagevec pvec;
	int reclaim_mapped = 0;
1085

1086 1087
	if (sc->may_swap)
		reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
L
Linus Torvalds 已提交
1088 1089 1090

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1091 1092 1093
	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
					ISOLATE_ACTIVE, zone,
					sc->mem_cgroup, 1);
1094 1095 1096 1097 1098 1099 1100
	/*
	 * zone->pages_scanned is used for detect zone's oom
	 * mem_cgroup remembers nr_scan by itself.
	 */
	if (scan_global_lru(sc))
		zone->pages_scanned += pgscanned;

1101
	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
L
Linus Torvalds 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
		if (page_mapped(page)) {
			if (!reclaim_mapped ||
			    (total_swap_pages == 0 && PageAnon(page)) ||
1111
			    page_referenced(page, 0, sc->mem_cgroup)) {
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
				list_add(&page->lru, &l_active);
				continue;
			}
		}
		list_add(&page->lru, &l_inactive);
	}

	pagevec_init(&pvec, 1);
	pgmoved = 0;
	spin_lock_irq(&zone->lru_lock);
	while (!list_empty(&l_inactive)) {
		page = lru_to_page(&l_inactive);
		prefetchw_prev_lru_page(page, &l_inactive, flags);
N
Nick Piggin 已提交
1125
		VM_BUG_ON(PageLRU(page));
N
Nick Piggin 已提交
1126
		SetPageLRU(page);
N
Nick Piggin 已提交
1127
		VM_BUG_ON(!PageActive(page));
N
Nick Piggin 已提交
1128 1129
		ClearPageActive(page);

L
Linus Torvalds 已提交
1130
		list_move(&page->lru, &zone->inactive_list);
1131
		mem_cgroup_move_lists(page_get_page_cgroup(page), false);
L
Linus Torvalds 已提交
1132 1133
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
1134
			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143
			spin_unlock_irq(&zone->lru_lock);
			pgdeactivate += pgmoved;
			pgmoved = 0;
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
1144
	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
L
Linus Torvalds 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	pgdeactivate += pgmoved;
	if (buffer_heads_over_limit) {
		spin_unlock_irq(&zone->lru_lock);
		pagevec_strip(&pvec);
		spin_lock_irq(&zone->lru_lock);
	}

	pgmoved = 0;
	while (!list_empty(&l_active)) {
		page = lru_to_page(&l_active);
		prefetchw_prev_lru_page(page, &l_active, flags);
N
Nick Piggin 已提交
1156
		VM_BUG_ON(PageLRU(page));
N
Nick Piggin 已提交
1157
		SetPageLRU(page);
N
Nick Piggin 已提交
1158
		VM_BUG_ON(!PageActive(page));
L
Linus Torvalds 已提交
1159
		list_move(&page->lru, &zone->active_list);
1160
		mem_cgroup_move_lists(page_get_page_cgroup(page), true);
L
Linus Torvalds 已提交
1161 1162
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
1163
			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
L
Linus Torvalds 已提交
1164 1165 1166 1167 1168 1169
			pgmoved = 0;
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
1170
	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
N
Nick Piggin 已提交
1171

1172 1173 1174
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
	__count_vm_events(PGDEACTIVATE, pgdeactivate);
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1175

N
Nick Piggin 已提交
1176
	pagevec_release(&pvec);
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181
}

/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1182 1183
static unsigned long shrink_zone(int priority, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
1184 1185 1186
{
	unsigned long nr_active;
	unsigned long nr_inactive;
1187
	unsigned long nr_to_scan;
1188
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (scan_global_lru(sc)) {
		/*
		 * Add one to nr_to_scan just to make sure that the kernel
		 * will slowly sift through the active list.
		 */
		zone->nr_scan_active +=
			(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
		nr_active = zone->nr_scan_active;
		zone->nr_scan_inactive +=
			(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
		nr_inactive = zone->nr_scan_inactive;
		if (nr_inactive >= sc->swap_cluster_max)
			zone->nr_scan_inactive = 0;
		else
			nr_inactive = 0;

		if (nr_active >= sc->swap_cluster_max)
			zone->nr_scan_active = 0;
		else
			nr_active = 0;
	} else {
		/*
		 * This reclaim occurs not because zone memory shortage but
		 * because memory controller hits its limit.
		 * Then, don't modify zone reclaim related data.
		 */
		nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
					zone, priority);

		nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
					zone, priority);
	}
L
Linus Torvalds 已提交
1222 1223 1224 1225


	while (nr_active || nr_inactive) {
		if (nr_active) {
1226
			nr_to_scan = min(nr_active,
L
Linus Torvalds 已提交
1227
					(unsigned long)sc->swap_cluster_max);
1228
			nr_active -= nr_to_scan;
1229
			shrink_active_list(nr_to_scan, zone, sc, priority);
L
Linus Torvalds 已提交
1230 1231 1232
		}

		if (nr_inactive) {
1233
			nr_to_scan = min(nr_inactive,
L
Linus Torvalds 已提交
1234
					(unsigned long)sc->swap_cluster_max);
1235
			nr_inactive -= nr_to_scan;
A
Andrew Morton 已提交
1236 1237
			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
								sc);
L
Linus Torvalds 已提交
1238 1239 1240
		}
	}

1241
	throttle_vm_writeout(sc->gfp_mask);
1242
	return nr_reclaimed;
L
Linus Torvalds 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * We reclaim from a zone even if that zone is over pages_high.  Because:
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
 * b) The zones may be over pages_high but they must go *over* pages_high to
 *    satisfy the `incremental min' zone defense algorithm.
 *
 * Returns the number of reclaimed pages.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
A
Andrew Morton 已提交
1261
static unsigned long shrink_zones(int priority, struct zone **zones,
1262
					struct scan_control *sc)
L
Linus Torvalds 已提交
1263
{
1264
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1265 1266
	int i;

1267

1268
	sc->all_unreclaimable = 1;
L
Linus Torvalds 已提交
1269 1270 1271
	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

1272
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1273
			continue;
1274 1275 1276 1277 1278 1279 1280 1281
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
		if (scan_global_lru(sc)) {
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
			if (zone_is_all_unreclaimable(zone) &&
						priority != DEF_PRIORITY)
				continue;	/* Let kswapd poll it */
			sc->all_unreclaimable = 0;
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			sc->all_unreclaimable = 0;
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1296

1297
		nr_reclaimed += shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1298
	}
1299

1300
	return nr_reclaimed;
L
Linus Torvalds 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}
 
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
 */
1316 1317
static unsigned long do_try_to_free_pages(struct zone **zones, gfp_t gfp_mask,
					  struct scan_control *sc)
L
Linus Torvalds 已提交
1318 1319 1320
{
	int priority;
	int ret = 0;
1321
	unsigned long total_scanned = 0;
1322
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1323 1324 1325 1326
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
	int i;

1327 1328 1329 1330 1331 1332 1333 1334
	if (scan_global_lru(sc))
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
	if (scan_global_lru(sc)) {
		for (i = 0; zones[i] != NULL; i++) {
			struct zone *zone = zones[i];
L
Linus Torvalds 已提交
1335

1336 1337
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1338

1339 1340 1341
			lru_pages += zone_page_state(zone, NR_ACTIVE)
					+ zone_page_state(zone, NR_INACTIVE);
		}
L
Linus Torvalds 已提交
1342 1343 1344
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1345
		sc->nr_scanned = 0;
1346
		sc->nr_io_pages = 0;
1347 1348
		if (!priority)
			disable_swap_token();
1349 1350 1351 1352 1353
		nr_reclaimed += shrink_zones(priority, zones, sc);
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1354
		if (scan_global_lru(sc)) {
1355
			shrink_slab(sc->nr_scanned, gfp_mask, lru_pages);
1356 1357 1358 1359
			if (reclaim_state) {
				nr_reclaimed += reclaim_state->reclaimed_slab;
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1360
		}
1361 1362
		total_scanned += sc->nr_scanned;
		if (nr_reclaimed >= sc->swap_cluster_max) {
L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			ret = 1;
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1374 1375
		if (total_scanned > sc->swap_cluster_max +
					sc->swap_cluster_max / 2) {
1376
			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1377
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1378 1379 1380
		}

		/* Take a nap, wait for some writeback to complete */
1381 1382
		if (sc->nr_scanned && priority < DEF_PRIORITY - 2 &&
				sc->nr_io_pages > sc->swap_cluster_max)
1383
			congestion_wait(WRITE, HZ/10);
L
Linus Torvalds 已提交
1384
	}
1385
	/* top priority shrink_caches still had more to do? don't OOM, then */
1386
	if (!sc->all_unreclaimable && scan_global_lru(sc))
1387
		ret = 1;
L
Linus Torvalds 已提交
1388
out:
1389 1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	if (scan_global_lru(sc)) {
		for (i = 0; zones[i] != NULL; i++) {
			struct zone *zone = zones[i];

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1410 1411 1412 1413

	return ret;
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.may_swap = 1,
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
	};

	return do_try_to_free_pages(zones, gfp_mask, &sc);
}

#ifdef CONFIG_CGROUP_MEM_CONT

1432 1433
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
						gfp_t gfp_mask)
1434 1435
{
	struct scan_control sc = {
1436
		.gfp_mask = gfp_mask,
1437 1438 1439 1440 1441 1442 1443 1444 1445
		.may_writepage = !laptop_mode,
		.may_swap = 1,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.swappiness = vm_swappiness,
		.order = 0,
		.mem_cgroup = mem_cont,
		.isolate_pages = mem_cgroup_isolate_pages,
	};
	struct zone **zones;
1446
	int target_zone = gfp_zone(GFP_HIGHUSER_MOVABLE);
1447

1448 1449 1450
	zones = NODE_DATA(numa_node_id())->node_zonelists[target_zone].zones;
	if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))
		return 1;
1451 1452 1453 1454
	return 0;
}
#endif

L
Linus Torvalds 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * they are all at pages_high.
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > pages_high, but once a zone is found to have
 * free_pages <= pages_high, we scan that zone and the lower zones regardless
 * of the number of free pages in the lower zones.  This interoperates with
 * the page allocator fallback scheme to ensure that aging of pages is balanced
 * across the zones.
 */
1476
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
1477 1478 1479 1480
{
	int all_zones_ok;
	int priority;
	int i;
1481
	unsigned long total_scanned;
1482
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
1483
	struct reclaim_state *reclaim_state = current->reclaim_state;
1484 1485 1486
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.may_swap = 1,
1487 1488
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
1489
		.order = order,
1490 1491
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1492
	};
1493 1494 1495 1496 1497
	/*
	 * temp_priority is used to remember the scanning priority at which
	 * this zone was successfully refilled to free_pages == pages_high.
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
1498 1499 1500

loop_again:
	total_scanned = 0;
1501
	nr_reclaimed = 0;
C
Christoph Lameter 已提交
1502
	sc.may_writepage = !laptop_mode;
1503
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
1504

1505 1506
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;

1512 1513 1514 1515
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

1516
		sc.nr_io_pages = 0;
L
Linus Torvalds 已提交
1517 1518
		all_zones_ok = 1;

1519 1520 1521 1522 1523 1524
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
1525

1526 1527
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
1528

1529 1530
			if (zone_is_all_unreclaimable(zone) &&
			    priority != DEF_PRIORITY)
1531
				continue;
L
Linus Torvalds 已提交
1532

1533 1534 1535
			if (!zone_watermark_ok(zone, order, zone->pages_high,
					       0, 0)) {
				end_zone = i;
A
Andrew Morton 已提交
1536
				break;
L
Linus Torvalds 已提交
1537 1538
			}
		}
A
Andrew Morton 已提交
1539 1540 1541
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
1542 1543 1544
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

1545 1546
			lru_pages += zone_page_state(zone, NR_ACTIVE)
					+ zone_page_state(zone, NR_INACTIVE);
L
Linus Torvalds 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
1560
			int nr_slab;
L
Linus Torvalds 已提交
1561

1562
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
1563 1564
				continue;

1565 1566
			if (zone_is_all_unreclaimable(zone) &&
					priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
1567 1568
				continue;

1569 1570 1571
			if (!zone_watermark_ok(zone, order, zone->pages_high,
					       end_zone, 0))
				all_zones_ok = 0;
1572
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
1573
			sc.nr_scanned = 0;
1574
			note_zone_scanning_priority(zone, priority);
1575 1576 1577 1578 1579 1580 1581
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
						end_zone, 0))
				nr_reclaimed += shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
1582
			reclaim_state->reclaimed_slab = 0;
1583 1584
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
1585
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1586
			total_scanned += sc.nr_scanned;
1587
			if (zone_is_all_unreclaimable(zone))
L
Linus Torvalds 已提交
1588
				continue;
1589
			if (nr_slab == 0 && zone->pages_scanned >=
1590 1591
				(zone_page_state(zone, NR_ACTIVE)
				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1592 1593
					zone_set_flag(zone,
						      ZONE_ALL_UNRECLAIMABLE);
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1600
			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607 1608
				sc.may_writepage = 1;
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
1609 1610
		if (total_scanned && priority < DEF_PRIORITY - 2 &&
					sc.nr_io_pages > sc.swap_cluster_max)
1611
			congestion_wait(WRITE, HZ/10);
L
Linus Torvalds 已提交
1612 1613 1614 1615 1616 1617 1618

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
1619
		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
1620 1621 1622
			break;
	}
out:
1623 1624 1625 1626 1627
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
1628 1629 1630
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

1631
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
1632 1633 1634
	}
	if (!all_zones_ok) {
		cond_resched();
1635 1636 1637

		try_to_freeze();

L
Linus Torvalds 已提交
1638 1639 1640
		goto loop_again;
	}

1641
	return nr_reclaimed;
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
	cpumask_t cpumask;

	cpumask = node_to_cpumask(pgdat->node_id);
	if (!cpus_empty(cpumask))
		set_cpus_allowed(tsk, cpumask);
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
1685
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1686
	set_freezable();
L
Linus Torvalds 已提交
1687 1688 1689 1690

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
1691

L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
1702 1703 1704
			if (!freezing(current))
				schedule();

L
Linus Torvalds 已提交
1705 1706 1707 1708
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

1709 1710 1711 1712 1713 1714
		if (!try_to_freeze()) {
			/* We can speed up thawing tasks if we don't call
			 * balance_pgdat after returning from the refrigerator
			 */
			balance_pgdat(pgdat, order);
		}
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

1726
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
1727 1728 1729
		return;

	pgdat = zone->zone_pgdat;
R
Rohit Seth 已提交
1730
	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
L
Linus Torvalds 已提交
1731 1732 1733
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
1734
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
1735
		return;
1736
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
1737
		return;
1738
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
1739 1740 1741 1742
}

#ifdef CONFIG_PM
/*
1743 1744 1745 1746 1747 1748
 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
 * from LRU lists system-wide, for given pass and priority, and returns the
 * number of reclaimed pages
 *
 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
 */
1749 1750
static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
				      int pass, struct scan_control *sc)
1751 1752 1753 1754 1755 1756 1757 1758 1759
{
	struct zone *zone;
	unsigned long nr_to_scan, ret = 0;

	for_each_zone(zone) {

		if (!populated_zone(zone))
			continue;

1760
		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1761 1762 1763 1764
			continue;

		/* For pass = 0 we don't shrink the active list */
		if (pass > 0) {
1765 1766
			zone->nr_scan_active +=
				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1767 1768
			if (zone->nr_scan_active >= nr_pages || pass > 3) {
				zone->nr_scan_active = 0;
1769 1770
				nr_to_scan = min(nr_pages,
					zone_page_state(zone, NR_ACTIVE));
1771
				shrink_active_list(nr_to_scan, zone, sc, prio);
1772 1773 1774
			}
		}

1775 1776
		zone->nr_scan_inactive +=
			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1777 1778
		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
			zone->nr_scan_inactive = 0;
1779 1780
			nr_to_scan = min(nr_pages,
				zone_page_state(zone, NR_INACTIVE));
1781 1782 1783 1784 1785 1786 1787 1788 1789
			ret += shrink_inactive_list(nr_to_scan, zone, sc);
			if (ret >= nr_pages)
				return ret;
		}
	}

	return ret;
}

1790 1791
static unsigned long count_lru_pages(void)
{
1792
	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1793 1794
}

1795 1796 1797 1798 1799 1800 1801
/*
 * Try to free `nr_pages' of memory, system-wide, and return the number of
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
1802
 */
1803
unsigned long shrink_all_memory(unsigned long nr_pages)
L
Linus Torvalds 已提交
1804
{
1805
	unsigned long lru_pages, nr_slab;
1806
	unsigned long ret = 0;
1807 1808 1809 1810 1811 1812 1813 1814
	int pass;
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.may_swap = 0,
		.swap_cluster_max = nr_pages,
		.may_writepage = 1,
		.swappiness = vm_swappiness,
1815
		.isolate_pages = isolate_pages_global,
L
Linus Torvalds 已提交
1816 1817 1818
	};

	current->reclaim_state = &reclaim_state;
1819

1820
	lru_pages = count_lru_pages();
1821
	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1822 1823 1824 1825 1826
	/* If slab caches are huge, it's better to hit them first */
	while (nr_slab >= lru_pages) {
		reclaim_state.reclaimed_slab = 0;
		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
		if (!reclaim_state.reclaimed_slab)
L
Linus Torvalds 已提交
1827
			break;
1828 1829 1830 1831 1832 1833

		ret += reclaim_state.reclaimed_slab;
		if (ret >= nr_pages)
			goto out;

		nr_slab -= reclaim_state.reclaimed_slab;
L
Linus Torvalds 已提交
1834
	}
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

	/*
	 * We try to shrink LRUs in 5 passes:
	 * 0 = Reclaim from inactive_list only
	 * 1 = Reclaim from active list but don't reclaim mapped
	 * 2 = 2nd pass of type 1
	 * 3 = Reclaim mapped (normal reclaim)
	 * 4 = 2nd pass of type 3
	 */
	for (pass = 0; pass < 5; pass++) {
		int prio;

		/* Force reclaiming mapped pages in the passes #3 and #4 */
		if (pass > 2) {
			sc.may_swap = 1;
			sc.swappiness = 100;
		}

		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
			unsigned long nr_to_scan = nr_pages - ret;

			sc.nr_scanned = 0;
			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
			if (ret >= nr_pages)
				goto out;

			reclaim_state.reclaimed_slab = 0;
1862 1863
			shrink_slab(sc.nr_scanned, sc.gfp_mask,
					count_lru_pages());
1864 1865 1866 1867 1868
			ret += reclaim_state.reclaimed_slab;
			if (ret >= nr_pages)
				goto out;

			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1869
				congestion_wait(WRITE, HZ / 10);
1870
		}
1871
	}
1872 1873 1874 1875 1876

	/*
	 * If ret = 0, we could not shrink LRUs, but there may be something
	 * in slab caches
	 */
1877
	if (!ret) {
1878 1879
		do {
			reclaim_state.reclaimed_slab = 0;
1880
			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1881 1882
			ret += reclaim_state.reclaimed_slab;
		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1883
	}
1884 1885

out:
L
Linus Torvalds 已提交
1886
	current->reclaim_state = NULL;
1887

L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895
	return ret;
}
#endif

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
1896
static int __devinit cpu_callback(struct notifier_block *nfb,
1897
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1898 1899 1900
{
	pg_data_t *pgdat;
	cpumask_t mask;
1901
	int nid;
L
Linus Torvalds 已提交
1902

1903
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1904 1905
		for_each_node_state(nid, N_HIGH_MEMORY) {
			pgdat = NODE_DATA(nid);
L
Linus Torvalds 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914
			mask = node_to_cpumask(pgdat->node_id);
			if (any_online_cpu(mask) != NR_CPUS)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed(pgdat->kswapd, mask);
		}
	}
	return NOTIFY_OK;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

L
Linus Torvalds 已提交
1937 1938
static int __init kswapd_init(void)
{
1939
	int nid;
1940

L
Linus Torvalds 已提交
1941
	swap_setup();
1942
	for_each_node_state(nid, N_HIGH_MEMORY)
1943
 		kswapd_run(nid);
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

1959 1960 1961 1962 1963
#define RECLAIM_OFF 0
#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

1964 1965 1966 1967 1968 1969 1970
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

1971 1972 1973 1974 1975 1976
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

1977 1978 1979 1980 1981 1982
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

1983 1984 1985
/*
 * Try to free up some pages from this zone through reclaim.
 */
1986
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1987
{
1988
	/* Minimum pages needed in order to stay on node */
1989
	const unsigned long nr_pages = 1 << order;
1990 1991
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
1992
	int priority;
1993
	unsigned long nr_reclaimed = 0;
1994 1995 1996
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1997 1998
		.swap_cluster_max = max_t(unsigned long, nr_pages,
					SWAP_CLUSTER_MAX),
1999
		.gfp_mask = gfp_mask,
2000
		.swappiness = vm_swappiness,
2001
		.isolate_pages = isolate_pages_global,
2002
	};
2003
	unsigned long slab_reclaimable;
2004 2005 2006

	disable_swap_token();
	cond_resched();
2007 2008 2009 2010 2011 2012
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2013 2014
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024
	if (zone_page_state(zone, NR_FILE_PAGES) -
		zone_page_state(zone, NR_FILE_MAPPED) >
		zone->min_unmapped_pages) {
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2025
			note_zone_scanning_priority(zone, priority);
2026 2027 2028 2029
			nr_reclaimed += shrink_zone(priority, zone, &sc);
			priority--;
		} while (priority >= 0 && nr_reclaimed < nr_pages);
	}
2030

2031 2032
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2033
		/*
2034
		 * shrink_slab() does not currently allow us to determine how
2035 2036 2037 2038
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2039
		 *
2040 2041
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2042
		 */
2043
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2044 2045
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2046
			;
2047 2048 2049 2050 2051 2052 2053

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
		nr_reclaimed += slab_reclaimable -
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2054 2055
	}

2056
	p->reclaim_state = NULL;
2057
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2058
	return nr_reclaimed >= nr_pages;
2059
}
2060 2061 2062 2063

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2064
	int ret;
2065 2066

	/*
2067 2068
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2069
	 *
2070 2071 2072 2073 2074
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2075
	 */
2076
	if (zone_page_state(zone, NR_FILE_PAGES) -
2077 2078 2079
	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
			<= zone->min_slab_pages)
2080
		return 0;
2081

2082 2083 2084
	if (zone_is_all_unreclaimable(zone))
		return 0;

2085
	/*
2086
	 * Do not scan if the allocation should not be delayed.
2087
	 */
2088
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2089 2090 2091 2092 2093 2094 2095 2096
			return 0;

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2097
	node_id = zone_to_nid(zone);
2098
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2099
		return 0;
2100 2101 2102 2103 2104 2105 2106

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
		return 0;
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

	return ret;
2107
}
2108
#endif