edma.c 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29

30
#include <linux/platform_data/edma.h>
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * This will go away when the private EDMA API is folded
 * into this driver and the platform device(s) are
 * instantiated in the arch code. We can only get away
 * with this simplification because DA8XX may not be built
 * in the same kernel image with other DaVinci parts. This
 * avoids having to sprinkle dmaengine driver platform devices
 * and data throughout all the existing board files.
 */
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#define EDMA_CTLRS	2
#define EDMA_CHANS	32
#else
#define EDMA_CTLRS	1
#define EDMA_CHANS	64
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */

52 53 54 55 56 57 58 59
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
60 61 62
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

63
struct edma_pset {
64 65
	u32				len;
	dma_addr_t			addr;
66 67 68
	struct edmacc_param		param;
};

69 70 71
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
72
	enum dma_transfer_direction	direction;
73
	int				cyclic;
74 75
	int				absync;
	int				pset_nr;
76
	struct edma_chan		*echan;
77
	int				processed;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
99 100
	int				processed_stat;
	u32				sg_len;
101
	u32				residue;
102
	u32				residue_stat;
103

104
	struct edma_pset		pset[0];
105 106 107 108 109 110 111 112 113 114 115 116
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
117
	int				missed;
118
	struct dma_slave_config		cfg;
119 120 121
};

struct edma_cc {
122
	struct edma			*cc;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	int				ctlr;
	struct dma_device		dma_slave;
	struct edma_chan		slave_chans[EDMA_CHANS];
	int				num_slave_chans;
	int				dummy_slot;
};

static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
154
	struct edma *cc = echan->ecc->cc;
155
	struct virt_dma_desc *vdesc;
156
	struct edma_desc *edesc;
157 158 159
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

160 161
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
162
		vdesc = vchan_next_desc(&echan->vchan);
163
		if (!vdesc)
164 165 166
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
167 168
	}

169
	edesc = echan->edesc;
170

171 172 173
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
174
	edesc->sg_len = 0;
175 176

	/* Write descriptor PaRAM set(s) */
177 178
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
179
		edma_write_slot(cc, echan->slot[i], &edesc->pset[j].param);
180
		edesc->sg_len += edesc->pset[j].len;
181
		dev_vdbg(echan->vchan.chan.device->dev,
182 183 184 185 186 187 188 189 190 191 192
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
193
			j, echan->ch_num, echan->slot[i],
194 195 196 197 198 199 200 201
			edesc->pset[j].param.opt,
			edesc->pset[j].param.src,
			edesc->pset[j].param.dst,
			edesc->pset[j].param.a_b_cnt,
			edesc->pset[j].param.ccnt,
			edesc->pset[j].param.src_dst_bidx,
			edesc->pset[j].param.src_dst_cidx,
			edesc->pset[j].param.link_bcntrld);
202
		/* Link to the previous slot if not the last set */
203
		if (i != (nslots - 1))
204
			edma_link(cc, echan->slot[i], echan->slot[i+1]);
205 206
	}

207 208
	edesc->processed += nslots;

209 210 211 212 213
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
214 215
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
216
			edma_link(cc, echan->slot[nslots-1], echan->slot[1]);
217
		else
218
			edma_link(cc, echan->slot[nslots-1],
219 220
				  echan->ecc->dummy_slot);
	}
221

222
	if (echan->missed) {
223 224 225 226 227
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
228
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
229 230 231 232
		edma_clean_channel(cc, echan->ch_num);
		edma_stop(cc, echan->ch_num);
		edma_start(cc, echan->ch_num);
		edma_trigger_channel(cc, echan->ch_num);
233
		echan->missed = 0;
234 235 236
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
237
		edma_start(cc, echan->ch_num);
238 239 240
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
241
		edma_resume(cc, echan->ch_num);
242
	}
243 244
}

245
static int edma_terminate_all(struct dma_chan *chan)
246
{
247
	struct edma_chan *echan = to_edma_chan(chan);
248 249 250 251 252 253 254 255 256 257 258
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
259
		edma_stop(echan->ecc->cc, echan->ch_num);
260 261
		/* Move the cyclic channel back to default queue */
		if (echan->edesc->cyclic)
262 263
			edma_assign_channel_eventq(echan->ecc->cc,
						   echan->ch_num,
264
						   EVENTQ_DEFAULT);
265 266 267 268 269
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
270 271 272 273 274 275 276 277 278 279
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

280
static int edma_slave_config(struct dma_chan *chan,
281
	struct dma_slave_config *cfg)
282
{
283 284
	struct edma_chan *echan = to_edma_chan(chan);

285 286
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
287 288
		return -EINVAL;

289
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
290 291 292 293

	return 0;
}

294
static int edma_dma_pause(struct dma_chan *chan)
295
{
296 297
	struct edma_chan *echan = to_edma_chan(chan);

298
	if (!echan->edesc)
299 300
		return -EINVAL;

301
	edma_pause(echan->ecc->cc, echan->ch_num);
302 303 304
	return 0;
}

305
static int edma_dma_resume(struct dma_chan *chan)
306
{
307 308
	struct edma_chan *echan = to_edma_chan(chan);

309
	edma_resume(echan->ecc->cc, echan->ch_num);
310 311 312
	return 0;
}

313 314 315 316 317 318 319 320 321 322 323
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
324
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
325 326 327 328 329 330
	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
	enum dma_slave_buswidth dev_width, unsigned int dma_length,
	enum dma_transfer_direction direction)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
331
	struct edmacc_param *param = &epset->param;
332 333 334 335 336
	int acnt, bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	acnt = dev_width;
337 338 339 340

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

391 392
	epset->len = dma_length;

393 394 395 396 397
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
398
		epset->addr = src_addr;
399 400 401 402 403
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
404
		epset->addr = dst_addr;
405 406 407 408 409
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
410 411 412 413 414
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

415
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
416 417
	/* Configure A or AB synchronized transfers */
	if (absync)
418
		param->opt |= SYNCDIM;
419

420 421
	param->src = src_addr;
	param->dst = dst_addr;
422

423 424
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
425

426 427
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
428 429 430 431 432 433
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
434
	param->link_bcntrld = 0xffffffff;
435 436 437
	return absync;
}

438 439 440 441 442 443 444 445
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
446
	dma_addr_t src_addr = 0, dst_addr = 0;
447 448
	enum dma_slave_buswidth dev_width;
	u32 burst;
449
	struct scatterlist *sg;
450
	int i, nslots, ret;
451 452 453 454

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

455
	if (direction == DMA_DEV_TO_MEM) {
456
		src_addr = echan->cfg.src_addr;
457 458 459
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
460
		dst_addr = echan->cfg.dst_addr;
461 462 463
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
464
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
465 466 467 468
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
469
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
470 471 472 473 474 475
		return NULL;
	}

	edesc = kzalloc(sizeof(*edesc) + sg_len *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
476
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
477 478 479 480
		return NULL;
	}

	edesc->pset_nr = sg_len;
481
	edesc->residue = 0;
482
	edesc->direction = direction;
483
	edesc->echan = echan;
484

485 486 487 488
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
489 490
		if (echan->slot[i] < 0) {
			echan->slot[i] =
491
				edma_alloc_slot(echan->ecc->cc, EDMA_SLOT_ANY);
492
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
493
				kfree(edesc);
494 495
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
496 497 498
				return NULL;
			}
		}
499 500 501 502
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
503 504 505 506 507
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
508

509 510 511
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
512 513
		if (ret < 0) {
			kfree(edesc);
514
			return NULL;
515 516
		}

517
		edesc->absync = ret;
518
		edesc->residue += sg_dma_len(sg);
519 520 521 522

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
523
			edesc->pset[i].param.opt |= TCINTEN;
524

525 526
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
527
			edesc->pset[i].param.opt |= TCINTEN;
528
	}
529
	edesc->residue_stat = edesc->residue;
530 531 532 533

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

534
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);

	if (unlikely(!echan || !len))
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

	edesc->pset_nr = 1;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
	if (ret < 0)
		return NULL;

	edesc->absync = ret;

	/*
	 * Enable intermediate transfer chaining to re-trigger channel
	 * on completion of every TR, and enable transfer-completion
	 * interrupt on completion of the whole transfer.
	 */
566 567
	edesc->pset[0].param.opt |= ITCCHEN;
	edesc->pset[0].param.opt |= TCINTEN;
568 569 570 571

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

572 573 574
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
575
	unsigned long tx_flags)
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
599
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
600 601 602 603
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
604
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + nslots *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
629
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
630 631 632 633 634
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
635
	edesc->residue = edesc->residue_stat = buf_len;
636
	edesc->direction = direction;
637
	edesc->echan = echan;
638

639 640
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
641 642 643 644 645

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
646
				edma_alloc_slot(echan->ecc->cc, EDMA_SLOT_ANY);
647
			if (echan->slot[i] < 0) {
648
				kfree(edesc);
649 650
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
651 652 653 654 655 656 657 658 659 660 661 662 663
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
664 665
		if (ret < 0) {
			kfree(edesc);
666
			return NULL;
667
		}
668

669 670 671 672
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
673

674 675
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
676 677 678 679 680 681 682 683 684 685 686 687
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
688 689 690 691 692 693 694 695
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
696 697 698 699

		edesc->absync = ret;

		/*
700
		 * Enable period interrupt only if it is requested
701
		 */
702 703
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
704 705
	}

706
	/* Place the cyclic channel to highest priority queue */
707
	edma_assign_channel_eventq(echan->ecc->cc, echan->ch_num, EVENTQ_0);
708

709 710 711 712 713 714
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
	struct edma_chan *echan = data;
715
	struct edma *cc = echan->ecc->cc;
716 717
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;
718
	struct edmacc_param p;
719

720 721
	edesc = echan->edesc;

722
	spin_lock(&echan->vchan.lock);
723
	switch (ch_status) {
724
	case EDMA_DMA_COMPLETE:
725
		if (edesc) {
726 727
			if (edesc->cyclic) {
				vchan_cyclic_callback(&edesc->vdesc);
728
				goto out;
729
			} else if (edesc->processed == edesc->pset_nr) {
730
				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
731
				edesc->residue = 0;
732
				edma_stop(cc, echan->ch_num);
733
				vchan_cookie_complete(&edesc->vdesc);
734
				echan->edesc = NULL;
735 736
			} else {
				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
737

738
				edma_pause(cc, echan->ch_num);
739

740 741 742 743
				/* Update statistics for tx_status */
				edesc->residue -= edesc->sg_len;
				edesc->residue_stat = edesc->residue;
				edesc->processed_stat = edesc->processed;
744
			}
745
			edma_execute(echan);
746 747
		}
		break;
748
	case EDMA_DMA_CC_ERROR:
749
		edma_read_slot(cc, echan->slot[0], &p);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

		/*
		 * Issue later based on missed flag which will be sure
		 * to happen as:
		 * (1) we finished transmitting an intermediate slot and
		 *     edma_execute is coming up.
		 * (2) or we finished current transfer and issue will
		 *     call edma_execute.
		 *
		 * Important note: issuing can be dangerous here and
		 * lead to some nasty recursion when we are in a NULL
		 * slot. So we avoid doing so and set the missed flag.
		 */
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
			echan->missed = 1;
		} else {
			/*
			 * The slot is already programmed but the event got
			 * missed, so its safe to issue it here.
			 */
			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
772 773 774 775
			edma_clean_channel(cc, echan->ch_num);
			edma_stop(cc, echan->ch_num);
			edma_start(cc, echan->ch_num);
			edma_trigger_channel(cc, echan->ch_num);
776
		}
777 778 779 780
		break;
	default:
		break;
	}
781 782
out:
	spin_unlock(&echan->vchan.lock);
783 784 785 786 787 788 789 790 791 792 793
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;
	int a_ch_num;
	LIST_HEAD(descs);

794 795
	a_ch_num = edma_alloc_channel(echan->ecc->cc, echan->ch_num,
				      edma_callback, echan, EVENTQ_DEFAULT);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	if (a_ch_num < 0) {
		ret = -ENODEV;
		goto err_no_chan;
	}

	if (a_ch_num != echan->ch_num) {
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
			EDMA_CTLR(echan->ch_num),
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = -ENODEV;
		goto err_wrong_chan;
	}

	echan->alloced = true;
	echan->slot[0] = echan->ch_num;

813
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
814
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
815 816 817 818

	return 0;

err_wrong_chan:
819
	edma_free_channel(echan->ecc->cc, a_ch_num);
820 821 822 823 824 825 826 827 828 829 830 831
err_no_chan:
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int i;

	/* Terminate transfers */
832
	edma_stop(echan->ecc->cc, echan->ch_num);
833 834 835 836 837 838

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
839
			edma_free_slot(echan->ecc->cc, echan->slot[i]);
840 841 842 843 844 845
			echan->slot[i] = -1;
		}
	}

	/* Free EDMA channel */
	if (echan->alloced) {
846
		edma_free_channel(echan->ecc->cc, echan->ch_num);
847 848 849
		echan->alloced = false;
	}

850
	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

865 866 867 868 869 870 871 872 873 874 875
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
876 877
	pos = edma_get_position(edesc->echan->ecc->cc, edesc->echan->slot[0],
				dst);
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

914 915 916 917 918 919 920 921 922 923 924
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
925
	if (ret == DMA_COMPLETE || !txstate)
926 927 928
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
929
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
930
		txstate->residue = edma_residue(echan->edesc);
931 932
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

static void __init edma_chan_init(struct edma_cc *ecc,
				  struct dma_device *dma,
				  struct edma_chan *echans)
{
	int i, j;

	for (i = 0; i < EDMA_CHANS; i++) {
		struct edma_chan *echan = &echans[i];
		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

958 959
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
960
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
961 962
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

963 964 965 966
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
967
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
968
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
969 970 971 972
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
973 974 975 976
	dma->device_config = edma_slave_config;
	dma->device_pause = edma_dma_pause;
	dma->device_resume = edma_dma_resume;
	dma->device_terminate_all = edma_terminate_all;
977 978 979 980 981 982

	dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

983 984
	dma->dev = dev;

985 986 987 988
	/*
	 * code using dma memcpy must make sure alignment of
	 * length is at dma->copy_align boundary.
	 */
989
	dma->copy_align = DMAENGINE_ALIGN_4_BYTES;
990

991 992 993
	INIT_LIST_HEAD(&dma->channels);
}

994 995 996 997
static struct of_dma_filter_info edma_filter_info = {
	.filter_fn = edma_filter_fn,
};

B
Bill Pemberton 已提交
998
static int edma_probe(struct platform_device *pdev)
999 1000
{
	struct edma_cc *ecc;
1001
	struct device_node *parent_node = pdev->dev.parent->of_node;
1002 1003
	int ret;

1004 1005 1006 1007
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1008 1009 1010 1011 1012 1013
	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
	if (!ecc) {
		dev_err(&pdev->dev, "Can't allocate controller\n");
		return -ENOMEM;
	}

1014 1015 1016 1017
	ecc->cc = edma_get_data(pdev->dev.parent);
	if (!ecc->cc)
		return -ENODEV;

1018
	ecc->ctlr = pdev->id;
1019
	ecc->dummy_slot = edma_alloc_slot(ecc->cc, EDMA_SLOT_ANY);
1020 1021
	if (ecc->dummy_slot < 0) {
		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1022
		return ecc->dummy_slot;
1023 1024 1025 1026
	}

	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1027
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1028
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

	platform_set_drvdata(pdev, ecc);

1040 1041 1042 1043 1044 1045 1046
	if (parent_node) {
		dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
		dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap);
		of_dma_controller_register(parent_node, of_dma_simple_xlate,
					   &edma_filter_info);
	}

1047 1048 1049 1050 1051
	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");

	return 0;

err_reg1:
1052
	edma_free_slot(ecc->cc, ecc->dummy_slot);
1053 1054 1055
	return ret;
}

1056
static int edma_remove(struct platform_device *pdev)
1057 1058 1059
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);
1060
	struct device_node *parent_node = pdev->dev.parent->of_node;
1061

1062 1063
	if (parent_node)
		of_dma_controller_free(parent_node);
1064
	dma_async_device_unregister(&ecc->dma_slave);
1065
	edma_free_slot(ecc->cc, ecc->dummy_slot);
1066 1067 1068 1069 1070 1071

	return 0;
}

static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
1072
	.remove		= edma_remove,
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	.driver = {
		.name = "edma-dma-engine",
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
1091
	return platform_driver_register(&edma_driver);
1092 1093 1094 1095 1096 1097 1098 1099 1100
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
1101
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1102 1103
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");