writeback.c 21.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
K
Kent Overstreet 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 * background writeback - scan btree for dirty data and write it to the backing
 * device
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
13
#include "writeback.h"
K
Kent Overstreet 已提交
14

15 16
#include <linux/delay.h>
#include <linux/kthread.h>
17
#include <linux/sched/clock.h>
K
Kent Overstreet 已提交
18 19
#include <trace/events/bcache.h>

K
Kent Overstreet 已提交
20
/* Rate limiting */
21
static uint64_t __calc_target_rate(struct cached_dev *dc)
K
Kent Overstreet 已提交
22 23
{
	struct cache_set *c = dc->disk.c;
24 25 26 27 28

	/*
	 * This is the size of the cache, minus the amount used for
	 * flash-only devices
	 */
29
	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30
				atomic_long_read(&c->flash_dev_dirty_sectors);
31 32 33 34 35 36 37 38 39 40 41

	/*
	 * Unfortunately there is no control of global dirty data.  If the
	 * user states that they want 10% dirty data in the cache, and has,
	 * e.g., 5 backing volumes of equal size, we try and ensure each
	 * backing volume uses about 2% of the cache for dirty data.
	 */
	uint32_t bdev_share =
		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
				c->cached_dev_sectors);

K
Kent Overstreet 已提交
42 43 44
	uint64_t cache_dirty_target =
		div_u64(cache_sectors * dc->writeback_percent, 100);

45 46 47 48 49 50 51 52 53
	/* Ensure each backing dev gets at least one dirty share */
	if (bdev_share < 1)
		bdev_share = 1;

	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
}

static void __update_writeback_rate(struct cached_dev *dc)
{
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
	/*
	 * PI controller:
	 * Figures out the amount that should be written per second.
	 *
	 * First, the error (number of sectors that are dirty beyond our
	 * target) is calculated.  The error is accumulated (numerically
	 * integrated).
	 *
	 * Then, the proportional value and integral value are scaled
	 * based on configured values.  These are stored as inverses to
	 * avoid fixed point math and to make configuration easy-- e.g.
	 * the default value of 40 for writeback_rate_p_term_inverse
	 * attempts to write at a rate that would retire all the dirty
	 * blocks in 40 seconds.
	 *
	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
	 * of the error is accumulated in the integral term per second.
	 * This acts as a slow, long-term average that is not subject to
	 * variations in usage like the p term.
	 */
74
	int64_t target = __calc_target_rate(dc);
75
	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 77 78
	int64_t error = dirty - target;
	int64_t proportional_scaled =
		div_s64(error, dc->writeback_rate_p_term_inverse);
79 80
	int64_t integral_scaled;
	uint32_t new_rate;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

	if ((error < 0 && dc->writeback_rate_integral > 0) ||
	    (error > 0 && time_before64(local_clock(),
			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
		/*
		 * Only decrease the integral term if it's more than
		 * zero.  Only increase the integral term if the device
		 * is keeping up.  (Don't wind up the integral
		 * ineffectively in either case).
		 *
		 * It's necessary to scale this by
		 * writeback_rate_update_seconds to keep the integral
		 * term dimensioned properly.
		 */
		dc->writeback_rate_integral += error *
			dc->writeback_rate_update_seconds;
	}
K
Kent Overstreet 已提交
98

99 100
	integral_scaled = div_s64(dc->writeback_rate_integral,
			dc->writeback_rate_i_term_inverse);
K
Kent Overstreet 已提交
101

102 103
	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
			dc->writeback_rate_minimum, NSEC_PER_SEC);
104

105 106
	dc->writeback_rate_proportional = proportional_scaled;
	dc->writeback_rate_integral_scaled = integral_scaled;
107 108 109
	dc->writeback_rate_change = new_rate -
			atomic_long_read(&dc->writeback_rate.rate);
	atomic_long_set(&dc->writeback_rate.rate, new_rate);
K
Kent Overstreet 已提交
110 111 112
	dc->writeback_rate_target = target;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static bool set_at_max_writeback_rate(struct cache_set *c,
				       struct cached_dev *dc)
{
	/*
	 * Idle_counter is increased everytime when update_writeback_rate() is
	 * called. If all backing devices attached to the same cache set have
	 * identical dc->writeback_rate_update_seconds values, it is about 6
	 * rounds of update_writeback_rate() on each backing device before
	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
	 * to each dc->writeback_rate.rate.
	 * In order to avoid extra locking cost for counting exact dirty cached
	 * devices number, c->attached_dev_nr is used to calculate the idle
	 * throushold. It might be bigger if not all cached device are in write-
	 * back mode, but it still works well with limited extra rounds of
	 * update_writeback_rate().
	 */
	if (atomic_inc_return(&c->idle_counter) <
	    atomic_read(&c->attached_dev_nr) * 6)
		return false;

	if (atomic_read(&c->at_max_writeback_rate) != 1)
		atomic_set(&c->at_max_writeback_rate, 1);

	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);

	/* keep writeback_rate_target as existing value */
	dc->writeback_rate_proportional = 0;
	dc->writeback_rate_integral_scaled = 0;
	dc->writeback_rate_change = 0;

	/*
	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
	 * new I/O arrives during before set_at_max_writeback_rate() returns.
	 * Then the writeback rate is set to 1, and its new value should be
	 * decided via __update_writeback_rate().
	 */
	if ((atomic_read(&c->idle_counter) <
	     atomic_read(&c->attached_dev_nr) * 6) ||
	    !atomic_read(&c->at_max_writeback_rate))
		return false;

	return true;
}

K
Kent Overstreet 已提交
157 158 159 160 161
static void update_writeback_rate(struct work_struct *work)
{
	struct cached_dev *dc = container_of(to_delayed_work(work),
					     struct cached_dev,
					     writeback_rate_update);
162
	struct cache_set *c = dc->disk.c;
K
Kent Overstreet 已提交
163

164 165 166 167 168 169 170 171
	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();

172 173 174 175 176 177
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
178 179 180 181 182 183
		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
		smp_mb();
		return;
	}

184 185 186 187 188 189 190 191 192 193 194 195 196
	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
		/*
		 * If the whole cache set is idle, set_at_max_writeback_rate()
		 * will set writeback rate to a max number. Then it is
		 * unncessary to update writeback rate for an idle cache set
		 * in maximum writeback rate number(s).
		 */
		if (!set_at_max_writeback_rate(c, dc)) {
			down_read(&dc->writeback_lock);
			__update_writeback_rate(dc);
			up_read(&dc->writeback_lock);
		}
	}
K
Kent Overstreet 已提交
197

198

199 200 201 202 203 204
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
205
		schedule_delayed_work(&dc->writeback_rate_update,
206
			      dc->writeback_rate_update_seconds * HZ);
207 208 209 210 211 212 213 214 215
	}

	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();
K
Kent Overstreet 已提交
216 217
}

218 219
static unsigned int writeback_delay(struct cached_dev *dc,
				    unsigned int sectors)
K
Kent Overstreet 已提交
220
{
221
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
K
Kent Overstreet 已提交
222 223 224
	    !dc->writeback_percent)
		return 0;

225
	return bch_next_delay(&dc->writeback_rate, sectors);
K
Kent Overstreet 已提交
226 227
}

228 229 230
struct dirty_io {
	struct closure		cl;
	struct cached_dev	*dc;
231
	uint16_t		sequence;
232 233
	struct bio		bio;
};
K
Kent Overstreet 已提交
234

K
Kent Overstreet 已提交
235 236 237 238 239
static void dirty_init(struct keybuf_key *w)
{
	struct dirty_io *io = w->private;
	struct bio *bio = &io->bio;

240 241
	bio_init(bio, bio->bi_inline_vecs,
		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
K
Kent Overstreet 已提交
242 243 244
	if (!io->dc->writeback_percent)
		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));

245
	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
K
Kent Overstreet 已提交
246
	bio->bi_private		= w;
247
	bch_bio_map(bio, NULL);
K
Kent Overstreet 已提交
248 249 250 251 252
}

static void dirty_io_destructor(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
253

K
Kent Overstreet 已提交
254 255 256 257 258 259 260 261 262
	kfree(io);
}

static void write_dirty_finish(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
	struct cached_dev *dc = io->dc;

263
	bio_free_pages(&io->bio);
K
Kent Overstreet 已提交
264 265 266

	/* This is kind of a dumb way of signalling errors. */
	if (KEY_DIRTY(&w->key)) {
267
		int ret;
268
		unsigned int i;
269 270 271
		struct keylist keys;

		bch_keylist_init(&keys);
K
Kent Overstreet 已提交
272

K
Kent Overstreet 已提交
273 274 275
		bkey_copy(keys.top, &w->key);
		SET_KEY_DIRTY(keys.top, false);
		bch_keylist_push(&keys);
K
Kent Overstreet 已提交
276 277 278 279

		for (i = 0; i < KEY_PTRS(&w->key); i++)
			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);

280
		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
K
Kent Overstreet 已提交
281

282
		if (ret)
K
Kent Overstreet 已提交
283 284
			trace_bcache_writeback_collision(&w->key);

285
		atomic_long_inc(ret
K
Kent Overstreet 已提交
286 287 288 289 290
				? &dc->disk.c->writeback_keys_failed
				: &dc->disk.c->writeback_keys_done);
	}

	bch_keybuf_del(&dc->writeback_keys, w);
291
	up(&dc->in_flight);
K
Kent Overstreet 已提交
292 293 294 295

	closure_return_with_destructor(cl, dirty_io_destructor);
}

296
static void dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
297 298 299 300
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

301
	if (bio->bi_status) {
K
Kent Overstreet 已提交
302
		SET_KEY_DIRTY(&w->key, false);
303 304
		bch_count_backing_io_errors(io->dc, bio);
	}
K
Kent Overstreet 已提交
305 306 307 308 309 310 311 312

	closure_put(&io->cl);
}

static void write_dirty(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	struct cached_dev *dc = io->dc;

	uint16_t next_sequence;

	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
		/* Not our turn to write; wait for a write to complete */
		closure_wait(&dc->writeback_ordering_wait, cl);

		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
			/*
			 * Edge case-- it happened in indeterminate order
			 * relative to when we were added to wait list..
			 */
			closure_wake_up(&dc->writeback_ordering_wait);
		}

		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
		return;
	}

	next_sequence = io->sequence + 1;
K
Kent Overstreet 已提交
334

335 336 337 338 339 340 341 342 343 344 345 346
	/*
	 * IO errors are signalled using the dirty bit on the key.
	 * If we failed to read, we should not attempt to write to the
	 * backing device.  Instead, immediately go to write_dirty_finish
	 * to clean up.
	 */
	if (KEY_DIRTY(&w->key)) {
		dirty_init(w);
		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
		bio_set_dev(&io->bio, io->dc->bdev);
		io->bio.bi_end_io	= dirty_endio;
K
Kent Overstreet 已提交
347

348
		/* I/O request sent to backing device */
349
		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
350
	}
K
Kent Overstreet 已提交
351

352 353 354
	atomic_set(&dc->writeback_sequence_next, next_sequence);
	closure_wake_up(&dc->writeback_ordering_wait);

355
	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
356 357
}

358
static void read_dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
359 360 361 362
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

363
	/* is_read = 1 */
K
Kent Overstreet 已提交
364
	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
365 366
			    bio->bi_status, 1,
			    "reading dirty data from cache");
K
Kent Overstreet 已提交
367

368
	dirty_endio(bio);
K
Kent Overstreet 已提交
369 370 371 372 373 374
}

static void read_dirty_submit(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);

375
	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
K
Kent Overstreet 已提交
376

377
	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
378 379
}

380
static void read_dirty(struct cached_dev *dc)
K
Kent Overstreet 已提交
381
{
382
	unsigned int delay = 0;
383 384 385
	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
	size_t size;
	int nk, i;
K
Kent Overstreet 已提交
386
	struct dirty_io *io;
387
	struct closure cl;
388
	uint16_t sequence = 0;
389

390 391
	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
	atomic_set(&dc->writeback_sequence_next, sequence);
392
	closure_init_stack(&cl);
K
Kent Overstreet 已提交
393 394 395 396 397 398

	/*
	 * XXX: if we error, background writeback just spins. Should use some
	 * mempools.
	 */

399 400
	next = bch_keybuf_next(&dc->writeback_keys);

401 402 403
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
	       next) {
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		size = 0;
		nk = 0;

		do {
			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));

			/*
			 * Don't combine too many operations, even if they
			 * are all small.
			 */
			if (nk >= MAX_WRITEBACKS_IN_PASS)
				break;

			/*
			 * If the current operation is very large, don't
			 * further combine operations.
			 */
			if (size >= MAX_WRITESIZE_IN_PASS)
				break;

			/*
			 * Operations are only eligible to be combined
			 * if they are contiguous.
			 *
			 * TODO: add a heuristic willing to fire a
			 * certain amount of non-contiguous IO per pass,
			 * so that we can benefit from backing device
			 * command queueing.
			 */
			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
						&START_KEY(&next->key)))
				break;

			size += KEY_SIZE(&next->key);
			keys[nk++] = next;
		} while ((next = bch_keybuf_next(&dc->writeback_keys)));

		/* Now we have gathered a set of 1..5 keys to write back. */
		for (i = 0; i < nk; i++) {
			w = keys[i];

			io = kzalloc(sizeof(struct dirty_io) +
				     sizeof(struct bio_vec) *
447 448
				     DIV_ROUND_UP(KEY_SIZE(&w->key),
						  PAGE_SECTORS),
449 450 451 452 453 454
				     GFP_KERNEL);
			if (!io)
				goto err;

			w->private	= io;
			io->dc		= dc;
455
			io->sequence    = sequence++;
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

			dirty_init(w);
			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
			bio_set_dev(&io->bio,
				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
			io->bio.bi_end_io	= read_dirty_endio;

			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
				goto err_free;

			trace_bcache_writeback(&w->key);

			down(&dc->in_flight);

C
Coly Li 已提交
471 472
			/*
			 * We've acquired a semaphore for the maximum
473 474 475 476 477 478 479 480
			 * simultaneous number of writebacks; from here
			 * everything happens asynchronously.
			 */
			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
		}

		delay = writeback_delay(dc, size);

481 482 483
		while (!kthread_should_stop() &&
		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
		       delay) {
484 485 486
			schedule_timeout_interruptible(delay);
			delay = writeback_delay(dc, 0);
		}
K
Kent Overstreet 已提交
487 488 489 490 491 492 493 494 495
	}

	if (0) {
err_free:
		kfree(w->private);
err:
		bch_keybuf_del(&dc->writeback_keys, w);
	}

496 497 498 499
	/*
	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
	 * freed) before refilling again
	 */
500 501 502 503 504
	closure_sync(&cl);
}

/* Scan for dirty data */

505
void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
506 507 508
				  uint64_t offset, int nr_sectors)
{
	struct bcache_device *d = c->devices[inode];
509
	unsigned int stripe_offset, stripe, sectors_dirty;
510 511 512 513

	if (!d)
		return;

514 515 516
	if (UUID_FLASH_ONLY(&c->uuids[inode]))
		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);

517
	stripe = offset_to_stripe(d, offset);
518 519 520
	stripe_offset = offset & (d->stripe_size - 1);

	while (nr_sectors) {
521
		int s = min_t(unsigned int, abs(nr_sectors),
522 523 524 525 526
			      d->stripe_size - stripe_offset);

		if (nr_sectors < 0)
			s = -s;

527 528 529 530 531 532 533 534 535 536
		if (stripe >= d->nr_stripes)
			return;

		sectors_dirty = atomic_add_return(s,
					d->stripe_sectors_dirty + stripe);
		if (sectors_dirty == d->stripe_size)
			set_bit(stripe, d->full_dirty_stripes);
		else
			clear_bit(stripe, d->full_dirty_stripes);

537 538 539 540 541 542 543 544
		nr_sectors -= s;
		stripe_offset = 0;
		stripe++;
	}
}

static bool dirty_pred(struct keybuf *buf, struct bkey *k)
{
545 546 547
	struct cached_dev *dc = container_of(buf,
					     struct cached_dev,
					     writeback_keys);
548 549 550

	BUG_ON(KEY_INODE(k) != dc->disk.id);

551 552 553
	return KEY_DIRTY(k);
}

554
static void refill_full_stripes(struct cached_dev *dc)
555
{
556
	struct keybuf *buf = &dc->writeback_keys;
557
	unsigned int start_stripe, stripe, next_stripe;
558 559 560
	bool wrapped = false;

	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
561

562 563
	if (stripe >= dc->disk.nr_stripes)
		stripe = 0;
564

565
	start_stripe = stripe;
566 567

	while (1) {
568 569
		stripe = find_next_bit(dc->disk.full_dirty_stripes,
				       dc->disk.nr_stripes, stripe);
570

571 572
		if (stripe == dc->disk.nr_stripes)
			goto next;
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
						 dc->disk.nr_stripes, stripe);

		buf->last_scanned = KEY(dc->disk.id,
					stripe * dc->disk.stripe_size, 0);

		bch_refill_keybuf(dc->disk.c, buf,
				  &KEY(dc->disk.id,
				       next_stripe * dc->disk.stripe_size, 0),
				  dirty_pred);

		if (array_freelist_empty(&buf->freelist))
			return;

		stripe = next_stripe;
next:
		if (wrapped && stripe > start_stripe)
			return;

		if (stripe == dc->disk.nr_stripes) {
			stripe = 0;
			wrapped = true;
		}
597 598 599
	}
}

600 601 602
/*
 * Returns true if we scanned the entire disk
 */
603 604 605
static bool refill_dirty(struct cached_dev *dc)
{
	struct keybuf *buf = &dc->writeback_keys;
606
	struct bkey start = KEY(dc->disk.id, 0, 0);
607
	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
608 609 610 611 612 613 614 615 616 617
	struct bkey start_pos;

	/*
	 * make sure keybuf pos is inside the range for this disk - at bringup
	 * we might not be attached yet so this disk's inode nr isn't
	 * initialized then
	 */
	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
	    bkey_cmp(&buf->last_scanned, &end) > 0)
		buf->last_scanned = start;
618 619 620 621 622 623

	if (dc->partial_stripes_expensive) {
		refill_full_stripes(dc);
		if (array_freelist_empty(&buf->freelist))
			return false;
	}
624

625
	start_pos = buf->last_scanned;
626
	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
627

628 629 630 631 632 633 634 635 636 637 638
	if (bkey_cmp(&buf->last_scanned, &end) < 0)
		return false;

	/*
	 * If we get to the end start scanning again from the beginning, and
	 * only scan up to where we initially started scanning from:
	 */
	buf->last_scanned = start;
	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);

	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
639 640 641 642 643
}

static int bch_writeback_thread(void *arg)
{
	struct cached_dev *dc = arg;
644
	struct cache_set *c = dc->disk.c;
645 646
	bool searched_full_index;

647 648
	bch_ratelimit_reset(&dc->writeback_rate);

649 650
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
651
		down_write(&dc->writeback_lock);
652
		set_current_state(TASK_INTERRUPTIBLE);
653 654 655 656 657 658 659 660 661
		/*
		 * If the bache device is detaching, skip here and continue
		 * to perform writeback. Otherwise, if no dirty data on cache,
		 * or there is dirty data on cache but writeback is disabled,
		 * the writeback thread should sleep here and wait for others
		 * to wake up it.
		 */
		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
662 663
			up_write(&dc->writeback_lock);

664 665
			if (kthread_should_stop() ||
			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
666
				set_current_state(TASK_RUNNING);
667
				break;
668
			}
669 670 671 672

			schedule();
			continue;
		}
673
		set_current_state(TASK_RUNNING);
674 675 676 677 678 679 680 681

		searched_full_index = refill_dirty(dc);

		if (searched_full_index &&
		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
			atomic_set(&dc->has_dirty, 0);
			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
			bch_write_bdev_super(dc, NULL);
682 683 684 685 686 687 688 689
			/*
			 * If bcache device is detaching via sysfs interface,
			 * writeback thread should stop after there is no dirty
			 * data on cache. BCACHE_DEV_DETACHING flag is set in
			 * bch_cached_dev_detach().
			 */
			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
				break;
690 691 692 693 694 695 696
		}

		up_write(&dc->writeback_lock);

		read_dirty(dc);

		if (searched_full_index) {
697
			unsigned int delay = dc->writeback_delay * HZ;
698 699 700

			while (delay &&
			       !kthread_should_stop() &&
701
			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
702
			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
703
				delay = schedule_timeout_interruptible(delay);
704 705

			bch_ratelimit_reset(&dc->writeback_rate);
706 707 708
		}
	}

709
	cached_dev_put(dc);
710
	wait_for_kthread_stop();
711

712
	return 0;
K
Kent Overstreet 已提交
713 714
}

715
/* Init */
716 717
#define INIT_KEYS_EACH_TIME	500000
#define INIT_KEYS_SLEEP_MS	100
718

K
Kent Overstreet 已提交
719 720
struct sectors_dirty_init {
	struct btree_op	op;
721
	unsigned int	inode;
722 723
	size_t		count;
	struct bkey	start;
K
Kent Overstreet 已提交
724 725 726
};

static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
727
				 struct bkey *k)
728
{
K
Kent Overstreet 已提交
729 730
	struct sectors_dirty_init *op = container_of(_op,
						struct sectors_dirty_init, op);
731 732
	if (KEY_INODE(k) > op->inode)
		return MAP_DONE;
733

734 735 736 737
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
					     KEY_START(k), KEY_SIZE(k));

738 739 740 741 742 743 744
	op->count++;
	if (atomic_read(&b->c->search_inflight) &&
	    !(op->count % INIT_KEYS_EACH_TIME)) {
		bkey_copy_key(&op->start, k);
		return -EAGAIN;
	}

745
	return MAP_CONTINUE;
746 747
}

748
void bch_sectors_dirty_init(struct bcache_device *d)
749
{
K
Kent Overstreet 已提交
750
	struct sectors_dirty_init op;
751
	int ret;
752

K
Kent Overstreet 已提交
753
	bch_btree_op_init(&op.op, -1);
754
	op.inode = d->id;
755 756 757 758 759 760 761 762 763 764 765 766 767 768
	op.count = 0;
	op.start = KEY(op.inode, 0, 0);

	do {
		ret = bch_btree_map_keys(&op.op, d->c, &op.start,
					 sectors_dirty_init_fn, 0);
		if (ret == -EAGAIN)
			schedule_timeout_interruptible(
				msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
		else if (ret < 0) {
			pr_warn("sectors dirty init failed, ret=%d!", ret);
			break;
		}
	} while (ret == -EAGAIN);
769 770
}

771
void bch_cached_dev_writeback_init(struct cached_dev *dc)
K
Kent Overstreet 已提交
772
{
773
	sema_init(&dc->in_flight, 64);
K
Kent Overstreet 已提交
774
	init_rwsem(&dc->writeback_lock);
K
Kent Overstreet 已提交
775
	bch_keybuf_init(&dc->writeback_keys);
K
Kent Overstreet 已提交
776 777 778 779 780

	dc->writeback_metadata		= true;
	dc->writeback_running		= true;
	dc->writeback_percent		= 10;
	dc->writeback_delay		= 30;
781
	atomic_long_set(&dc->writeback_rate.rate, 1024);
782
	dc->writeback_rate_minimum	= 8;
K
Kent Overstreet 已提交
783

784
	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
785 786
	dc->writeback_rate_p_term_inverse = 40;
	dc->writeback_rate_i_term_inverse = 10000;
K
Kent Overstreet 已提交
787

788
	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
789 790 791 792 793
	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
}

int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
794 795 796 797 798
	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
						WQ_MEM_RECLAIM, 0);
	if (!dc->writeback_write_wq)
		return -ENOMEM;

799
	cached_dev_get(dc);
800 801
	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
					      "bcache_writeback");
802 803
	if (IS_ERR(dc->writeback_thread)) {
		cached_dev_put(dc);
804
		return PTR_ERR(dc->writeback_thread);
805
	}
806

807
	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
K
Kent Overstreet 已提交
808 809 810
	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);

811 812
	bch_writeback_queue(dc);

K
Kent Overstreet 已提交
813 814
	return 0;
}