writeback.c 19.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
K
Kent Overstreet 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 * background writeback - scan btree for dirty data and write it to the backing
 * device
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
13
#include "writeback.h"
K
Kent Overstreet 已提交
14

15 16
#include <linux/delay.h>
#include <linux/kthread.h>
17
#include <linux/sched/clock.h>
K
Kent Overstreet 已提交
18 19
#include <trace/events/bcache.h>

K
Kent Overstreet 已提交
20
/* Rate limiting */
21
static uint64_t __calc_target_rate(struct cached_dev *dc)
K
Kent Overstreet 已提交
22 23
{
	struct cache_set *c = dc->disk.c;
24 25 26 27 28

	/*
	 * This is the size of the cache, minus the amount used for
	 * flash-only devices
	 */
29 30
	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
				bcache_flash_devs_sectors_dirty(c);
31 32 33 34 35 36 37 38 39 40 41

	/*
	 * Unfortunately there is no control of global dirty data.  If the
	 * user states that they want 10% dirty data in the cache, and has,
	 * e.g., 5 backing volumes of equal size, we try and ensure each
	 * backing volume uses about 2% of the cache for dirty data.
	 */
	uint32_t bdev_share =
		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
				c->cached_dev_sectors);

K
Kent Overstreet 已提交
42 43 44
	uint64_t cache_dirty_target =
		div_u64(cache_sectors * dc->writeback_percent, 100);

45 46 47 48 49 50 51 52 53
	/* Ensure each backing dev gets at least one dirty share */
	if (bdev_share < 1)
		bdev_share = 1;

	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
}

static void __update_writeback_rate(struct cached_dev *dc)
{
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
	/*
	 * PI controller:
	 * Figures out the amount that should be written per second.
	 *
	 * First, the error (number of sectors that are dirty beyond our
	 * target) is calculated.  The error is accumulated (numerically
	 * integrated).
	 *
	 * Then, the proportional value and integral value are scaled
	 * based on configured values.  These are stored as inverses to
	 * avoid fixed point math and to make configuration easy-- e.g.
	 * the default value of 40 for writeback_rate_p_term_inverse
	 * attempts to write at a rate that would retire all the dirty
	 * blocks in 40 seconds.
	 *
	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
	 * of the error is accumulated in the integral term per second.
	 * This acts as a slow, long-term average that is not subject to
	 * variations in usage like the p term.
	 */
74
	int64_t target = __calc_target_rate(dc);
75
	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 77 78
	int64_t error = dirty - target;
	int64_t proportional_scaled =
		div_s64(error, dc->writeback_rate_p_term_inverse);
79 80
	int64_t integral_scaled;
	uint32_t new_rate;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

	if ((error < 0 && dc->writeback_rate_integral > 0) ||
	    (error > 0 && time_before64(local_clock(),
			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
		/*
		 * Only decrease the integral term if it's more than
		 * zero.  Only increase the integral term if the device
		 * is keeping up.  (Don't wind up the integral
		 * ineffectively in either case).
		 *
		 * It's necessary to scale this by
		 * writeback_rate_update_seconds to keep the integral
		 * term dimensioned properly.
		 */
		dc->writeback_rate_integral += error *
			dc->writeback_rate_update_seconds;
	}
K
Kent Overstreet 已提交
98

99 100
	integral_scaled = div_s64(dc->writeback_rate_integral,
			dc->writeback_rate_i_term_inverse);
K
Kent Overstreet 已提交
101

102 103
	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
			dc->writeback_rate_minimum, NSEC_PER_SEC);
104

105 106 107 108
	dc->writeback_rate_proportional = proportional_scaled;
	dc->writeback_rate_integral_scaled = integral_scaled;
	dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
	dc->writeback_rate.rate = new_rate;
K
Kent Overstreet 已提交
109 110 111 112 113 114 115 116
	dc->writeback_rate_target = target;
}

static void update_writeback_rate(struct work_struct *work)
{
	struct cached_dev *dc = container_of(to_delayed_work(work),
					     struct cached_dev,
					     writeback_rate_update);
117
	struct cache_set *c = dc->disk.c;
K
Kent Overstreet 已提交
118

119 120 121 122 123 124 125 126
	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();

127 128 129 130 131 132
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
133 134 135 136 137 138
		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
		smp_mb();
		return;
	}

K
Kent Overstreet 已提交
139 140 141 142 143 144 145
	down_read(&dc->writeback_lock);

	if (atomic_read(&dc->has_dirty) &&
	    dc->writeback_percent)
		__update_writeback_rate(dc);

	up_read(&dc->writeback_lock);
146

147 148 149 150 151 152
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
153
		schedule_delayed_work(&dc->writeback_rate_update,
154
			      dc->writeback_rate_update_seconds * HZ);
155 156 157 158 159 160 161 162 163
	}

	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();
K
Kent Overstreet 已提交
164 165 166 167
}

static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
{
168
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
K
Kent Overstreet 已提交
169 170 171
	    !dc->writeback_percent)
		return 0;

172
	return bch_next_delay(&dc->writeback_rate, sectors);
K
Kent Overstreet 已提交
173 174
}

175 176 177
struct dirty_io {
	struct closure		cl;
	struct cached_dev	*dc;
178
	uint16_t		sequence;
179 180
	struct bio		bio;
};
K
Kent Overstreet 已提交
181

K
Kent Overstreet 已提交
182 183 184 185 186
static void dirty_init(struct keybuf_key *w)
{
	struct dirty_io *io = w->private;
	struct bio *bio = &io->bio;

187 188
	bio_init(bio, bio->bi_inline_vecs,
		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
K
Kent Overstreet 已提交
189 190 191
	if (!io->dc->writeback_percent)
		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));

192
	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
K
Kent Overstreet 已提交
193
	bio->bi_private		= w;
194
	bch_bio_map(bio, NULL);
K
Kent Overstreet 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

static void dirty_io_destructor(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	kfree(io);
}

static void write_dirty_finish(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
	struct cached_dev *dc = io->dc;

209
	bio_free_pages(&io->bio);
K
Kent Overstreet 已提交
210 211 212

	/* This is kind of a dumb way of signalling errors. */
	if (KEY_DIRTY(&w->key)) {
213
		int ret;
K
Kent Overstreet 已提交
214
		unsigned i;
215 216 217
		struct keylist keys;

		bch_keylist_init(&keys);
K
Kent Overstreet 已提交
218

K
Kent Overstreet 已提交
219 220 221
		bkey_copy(keys.top, &w->key);
		SET_KEY_DIRTY(keys.top, false);
		bch_keylist_push(&keys);
K
Kent Overstreet 已提交
222 223 224 225

		for (i = 0; i < KEY_PTRS(&w->key); i++)
			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);

226
		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
K
Kent Overstreet 已提交
227

228
		if (ret)
K
Kent Overstreet 已提交
229 230
			trace_bcache_writeback_collision(&w->key);

231
		atomic_long_inc(ret
K
Kent Overstreet 已提交
232 233 234 235 236
				? &dc->disk.c->writeback_keys_failed
				: &dc->disk.c->writeback_keys_done);
	}

	bch_keybuf_del(&dc->writeback_keys, w);
237
	up(&dc->in_flight);
K
Kent Overstreet 已提交
238 239 240 241

	closure_return_with_destructor(cl, dirty_io_destructor);
}

242
static void dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
243 244 245 246
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

247
	if (bio->bi_status)
K
Kent Overstreet 已提交
248 249 250 251 252 253 254 255 256
		SET_KEY_DIRTY(&w->key, false);

	closure_put(&io->cl);
}

static void write_dirty(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	struct cached_dev *dc = io->dc;

	uint16_t next_sequence;

	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
		/* Not our turn to write; wait for a write to complete */
		closure_wait(&dc->writeback_ordering_wait, cl);

		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
			/*
			 * Edge case-- it happened in indeterminate order
			 * relative to when we were added to wait list..
			 */
			closure_wake_up(&dc->writeback_ordering_wait);
		}

		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
		return;
	}

	next_sequence = io->sequence + 1;
K
Kent Overstreet 已提交
278

279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * IO errors are signalled using the dirty bit on the key.
	 * If we failed to read, we should not attempt to write to the
	 * backing device.  Instead, immediately go to write_dirty_finish
	 * to clean up.
	 */
	if (KEY_DIRTY(&w->key)) {
		dirty_init(w);
		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
		bio_set_dev(&io->bio, io->dc->bdev);
		io->bio.bi_end_io	= dirty_endio;
K
Kent Overstreet 已提交
291

292
		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
293
	}
K
Kent Overstreet 已提交
294

295 296 297
	atomic_set(&dc->writeback_sequence_next, next_sequence);
	closure_wake_up(&dc->writeback_ordering_wait);

298
	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
299 300
}

301
static void read_dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
302 303 304 305
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

306
	/* is_read = 1 */
K
Kent Overstreet 已提交
307
	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
308 309
			    bio->bi_status, 1,
			    "reading dirty data from cache");
K
Kent Overstreet 已提交
310

311
	dirty_endio(bio);
K
Kent Overstreet 已提交
312 313 314 315 316 317
}

static void read_dirty_submit(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);

318
	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
K
Kent Overstreet 已提交
319

320
	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
321 322
}

323
static void read_dirty(struct cached_dev *dc)
K
Kent Overstreet 已提交
324
{
325
	unsigned delay = 0;
326 327 328
	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
	size_t size;
	int nk, i;
K
Kent Overstreet 已提交
329
	struct dirty_io *io;
330
	struct closure cl;
331
	uint16_t sequence = 0;
332

333 334
	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
	atomic_set(&dc->writeback_sequence_next, sequence);
335
	closure_init_stack(&cl);
K
Kent Overstreet 已提交
336 337 338 339 340 341

	/*
	 * XXX: if we error, background writeback just spins. Should use some
	 * mempools.
	 */

342 343
	next = bch_keybuf_next(&dc->writeback_keys);

344 345 346
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
	       next) {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
		size = 0;
		nk = 0;

		do {
			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));

			/*
			 * Don't combine too many operations, even if they
			 * are all small.
			 */
			if (nk >= MAX_WRITEBACKS_IN_PASS)
				break;

			/*
			 * If the current operation is very large, don't
			 * further combine operations.
			 */
			if (size >= MAX_WRITESIZE_IN_PASS)
				break;

			/*
			 * Operations are only eligible to be combined
			 * if they are contiguous.
			 *
			 * TODO: add a heuristic willing to fire a
			 * certain amount of non-contiguous IO per pass,
			 * so that we can benefit from backing device
			 * command queueing.
			 */
			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
						&START_KEY(&next->key)))
				break;

			size += KEY_SIZE(&next->key);
			keys[nk++] = next;
		} while ((next = bch_keybuf_next(&dc->writeback_keys)));

		/* Now we have gathered a set of 1..5 keys to write back. */
		for (i = 0; i < nk; i++) {
			w = keys[i];

			io = kzalloc(sizeof(struct dirty_io) +
				     sizeof(struct bio_vec) *
				     DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
				     GFP_KERNEL);
			if (!io)
				goto err;

			w->private	= io;
			io->dc		= dc;
397
			io->sequence    = sequence++;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

			dirty_init(w);
			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
			bio_set_dev(&io->bio,
				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
			io->bio.bi_end_io	= read_dirty_endio;

			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
				goto err_free;

			trace_bcache_writeback(&w->key);

			down(&dc->in_flight);

			/* We've acquired a semaphore for the maximum
			 * simultaneous number of writebacks; from here
			 * everything happens asynchronously.
			 */
			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
		}

		delay = writeback_delay(dc, size);

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		/* If the control system would wait for at least half a
		 * second, and there's been no reqs hitting the backing disk
		 * for awhile: use an alternate mode where we have at most
		 * one contiguous set of writebacks in flight at a time.  If
		 * someone wants to do IO it will be quick, as it will only
		 * have to contend with one operation in flight, and we'll
		 * be round-tripping data to the backing disk as quickly as
		 * it can accept it.
		 */
		if (delay >= HZ / 2) {
			/* 3 means at least 1.5 seconds, up to 7.5 if we
			 * have slowed way down.
			 */
			if (atomic_inc_return(&dc->backing_idle) >= 3) {
				/* Wait for current I/Os to finish */
				closure_sync(&cl);
				/* And immediately launch a new set. */
				delay = 0;
			}
		}

443 444 445
		while (!kthread_should_stop() &&
		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
		       delay) {
446 447 448
			schedule_timeout_interruptible(delay);
			delay = writeback_delay(dc, 0);
		}
K
Kent Overstreet 已提交
449 450 451 452 453 454 455 456 457
	}

	if (0) {
err_free:
		kfree(w->private);
err:
		bch_keybuf_del(&dc->writeback_keys, w);
	}

458 459 460 461
	/*
	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
	 * freed) before refilling again
	 */
462 463 464 465 466 467 468 469 470
	closure_sync(&cl);
}

/* Scan for dirty data */

void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
				  uint64_t offset, int nr_sectors)
{
	struct bcache_device *d = c->devices[inode];
471
	unsigned stripe_offset, stripe, sectors_dirty;
472 473 474 475

	if (!d)
		return;

476
	stripe = offset_to_stripe(d, offset);
477 478 479 480 481 482 483 484 485
	stripe_offset = offset & (d->stripe_size - 1);

	while (nr_sectors) {
		int s = min_t(unsigned, abs(nr_sectors),
			      d->stripe_size - stripe_offset);

		if (nr_sectors < 0)
			s = -s;

486 487 488 489 490 491 492 493 494 495
		if (stripe >= d->nr_stripes)
			return;

		sectors_dirty = atomic_add_return(s,
					d->stripe_sectors_dirty + stripe);
		if (sectors_dirty == d->stripe_size)
			set_bit(stripe, d->full_dirty_stripes);
		else
			clear_bit(stripe, d->full_dirty_stripes);

496 497 498 499 500 501 502 503
		nr_sectors -= s;
		stripe_offset = 0;
		stripe++;
	}
}

static bool dirty_pred(struct keybuf *buf, struct bkey *k)
{
504 505 506 507
	struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);

	BUG_ON(KEY_INODE(k) != dc->disk.id);

508 509 510
	return KEY_DIRTY(k);
}

511
static void refill_full_stripes(struct cached_dev *dc)
512
{
513 514 515 516 517
	struct keybuf *buf = &dc->writeback_keys;
	unsigned start_stripe, stripe, next_stripe;
	bool wrapped = false;

	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
518

519 520
	if (stripe >= dc->disk.nr_stripes)
		stripe = 0;
521

522
	start_stripe = stripe;
523 524

	while (1) {
525 526
		stripe = find_next_bit(dc->disk.full_dirty_stripes,
				       dc->disk.nr_stripes, stripe);
527

528 529
		if (stripe == dc->disk.nr_stripes)
			goto next;
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
						 dc->disk.nr_stripes, stripe);

		buf->last_scanned = KEY(dc->disk.id,
					stripe * dc->disk.stripe_size, 0);

		bch_refill_keybuf(dc->disk.c, buf,
				  &KEY(dc->disk.id,
				       next_stripe * dc->disk.stripe_size, 0),
				  dirty_pred);

		if (array_freelist_empty(&buf->freelist))
			return;

		stripe = next_stripe;
next:
		if (wrapped && stripe > start_stripe)
			return;

		if (stripe == dc->disk.nr_stripes) {
			stripe = 0;
			wrapped = true;
		}
554 555 556
	}
}

557 558 559
/*
 * Returns true if we scanned the entire disk
 */
560 561 562
static bool refill_dirty(struct cached_dev *dc)
{
	struct keybuf *buf = &dc->writeback_keys;
563
	struct bkey start = KEY(dc->disk.id, 0, 0);
564
	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
565 566 567 568 569 570 571 572 573 574
	struct bkey start_pos;

	/*
	 * make sure keybuf pos is inside the range for this disk - at bringup
	 * we might not be attached yet so this disk's inode nr isn't
	 * initialized then
	 */
	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
	    bkey_cmp(&buf->last_scanned, &end) > 0)
		buf->last_scanned = start;
575 576 577 578 579 580

	if (dc->partial_stripes_expensive) {
		refill_full_stripes(dc);
		if (array_freelist_empty(&buf->freelist))
			return false;
	}
581

582
	start_pos = buf->last_scanned;
583
	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
584

585 586 587 588 589 590 591 592 593 594 595
	if (bkey_cmp(&buf->last_scanned, &end) < 0)
		return false;

	/*
	 * If we get to the end start scanning again from the beginning, and
	 * only scan up to where we initially started scanning from:
	 */
	buf->last_scanned = start;
	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);

	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
596 597 598 599 600
}

static int bch_writeback_thread(void *arg)
{
	struct cached_dev *dc = arg;
601
	struct cache_set *c = dc->disk.c;
602 603
	bool searched_full_index;

604 605
	bch_ratelimit_reset(&dc->writeback_rate);

606 607
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
608
		down_write(&dc->writeback_lock);
609
		set_current_state(TASK_INTERRUPTIBLE);
610 611 612 613 614 615 616 617 618
		/*
		 * If the bache device is detaching, skip here and continue
		 * to perform writeback. Otherwise, if no dirty data on cache,
		 * or there is dirty data on cache but writeback is disabled,
		 * the writeback thread should sleep here and wait for others
		 * to wake up it.
		 */
		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
619 620
			up_write(&dc->writeback_lock);

621 622
			if (kthread_should_stop() ||
			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
623
				set_current_state(TASK_RUNNING);
624
				break;
625
			}
626 627 628 629

			schedule();
			continue;
		}
630
		set_current_state(TASK_RUNNING);
631 632 633 634 635 636 637 638

		searched_full_index = refill_dirty(dc);

		if (searched_full_index &&
		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
			atomic_set(&dc->has_dirty, 0);
			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
			bch_write_bdev_super(dc, NULL);
639 640 641 642 643 644 645 646
			/*
			 * If bcache device is detaching via sysfs interface,
			 * writeback thread should stop after there is no dirty
			 * data on cache. BCACHE_DEV_DETACHING flag is set in
			 * bch_cached_dev_detach().
			 */
			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
				break;
647 648 649 650 651 652 653 654 655 656 657
		}

		up_write(&dc->writeback_lock);

		read_dirty(dc);

		if (searched_full_index) {
			unsigned delay = dc->writeback_delay * HZ;

			while (delay &&
			       !kthread_should_stop() &&
658
			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
659
			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
660
				delay = schedule_timeout_interruptible(delay);
661 662

			bch_ratelimit_reset(&dc->writeback_rate);
663 664 665
		}
	}

666
	cached_dev_put(dc);
667
	wait_for_kthread_stop();
668

669
	return 0;
K
Kent Overstreet 已提交
670 671
}

672 673
/* Init */

K
Kent Overstreet 已提交
674 675 676 677 678 679
struct sectors_dirty_init {
	struct btree_op	op;
	unsigned	inode;
};

static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
680
				 struct bkey *k)
681
{
K
Kent Overstreet 已提交
682 683
	struct sectors_dirty_init *op = container_of(_op,
						struct sectors_dirty_init, op);
684 685
	if (KEY_INODE(k) > op->inode)
		return MAP_DONE;
686

687 688 689 690 691
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
					     KEY_START(k), KEY_SIZE(k));

	return MAP_CONTINUE;
692 693
}

694
void bch_sectors_dirty_init(struct bcache_device *d)
695
{
K
Kent Overstreet 已提交
696
	struct sectors_dirty_init op;
697

K
Kent Overstreet 已提交
698
	bch_btree_op_init(&op.op, -1);
699
	op.inode = d->id;
700

701
	bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
702
			   sectors_dirty_init_fn, 0);
703 704
}

705
void bch_cached_dev_writeback_init(struct cached_dev *dc)
K
Kent Overstreet 已提交
706
{
707
	sema_init(&dc->in_flight, 64);
K
Kent Overstreet 已提交
708
	init_rwsem(&dc->writeback_lock);
K
Kent Overstreet 已提交
709
	bch_keybuf_init(&dc->writeback_keys);
K
Kent Overstreet 已提交
710 711 712 713 714 715

	dc->writeback_metadata		= true;
	dc->writeback_running		= true;
	dc->writeback_percent		= 10;
	dc->writeback_delay		= 30;
	dc->writeback_rate.rate		= 1024;
716
	dc->writeback_rate_minimum	= 8;
K
Kent Overstreet 已提交
717

718
	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
719 720
	dc->writeback_rate_p_term_inverse = 40;
	dc->writeback_rate_i_term_inverse = 10000;
K
Kent Overstreet 已提交
721

722
	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
723 724 725 726 727
	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
}

int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
728 729 730 731 732
	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
						WQ_MEM_RECLAIM, 0);
	if (!dc->writeback_write_wq)
		return -ENOMEM;

733
	cached_dev_get(dc);
734 735
	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
					      "bcache_writeback");
736 737
	if (IS_ERR(dc->writeback_thread)) {
		cached_dev_put(dc);
738
		return PTR_ERR(dc->writeback_thread);
739
	}
740

741
	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
K
Kent Overstreet 已提交
742 743 744
	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);

745 746
	bch_writeback_queue(dc);

K
Kent Overstreet 已提交
747 748
	return 0;
}