writeback.c 19.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
K
Kent Overstreet 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 * background writeback - scan btree for dirty data and write it to the backing
 * device
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
13
#include "writeback.h"
K
Kent Overstreet 已提交
14

15 16
#include <linux/delay.h>
#include <linux/kthread.h>
17
#include <linux/sched/clock.h>
K
Kent Overstreet 已提交
18 19
#include <trace/events/bcache.h>

K
Kent Overstreet 已提交
20
/* Rate limiting */
21
static uint64_t __calc_target_rate(struct cached_dev *dc)
K
Kent Overstreet 已提交
22 23
{
	struct cache_set *c = dc->disk.c;
24 25 26 27 28

	/*
	 * This is the size of the cache, minus the amount used for
	 * flash-only devices
	 */
29 30
	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
				bcache_flash_devs_sectors_dirty(c);
31 32 33 34 35 36 37 38 39 40 41

	/*
	 * Unfortunately there is no control of global dirty data.  If the
	 * user states that they want 10% dirty data in the cache, and has,
	 * e.g., 5 backing volumes of equal size, we try and ensure each
	 * backing volume uses about 2% of the cache for dirty data.
	 */
	uint32_t bdev_share =
		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
				c->cached_dev_sectors);

K
Kent Overstreet 已提交
42 43 44
	uint64_t cache_dirty_target =
		div_u64(cache_sectors * dc->writeback_percent, 100);

45 46 47 48 49 50 51 52 53
	/* Ensure each backing dev gets at least one dirty share */
	if (bdev_share < 1)
		bdev_share = 1;

	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
}

static void __update_writeback_rate(struct cached_dev *dc)
{
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
	/*
	 * PI controller:
	 * Figures out the amount that should be written per second.
	 *
	 * First, the error (number of sectors that are dirty beyond our
	 * target) is calculated.  The error is accumulated (numerically
	 * integrated).
	 *
	 * Then, the proportional value and integral value are scaled
	 * based on configured values.  These are stored as inverses to
	 * avoid fixed point math and to make configuration easy-- e.g.
	 * the default value of 40 for writeback_rate_p_term_inverse
	 * attempts to write at a rate that would retire all the dirty
	 * blocks in 40 seconds.
	 *
	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
	 * of the error is accumulated in the integral term per second.
	 * This acts as a slow, long-term average that is not subject to
	 * variations in usage like the p term.
	 */
74
	int64_t target = __calc_target_rate(dc);
75
	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 77 78
	int64_t error = dirty - target;
	int64_t proportional_scaled =
		div_s64(error, dc->writeback_rate_p_term_inverse);
79 80
	int64_t integral_scaled;
	uint32_t new_rate;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

	if ((error < 0 && dc->writeback_rate_integral > 0) ||
	    (error > 0 && time_before64(local_clock(),
			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
		/*
		 * Only decrease the integral term if it's more than
		 * zero.  Only increase the integral term if the device
		 * is keeping up.  (Don't wind up the integral
		 * ineffectively in either case).
		 *
		 * It's necessary to scale this by
		 * writeback_rate_update_seconds to keep the integral
		 * term dimensioned properly.
		 */
		dc->writeback_rate_integral += error *
			dc->writeback_rate_update_seconds;
	}
K
Kent Overstreet 已提交
98

99 100
	integral_scaled = div_s64(dc->writeback_rate_integral,
			dc->writeback_rate_i_term_inverse);
K
Kent Overstreet 已提交
101

102 103
	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
			dc->writeback_rate_minimum, NSEC_PER_SEC);
104

105 106 107 108
	dc->writeback_rate_proportional = proportional_scaled;
	dc->writeback_rate_integral_scaled = integral_scaled;
	dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
	dc->writeback_rate.rate = new_rate;
K
Kent Overstreet 已提交
109 110 111 112 113 114 115 116
	dc->writeback_rate_target = target;
}

static void update_writeback_rate(struct work_struct *work)
{
	struct cached_dev *dc = container_of(to_delayed_work(work),
					     struct cached_dev,
					     writeback_rate_update);
117
	struct cache_set *c = dc->disk.c;
K
Kent Overstreet 已提交
118

119 120 121 122 123 124 125 126
	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();

127 128 129 130 131 132
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
133 134 135 136 137 138
		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
		smp_mb();
		return;
	}

K
Kent Overstreet 已提交
139 140 141 142 143 144 145
	down_read(&dc->writeback_lock);

	if (atomic_read(&dc->has_dirty) &&
	    dc->writeback_percent)
		__update_writeback_rate(dc);

	up_read(&dc->writeback_lock);
146

147 148 149 150 151 152
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
153
		schedule_delayed_work(&dc->writeback_rate_update,
154
			      dc->writeback_rate_update_seconds * HZ);
155 156 157 158 159 160 161 162 163
	}

	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();
K
Kent Overstreet 已提交
164 165 166 167
}

static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
{
168
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
K
Kent Overstreet 已提交
169 170 171
	    !dc->writeback_percent)
		return 0;

172
	return bch_next_delay(&dc->writeback_rate, sectors);
K
Kent Overstreet 已提交
173 174
}

175 176 177
struct dirty_io {
	struct closure		cl;
	struct cached_dev	*dc;
178
	uint16_t		sequence;
179 180
	struct bio		bio;
};
K
Kent Overstreet 已提交
181

K
Kent Overstreet 已提交
182 183 184 185 186
static void dirty_init(struct keybuf_key *w)
{
	struct dirty_io *io = w->private;
	struct bio *bio = &io->bio;

187 188
	bio_init(bio, bio->bi_inline_vecs,
		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
K
Kent Overstreet 已提交
189 190 191
	if (!io->dc->writeback_percent)
		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));

192
	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
K
Kent Overstreet 已提交
193
	bio->bi_private		= w;
194
	bch_bio_map(bio, NULL);
K
Kent Overstreet 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

static void dirty_io_destructor(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	kfree(io);
}

static void write_dirty_finish(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
	struct cached_dev *dc = io->dc;

209
	bio_free_pages(&io->bio);
K
Kent Overstreet 已提交
210 211 212

	/* This is kind of a dumb way of signalling errors. */
	if (KEY_DIRTY(&w->key)) {
213
		int ret;
K
Kent Overstreet 已提交
214
		unsigned i;
215 216 217
		struct keylist keys;

		bch_keylist_init(&keys);
K
Kent Overstreet 已提交
218

K
Kent Overstreet 已提交
219 220 221
		bkey_copy(keys.top, &w->key);
		SET_KEY_DIRTY(keys.top, false);
		bch_keylist_push(&keys);
K
Kent Overstreet 已提交
222 223 224 225

		for (i = 0; i < KEY_PTRS(&w->key); i++)
			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);

226
		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
K
Kent Overstreet 已提交
227

228
		if (ret)
K
Kent Overstreet 已提交
229 230
			trace_bcache_writeback_collision(&w->key);

231
		atomic_long_inc(ret
K
Kent Overstreet 已提交
232 233 234 235 236
				? &dc->disk.c->writeback_keys_failed
				: &dc->disk.c->writeback_keys_done);
	}

	bch_keybuf_del(&dc->writeback_keys, w);
237
	up(&dc->in_flight);
K
Kent Overstreet 已提交
238 239 240 241

	closure_return_with_destructor(cl, dirty_io_destructor);
}

242
static void dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
243 244 245 246
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

247
	if (bio->bi_status) {
K
Kent Overstreet 已提交
248
		SET_KEY_DIRTY(&w->key, false);
249 250
		bch_count_backing_io_errors(io->dc, bio);
	}
K
Kent Overstreet 已提交
251 252 253 254 255 256 257 258

	closure_put(&io->cl);
}

static void write_dirty(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	struct cached_dev *dc = io->dc;

	uint16_t next_sequence;

	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
		/* Not our turn to write; wait for a write to complete */
		closure_wait(&dc->writeback_ordering_wait, cl);

		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
			/*
			 * Edge case-- it happened in indeterminate order
			 * relative to when we were added to wait list..
			 */
			closure_wake_up(&dc->writeback_ordering_wait);
		}

		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
		return;
	}

	next_sequence = io->sequence + 1;
K
Kent Overstreet 已提交
280

281 282 283 284 285 286 287 288 289 290 291 292
	/*
	 * IO errors are signalled using the dirty bit on the key.
	 * If we failed to read, we should not attempt to write to the
	 * backing device.  Instead, immediately go to write_dirty_finish
	 * to clean up.
	 */
	if (KEY_DIRTY(&w->key)) {
		dirty_init(w);
		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
		bio_set_dev(&io->bio, io->dc->bdev);
		io->bio.bi_end_io	= dirty_endio;
K
Kent Overstreet 已提交
293

294
		/* I/O request sent to backing device */
295
		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
296
	}
K
Kent Overstreet 已提交
297

298 299 300
	atomic_set(&dc->writeback_sequence_next, next_sequence);
	closure_wake_up(&dc->writeback_ordering_wait);

301
	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
302 303
}

304
static void read_dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
305 306 307 308
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

309
	/* is_read = 1 */
K
Kent Overstreet 已提交
310
	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
311 312
			    bio->bi_status, 1,
			    "reading dirty data from cache");
K
Kent Overstreet 已提交
313

314
	dirty_endio(bio);
K
Kent Overstreet 已提交
315 316 317 318 319 320
}

static void read_dirty_submit(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);

321
	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
K
Kent Overstreet 已提交
322

323
	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
324 325
}

326
static void read_dirty(struct cached_dev *dc)
K
Kent Overstreet 已提交
327
{
328
	unsigned delay = 0;
329 330 331
	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
	size_t size;
	int nk, i;
K
Kent Overstreet 已提交
332
	struct dirty_io *io;
333
	struct closure cl;
334
	uint16_t sequence = 0;
335

336 337
	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
	atomic_set(&dc->writeback_sequence_next, sequence);
338
	closure_init_stack(&cl);
K
Kent Overstreet 已提交
339 340 341 342 343 344

	/*
	 * XXX: if we error, background writeback just spins. Should use some
	 * mempools.
	 */

345 346
	next = bch_keybuf_next(&dc->writeback_keys);

347 348 349
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
	       next) {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
		size = 0;
		nk = 0;

		do {
			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));

			/*
			 * Don't combine too many operations, even if they
			 * are all small.
			 */
			if (nk >= MAX_WRITEBACKS_IN_PASS)
				break;

			/*
			 * If the current operation is very large, don't
			 * further combine operations.
			 */
			if (size >= MAX_WRITESIZE_IN_PASS)
				break;

			/*
			 * Operations are only eligible to be combined
			 * if they are contiguous.
			 *
			 * TODO: add a heuristic willing to fire a
			 * certain amount of non-contiguous IO per pass,
			 * so that we can benefit from backing device
			 * command queueing.
			 */
			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
						&START_KEY(&next->key)))
				break;

			size += KEY_SIZE(&next->key);
			keys[nk++] = next;
		} while ((next = bch_keybuf_next(&dc->writeback_keys)));

		/* Now we have gathered a set of 1..5 keys to write back. */
		for (i = 0; i < nk; i++) {
			w = keys[i];

			io = kzalloc(sizeof(struct dirty_io) +
				     sizeof(struct bio_vec) *
				     DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
				     GFP_KERNEL);
			if (!io)
				goto err;

			w->private	= io;
			io->dc		= dc;
400
			io->sequence    = sequence++;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

			dirty_init(w);
			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
			bio_set_dev(&io->bio,
				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
			io->bio.bi_end_io	= read_dirty_endio;

			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
				goto err_free;

			trace_bcache_writeback(&w->key);

			down(&dc->in_flight);

			/* We've acquired a semaphore for the maximum
			 * simultaneous number of writebacks; from here
			 * everything happens asynchronously.
			 */
			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
		}

		delay = writeback_delay(dc, size);

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		/* If the control system would wait for at least half a
		 * second, and there's been no reqs hitting the backing disk
		 * for awhile: use an alternate mode where we have at most
		 * one contiguous set of writebacks in flight at a time.  If
		 * someone wants to do IO it will be quick, as it will only
		 * have to contend with one operation in flight, and we'll
		 * be round-tripping data to the backing disk as quickly as
		 * it can accept it.
		 */
		if (delay >= HZ / 2) {
			/* 3 means at least 1.5 seconds, up to 7.5 if we
			 * have slowed way down.
			 */
			if (atomic_inc_return(&dc->backing_idle) >= 3) {
				/* Wait for current I/Os to finish */
				closure_sync(&cl);
				/* And immediately launch a new set. */
				delay = 0;
			}
		}

446 447 448
		while (!kthread_should_stop() &&
		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
		       delay) {
449 450 451
			schedule_timeout_interruptible(delay);
			delay = writeback_delay(dc, 0);
		}
K
Kent Overstreet 已提交
452 453 454 455 456 457 458 459 460
	}

	if (0) {
err_free:
		kfree(w->private);
err:
		bch_keybuf_del(&dc->writeback_keys, w);
	}

461 462 463 464
	/*
	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
	 * freed) before refilling again
	 */
465 466 467 468 469 470 471 472 473
	closure_sync(&cl);
}

/* Scan for dirty data */

void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
				  uint64_t offset, int nr_sectors)
{
	struct bcache_device *d = c->devices[inode];
474
	unsigned stripe_offset, stripe, sectors_dirty;
475 476 477 478

	if (!d)
		return;

479
	stripe = offset_to_stripe(d, offset);
480 481 482 483 484 485 486 487 488
	stripe_offset = offset & (d->stripe_size - 1);

	while (nr_sectors) {
		int s = min_t(unsigned, abs(nr_sectors),
			      d->stripe_size - stripe_offset);

		if (nr_sectors < 0)
			s = -s;

489 490 491 492 493 494 495 496 497 498
		if (stripe >= d->nr_stripes)
			return;

		sectors_dirty = atomic_add_return(s,
					d->stripe_sectors_dirty + stripe);
		if (sectors_dirty == d->stripe_size)
			set_bit(stripe, d->full_dirty_stripes);
		else
			clear_bit(stripe, d->full_dirty_stripes);

499 500 501 502 503 504 505 506
		nr_sectors -= s;
		stripe_offset = 0;
		stripe++;
	}
}

static bool dirty_pred(struct keybuf *buf, struct bkey *k)
{
507 508 509 510
	struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);

	BUG_ON(KEY_INODE(k) != dc->disk.id);

511 512 513
	return KEY_DIRTY(k);
}

514
static void refill_full_stripes(struct cached_dev *dc)
515
{
516 517 518 519 520
	struct keybuf *buf = &dc->writeback_keys;
	unsigned start_stripe, stripe, next_stripe;
	bool wrapped = false;

	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
521

522 523
	if (stripe >= dc->disk.nr_stripes)
		stripe = 0;
524

525
	start_stripe = stripe;
526 527

	while (1) {
528 529
		stripe = find_next_bit(dc->disk.full_dirty_stripes,
				       dc->disk.nr_stripes, stripe);
530

531 532
		if (stripe == dc->disk.nr_stripes)
			goto next;
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
						 dc->disk.nr_stripes, stripe);

		buf->last_scanned = KEY(dc->disk.id,
					stripe * dc->disk.stripe_size, 0);

		bch_refill_keybuf(dc->disk.c, buf,
				  &KEY(dc->disk.id,
				       next_stripe * dc->disk.stripe_size, 0),
				  dirty_pred);

		if (array_freelist_empty(&buf->freelist))
			return;

		stripe = next_stripe;
next:
		if (wrapped && stripe > start_stripe)
			return;

		if (stripe == dc->disk.nr_stripes) {
			stripe = 0;
			wrapped = true;
		}
557 558 559
	}
}

560 561 562
/*
 * Returns true if we scanned the entire disk
 */
563 564 565
static bool refill_dirty(struct cached_dev *dc)
{
	struct keybuf *buf = &dc->writeback_keys;
566
	struct bkey start = KEY(dc->disk.id, 0, 0);
567
	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
568 569 570 571 572 573 574 575 576 577
	struct bkey start_pos;

	/*
	 * make sure keybuf pos is inside the range for this disk - at bringup
	 * we might not be attached yet so this disk's inode nr isn't
	 * initialized then
	 */
	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
	    bkey_cmp(&buf->last_scanned, &end) > 0)
		buf->last_scanned = start;
578 579 580 581 582 583

	if (dc->partial_stripes_expensive) {
		refill_full_stripes(dc);
		if (array_freelist_empty(&buf->freelist))
			return false;
	}
584

585
	start_pos = buf->last_scanned;
586
	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
587

588 589 590 591 592 593 594 595 596 597 598
	if (bkey_cmp(&buf->last_scanned, &end) < 0)
		return false;

	/*
	 * If we get to the end start scanning again from the beginning, and
	 * only scan up to where we initially started scanning from:
	 */
	buf->last_scanned = start;
	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);

	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
599 600 601 602 603
}

static int bch_writeback_thread(void *arg)
{
	struct cached_dev *dc = arg;
604
	struct cache_set *c = dc->disk.c;
605 606
	bool searched_full_index;

607 608
	bch_ratelimit_reset(&dc->writeback_rate);

609 610
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
611
		down_write(&dc->writeback_lock);
612
		set_current_state(TASK_INTERRUPTIBLE);
613 614 615 616 617 618 619 620 621
		/*
		 * If the bache device is detaching, skip here and continue
		 * to perform writeback. Otherwise, if no dirty data on cache,
		 * or there is dirty data on cache but writeback is disabled,
		 * the writeback thread should sleep here and wait for others
		 * to wake up it.
		 */
		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
622 623
			up_write(&dc->writeback_lock);

624 625
			if (kthread_should_stop() ||
			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
626
				set_current_state(TASK_RUNNING);
627
				break;
628
			}
629 630 631 632

			schedule();
			continue;
		}
633
		set_current_state(TASK_RUNNING);
634 635 636 637 638 639 640 641

		searched_full_index = refill_dirty(dc);

		if (searched_full_index &&
		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
			atomic_set(&dc->has_dirty, 0);
			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
			bch_write_bdev_super(dc, NULL);
642 643 644 645 646 647 648 649
			/*
			 * If bcache device is detaching via sysfs interface,
			 * writeback thread should stop after there is no dirty
			 * data on cache. BCACHE_DEV_DETACHING flag is set in
			 * bch_cached_dev_detach().
			 */
			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
				break;
650 651 652 653 654 655 656 657 658 659 660
		}

		up_write(&dc->writeback_lock);

		read_dirty(dc);

		if (searched_full_index) {
			unsigned delay = dc->writeback_delay * HZ;

			while (delay &&
			       !kthread_should_stop() &&
661
			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
662
			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
663
				delay = schedule_timeout_interruptible(delay);
664 665

			bch_ratelimit_reset(&dc->writeback_rate);
666 667 668
		}
	}

669
	cached_dev_put(dc);
670
	wait_for_kthread_stop();
671

672
	return 0;
K
Kent Overstreet 已提交
673 674
}

675 676
/* Init */

K
Kent Overstreet 已提交
677 678 679 680 681 682
struct sectors_dirty_init {
	struct btree_op	op;
	unsigned	inode;
};

static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
683
				 struct bkey *k)
684
{
K
Kent Overstreet 已提交
685 686
	struct sectors_dirty_init *op = container_of(_op,
						struct sectors_dirty_init, op);
687 688
	if (KEY_INODE(k) > op->inode)
		return MAP_DONE;
689

690 691 692 693 694
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
					     KEY_START(k), KEY_SIZE(k));

	return MAP_CONTINUE;
695 696
}

697
void bch_sectors_dirty_init(struct bcache_device *d)
698
{
K
Kent Overstreet 已提交
699
	struct sectors_dirty_init op;
700

K
Kent Overstreet 已提交
701
	bch_btree_op_init(&op.op, -1);
702
	op.inode = d->id;
703

704
	bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
705
			   sectors_dirty_init_fn, 0);
706 707
}

708
void bch_cached_dev_writeback_init(struct cached_dev *dc)
K
Kent Overstreet 已提交
709
{
710
	sema_init(&dc->in_flight, 64);
K
Kent Overstreet 已提交
711
	init_rwsem(&dc->writeback_lock);
K
Kent Overstreet 已提交
712
	bch_keybuf_init(&dc->writeback_keys);
K
Kent Overstreet 已提交
713 714 715 716 717 718

	dc->writeback_metadata		= true;
	dc->writeback_running		= true;
	dc->writeback_percent		= 10;
	dc->writeback_delay		= 30;
	dc->writeback_rate.rate		= 1024;
719
	dc->writeback_rate_minimum	= 8;
K
Kent Overstreet 已提交
720

721
	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
722 723
	dc->writeback_rate_p_term_inverse = 40;
	dc->writeback_rate_i_term_inverse = 10000;
K
Kent Overstreet 已提交
724

725
	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
726 727 728 729 730
	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
}

int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
731 732 733 734 735
	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
						WQ_MEM_RECLAIM, 0);
	if (!dc->writeback_write_wq)
		return -ENOMEM;

736
	cached_dev_get(dc);
737 738
	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
					      "bcache_writeback");
739 740
	if (IS_ERR(dc->writeback_thread)) {
		cached_dev_put(dc);
741
		return PTR_ERR(dc->writeback_thread);
742
	}
743

744
	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
K
Kent Overstreet 已提交
745 746 747
	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);

748 749
	bch_writeback_queue(dc);

K
Kent Overstreet 已提交
750 751
	return 0;
}