writeback.c 13.7 KB
Newer Older
K
Kent Overstreet 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * background writeback - scan btree for dirty data and write it to the backing
 * device
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
12
#include "writeback.h"
K
Kent Overstreet 已提交
13

14 15
#include <linux/delay.h>
#include <linux/kthread.h>
16
#include <linux/sched/clock.h>
K
Kent Overstreet 已提交
17 18
#include <trace/events/bcache.h>

K
Kent Overstreet 已提交
19 20 21 22 23
/* Rate limiting */

static void __update_writeback_rate(struct cached_dev *dc)
{
	struct cache_set *c = dc->disk.c;
24 25
	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
				bcache_flash_devs_sectors_dirty(c);
K
Kent Overstreet 已提交
26 27 28 29 30
	uint64_t cache_dirty_target =
		div_u64(cache_sectors * dc->writeback_percent, 100);
	int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
				   c->cached_dev_sectors);

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
	/*
	 * PI controller:
	 * Figures out the amount that should be written per second.
	 *
	 * First, the error (number of sectors that are dirty beyond our
	 * target) is calculated.  The error is accumulated (numerically
	 * integrated).
	 *
	 * Then, the proportional value and integral value are scaled
	 * based on configured values.  These are stored as inverses to
	 * avoid fixed point math and to make configuration easy-- e.g.
	 * the default value of 40 for writeback_rate_p_term_inverse
	 * attempts to write at a rate that would retire all the dirty
	 * blocks in 40 seconds.
	 *
	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
	 * of the error is accumulated in the integral term per second.
	 * This acts as a slow, long-term average that is not subject to
	 * variations in usage like the p term.
	 */
51
	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
	int64_t error = dirty - target;
	int64_t proportional_scaled =
		div_s64(error, dc->writeback_rate_p_term_inverse);
	int64_t integral_scaled, new_rate;

	if ((error < 0 && dc->writeback_rate_integral > 0) ||
	    (error > 0 && time_before64(local_clock(),
			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
		/*
		 * Only decrease the integral term if it's more than
		 * zero.  Only increase the integral term if the device
		 * is keeping up.  (Don't wind up the integral
		 * ineffectively in either case).
		 *
		 * It's necessary to scale this by
		 * writeback_rate_update_seconds to keep the integral
		 * term dimensioned properly.
		 */
		dc->writeback_rate_integral += error *
			dc->writeback_rate_update_seconds;
	}
K
Kent Overstreet 已提交
73

74 75
	integral_scaled = div_s64(dc->writeback_rate_integral,
			dc->writeback_rate_i_term_inverse);
K
Kent Overstreet 已提交
76

77 78
	new_rate = clamp_t(int64_t, (proportional_scaled + integral_scaled),
			dc->writeback_rate_minimum, NSEC_PER_MSEC);
79

80 81 82 83
	dc->writeback_rate_proportional = proportional_scaled;
	dc->writeback_rate_integral_scaled = integral_scaled;
	dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
	dc->writeback_rate.rate = new_rate;
K
Kent Overstreet 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	dc->writeback_rate_target = target;
}

static void update_writeback_rate(struct work_struct *work)
{
	struct cached_dev *dc = container_of(to_delayed_work(work),
					     struct cached_dev,
					     writeback_rate_update);

	down_read(&dc->writeback_lock);

	if (atomic_read(&dc->has_dirty) &&
	    dc->writeback_percent)
		__update_writeback_rate(dc);

	up_read(&dc->writeback_lock);
100 101 102

	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);
K
Kent Overstreet 已提交
103 104 105 106
}

static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
{
107
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
K
Kent Overstreet 已提交
108 109 110
	    !dc->writeback_percent)
		return 0;

111
	return bch_next_delay(&dc->writeback_rate, sectors);
K
Kent Overstreet 已提交
112 113
}

114 115 116 117 118
struct dirty_io {
	struct closure		cl;
	struct cached_dev	*dc;
	struct bio		bio;
};
K
Kent Overstreet 已提交
119

K
Kent Overstreet 已提交
120 121 122 123 124
static void dirty_init(struct keybuf_key *w)
{
	struct dirty_io *io = w->private;
	struct bio *bio = &io->bio;

125 126
	bio_init(bio, bio->bi_inline_vecs,
		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
K
Kent Overstreet 已提交
127 128 129
	if (!io->dc->writeback_percent)
		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));

130
	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
K
Kent Overstreet 已提交
131
	bio->bi_private		= w;
132
	bch_bio_map(bio, NULL);
K
Kent Overstreet 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
}

static void dirty_io_destructor(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	kfree(io);
}

static void write_dirty_finish(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
	struct cached_dev *dc = io->dc;

147
	bio_free_pages(&io->bio);
K
Kent Overstreet 已提交
148 149 150

	/* This is kind of a dumb way of signalling errors. */
	if (KEY_DIRTY(&w->key)) {
151
		int ret;
K
Kent Overstreet 已提交
152
		unsigned i;
153 154 155
		struct keylist keys;

		bch_keylist_init(&keys);
K
Kent Overstreet 已提交
156

K
Kent Overstreet 已提交
157 158 159
		bkey_copy(keys.top, &w->key);
		SET_KEY_DIRTY(keys.top, false);
		bch_keylist_push(&keys);
K
Kent Overstreet 已提交
160 161 162 163

		for (i = 0; i < KEY_PTRS(&w->key); i++)
			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);

164
		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
K
Kent Overstreet 已提交
165

166
		if (ret)
K
Kent Overstreet 已提交
167 168
			trace_bcache_writeback_collision(&w->key);

169
		atomic_long_inc(ret
K
Kent Overstreet 已提交
170 171 172 173 174
				? &dc->disk.c->writeback_keys_failed
				: &dc->disk.c->writeback_keys_done);
	}

	bch_keybuf_del(&dc->writeback_keys, w);
175
	up(&dc->in_flight);
K
Kent Overstreet 已提交
176 177 178 179

	closure_return_with_destructor(cl, dirty_io_destructor);
}

180
static void dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
181 182 183 184
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

185
	if (bio->bi_status)
K
Kent Overstreet 已提交
186 187 188 189 190 191 192 193 194 195
		SET_KEY_DIRTY(&w->key, false);

	closure_put(&io->cl);
}

static void write_dirty(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;

196 197 198 199 200 201 202 203 204 205 206 207
	/*
	 * IO errors are signalled using the dirty bit on the key.
	 * If we failed to read, we should not attempt to write to the
	 * backing device.  Instead, immediately go to write_dirty_finish
	 * to clean up.
	 */
	if (KEY_DIRTY(&w->key)) {
		dirty_init(w);
		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
		bio_set_dev(&io->bio, io->dc->bdev);
		io->bio.bi_end_io	= dirty_endio;
K
Kent Overstreet 已提交
208

209 210
		closure_bio_submit(&io->bio, cl);
	}
K
Kent Overstreet 已提交
211

212
	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
213 214
}

215
static void read_dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
216 217 218 219 220
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
221
			    bio->bi_status, "reading dirty data from cache");
K
Kent Overstreet 已提交
222

223
	dirty_endio(bio);
K
Kent Overstreet 已提交
224 225 226 227 228 229
}

static void read_dirty_submit(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);

230
	closure_bio_submit(&io->bio, cl);
K
Kent Overstreet 已提交
231

232
	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
233 234
}

235
static void read_dirty(struct cached_dev *dc)
K
Kent Overstreet 已提交
236
{
237
	unsigned delay = 0;
K
Kent Overstreet 已提交
238 239
	struct keybuf_key *w;
	struct dirty_io *io;
240 241 242
	struct closure cl;

	closure_init_stack(&cl);
K
Kent Overstreet 已提交
243 244 245 246 247 248

	/*
	 * XXX: if we error, background writeback just spins. Should use some
	 * mempools.
	 */

249 250
	while (!kthread_should_stop()) {

K
Kent Overstreet 已提交
251 252 253 254 255 256
		w = bch_keybuf_next(&dc->writeback_keys);
		if (!w)
			break;

		BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));

257 258 259
		if (KEY_START(&w->key) != dc->last_read ||
		    jiffies_to_msecs(delay) > 50)
			while (!kthread_should_stop() && delay)
260
				delay = schedule_timeout_interruptible(delay);
K
Kent Overstreet 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273

		dc->last_read	= KEY_OFFSET(&w->key);

		io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
			     * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
			     GFP_KERNEL);
		if (!io)
			goto err;

		w->private	= io;
		io->dc		= dc;

		dirty_init(w);
M
Mike Christie 已提交
274
		bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
275
		io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
276
		bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
K
Kent Overstreet 已提交
277 278
		io->bio.bi_end_io	= read_dirty_endio;

279
		if (bio_alloc_pages(&io->bio, GFP_KERNEL))
K
Kent Overstreet 已提交
280 281
			goto err_free;

K
Kent Overstreet 已提交
282
		trace_bcache_writeback(&w->key);
K
Kent Overstreet 已提交
283

284
		down(&dc->in_flight);
285
		closure_call(&io->cl, read_dirty_submit, NULL, &cl);
K
Kent Overstreet 已提交
286 287 288 289 290 291 292 293 294 295 296

		delay = writeback_delay(dc, KEY_SIZE(&w->key));
	}

	if (0) {
err_free:
		kfree(w->private);
err:
		bch_keybuf_del(&dc->writeback_keys, w);
	}

297 298 299 300
	/*
	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
	 * freed) before refilling again
	 */
301 302 303 304 305 306 307 308 309
	closure_sync(&cl);
}

/* Scan for dirty data */

void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
				  uint64_t offset, int nr_sectors)
{
	struct bcache_device *d = c->devices[inode];
310
	unsigned stripe_offset, stripe, sectors_dirty;
311 312 313 314

	if (!d)
		return;

315
	stripe = offset_to_stripe(d, offset);
316 317 318 319 320 321 322 323 324
	stripe_offset = offset & (d->stripe_size - 1);

	while (nr_sectors) {
		int s = min_t(unsigned, abs(nr_sectors),
			      d->stripe_size - stripe_offset);

		if (nr_sectors < 0)
			s = -s;

325 326 327 328 329 330 331 332 333 334
		if (stripe >= d->nr_stripes)
			return;

		sectors_dirty = atomic_add_return(s,
					d->stripe_sectors_dirty + stripe);
		if (sectors_dirty == d->stripe_size)
			set_bit(stripe, d->full_dirty_stripes);
		else
			clear_bit(stripe, d->full_dirty_stripes);

335 336 337 338 339 340 341 342
		nr_sectors -= s;
		stripe_offset = 0;
		stripe++;
	}
}

static bool dirty_pred(struct keybuf *buf, struct bkey *k)
{
343 344 345 346
	struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);

	BUG_ON(KEY_INODE(k) != dc->disk.id);

347 348 349
	return KEY_DIRTY(k);
}

350
static void refill_full_stripes(struct cached_dev *dc)
351
{
352 353 354 355 356
	struct keybuf *buf = &dc->writeback_keys;
	unsigned start_stripe, stripe, next_stripe;
	bool wrapped = false;

	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
357

358 359
	if (stripe >= dc->disk.nr_stripes)
		stripe = 0;
360

361
	start_stripe = stripe;
362 363

	while (1) {
364 365
		stripe = find_next_bit(dc->disk.full_dirty_stripes,
				       dc->disk.nr_stripes, stripe);
366

367 368
		if (stripe == dc->disk.nr_stripes)
			goto next;
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
						 dc->disk.nr_stripes, stripe);

		buf->last_scanned = KEY(dc->disk.id,
					stripe * dc->disk.stripe_size, 0);

		bch_refill_keybuf(dc->disk.c, buf,
				  &KEY(dc->disk.id,
				       next_stripe * dc->disk.stripe_size, 0),
				  dirty_pred);

		if (array_freelist_empty(&buf->freelist))
			return;

		stripe = next_stripe;
next:
		if (wrapped && stripe > start_stripe)
			return;

		if (stripe == dc->disk.nr_stripes) {
			stripe = 0;
			wrapped = true;
		}
393 394 395
	}
}

396 397 398
/*
 * Returns true if we scanned the entire disk
 */
399 400 401
static bool refill_dirty(struct cached_dev *dc)
{
	struct keybuf *buf = &dc->writeback_keys;
402
	struct bkey start = KEY(dc->disk.id, 0, 0);
403
	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
404 405 406 407 408 409 410 411 412 413
	struct bkey start_pos;

	/*
	 * make sure keybuf pos is inside the range for this disk - at bringup
	 * we might not be attached yet so this disk's inode nr isn't
	 * initialized then
	 */
	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
	    bkey_cmp(&buf->last_scanned, &end) > 0)
		buf->last_scanned = start;
414 415 416 417 418 419

	if (dc->partial_stripes_expensive) {
		refill_full_stripes(dc);
		if (array_freelist_empty(&buf->freelist))
			return false;
	}
420

421
	start_pos = buf->last_scanned;
422
	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
423

424 425 426 427 428 429 430 431 432 433 434
	if (bkey_cmp(&buf->last_scanned, &end) < 0)
		return false;

	/*
	 * If we get to the end start scanning again from the beginning, and
	 * only scan up to where we initially started scanning from:
	 */
	buf->last_scanned = start;
	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);

	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
435 436 437 438 439 440 441 442 443 444
}

static int bch_writeback_thread(void *arg)
{
	struct cached_dev *dc = arg;
	bool searched_full_index;

	while (!kthread_should_stop()) {
		down_write(&dc->writeback_lock);
		if (!atomic_read(&dc->has_dirty) ||
445
		    (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		     !dc->writeback_running)) {
			up_write(&dc->writeback_lock);
			set_current_state(TASK_INTERRUPTIBLE);

			if (kthread_should_stop())
				return 0;

			schedule();
			continue;
		}

		searched_full_index = refill_dirty(dc);

		if (searched_full_index &&
		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
			atomic_set(&dc->has_dirty, 0);
			cached_dev_put(dc);
			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
			bch_write_bdev_super(dc, NULL);
		}

		up_write(&dc->writeback_lock);

		bch_ratelimit_reset(&dc->writeback_rate);
		read_dirty(dc);

		if (searched_full_index) {
			unsigned delay = dc->writeback_delay * HZ;

			while (delay &&
			       !kthread_should_stop() &&
477
			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
478
				delay = schedule_timeout_interruptible(delay);
479 480 481 482
		}
	}

	return 0;
K
Kent Overstreet 已提交
483 484
}

485 486
/* Init */

K
Kent Overstreet 已提交
487 488 489 490 491 492
struct sectors_dirty_init {
	struct btree_op	op;
	unsigned	inode;
};

static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
493
				 struct bkey *k)
494
{
K
Kent Overstreet 已提交
495 496
	struct sectors_dirty_init *op = container_of(_op,
						struct sectors_dirty_init, op);
497 498
	if (KEY_INODE(k) > op->inode)
		return MAP_DONE;
499

500 501 502 503 504
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
					     KEY_START(k), KEY_SIZE(k));

	return MAP_CONTINUE;
505 506
}

507
void bch_sectors_dirty_init(struct bcache_device *d)
508
{
K
Kent Overstreet 已提交
509
	struct sectors_dirty_init op;
510

K
Kent Overstreet 已提交
511
	bch_btree_op_init(&op.op, -1);
512
	op.inode = d->id;
513

514
	bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
515
			   sectors_dirty_init_fn, 0);
516 517
}

518
void bch_cached_dev_writeback_init(struct cached_dev *dc)
K
Kent Overstreet 已提交
519
{
520
	sema_init(&dc->in_flight, 64);
K
Kent Overstreet 已提交
521
	init_rwsem(&dc->writeback_lock);
K
Kent Overstreet 已提交
522
	bch_keybuf_init(&dc->writeback_keys);
K
Kent Overstreet 已提交
523 524 525 526 527 528

	dc->writeback_metadata		= true;
	dc->writeback_running		= true;
	dc->writeback_percent		= 10;
	dc->writeback_delay		= 30;
	dc->writeback_rate.rate		= 1024;
529
	dc->writeback_rate_minimum	= 8;
K
Kent Overstreet 已提交
530

531
	dc->writeback_rate_update_seconds = 5;
532 533
	dc->writeback_rate_p_term_inverse = 40;
	dc->writeback_rate_i_term_inverse = 10000;
K
Kent Overstreet 已提交
534

535 536 537 538 539
	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
}

int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
540 541 542 543 544
	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
						WQ_MEM_RECLAIM, 0);
	if (!dc->writeback_write_wq)
		return -ENOMEM;

545 546 547 548 549
	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
					      "bcache_writeback");
	if (IS_ERR(dc->writeback_thread))
		return PTR_ERR(dc->writeback_thread);

K
Kent Overstreet 已提交
550 551 552
	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);

553 554
	bch_writeback_queue(dc);

K
Kent Overstreet 已提交
555 556
	return 0;
}