writeback.c 13.7 KB
Newer Older
K
Kent Overstreet 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * background writeback - scan btree for dirty data and write it to the backing
 * device
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
12
#include "writeback.h"
K
Kent Overstreet 已提交
13

14 15
#include <linux/delay.h>
#include <linux/kthread.h>
16
#include <linux/sched/clock.h>
K
Kent Overstreet 已提交
17 18
#include <trace/events/bcache.h>

K
Kent Overstreet 已提交
19 20 21 22 23
/* Rate limiting */

static void __update_writeback_rate(struct cached_dev *dc)
{
	struct cache_set *c = dc->disk.c;
24 25
	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
				bcache_flash_devs_sectors_dirty(c);
K
Kent Overstreet 已提交
26 27 28 29 30
	uint64_t cache_dirty_target =
		div_u64(cache_sectors * dc->writeback_percent, 100);
	int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
				   c->cached_dev_sectors);

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
	/*
	 * PI controller:
	 * Figures out the amount that should be written per second.
	 *
	 * First, the error (number of sectors that are dirty beyond our
	 * target) is calculated.  The error is accumulated (numerically
	 * integrated).
	 *
	 * Then, the proportional value and integral value are scaled
	 * based on configured values.  These are stored as inverses to
	 * avoid fixed point math and to make configuration easy-- e.g.
	 * the default value of 40 for writeback_rate_p_term_inverse
	 * attempts to write at a rate that would retire all the dirty
	 * blocks in 40 seconds.
	 *
	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
	 * of the error is accumulated in the integral term per second.
	 * This acts as a slow, long-term average that is not subject to
	 * variations in usage like the p term.
	 */
51
	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
52 53 54
	int64_t error = dirty - target;
	int64_t proportional_scaled =
		div_s64(error, dc->writeback_rate_p_term_inverse);
55 56
	int64_t integral_scaled;
	uint32_t new_rate;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

	if ((error < 0 && dc->writeback_rate_integral > 0) ||
	    (error > 0 && time_before64(local_clock(),
			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
		/*
		 * Only decrease the integral term if it's more than
		 * zero.  Only increase the integral term if the device
		 * is keeping up.  (Don't wind up the integral
		 * ineffectively in either case).
		 *
		 * It's necessary to scale this by
		 * writeback_rate_update_seconds to keep the integral
		 * term dimensioned properly.
		 */
		dc->writeback_rate_integral += error *
			dc->writeback_rate_update_seconds;
	}
K
Kent Overstreet 已提交
74

75 76
	integral_scaled = div_s64(dc->writeback_rate_integral,
			dc->writeback_rate_i_term_inverse);
K
Kent Overstreet 已提交
77

78 79
	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
			dc->writeback_rate_minimum, NSEC_PER_SEC);
80

81 82 83 84
	dc->writeback_rate_proportional = proportional_scaled;
	dc->writeback_rate_integral_scaled = integral_scaled;
	dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
	dc->writeback_rate.rate = new_rate;
K
Kent Overstreet 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
	dc->writeback_rate_target = target;
}

static void update_writeback_rate(struct work_struct *work)
{
	struct cached_dev *dc = container_of(to_delayed_work(work),
					     struct cached_dev,
					     writeback_rate_update);

	down_read(&dc->writeback_lock);

	if (atomic_read(&dc->has_dirty) &&
	    dc->writeback_percent)
		__update_writeback_rate(dc);

	up_read(&dc->writeback_lock);
101 102 103

	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);
K
Kent Overstreet 已提交
104 105 106 107
}

static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
{
108
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
K
Kent Overstreet 已提交
109 110 111
	    !dc->writeback_percent)
		return 0;

112
	return bch_next_delay(&dc->writeback_rate, sectors);
K
Kent Overstreet 已提交
113 114
}

115 116 117 118 119
struct dirty_io {
	struct closure		cl;
	struct cached_dev	*dc;
	struct bio		bio;
};
K
Kent Overstreet 已提交
120

K
Kent Overstreet 已提交
121 122 123 124 125
static void dirty_init(struct keybuf_key *w)
{
	struct dirty_io *io = w->private;
	struct bio *bio = &io->bio;

126 127
	bio_init(bio, bio->bi_inline_vecs,
		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
K
Kent Overstreet 已提交
128 129 130
	if (!io->dc->writeback_percent)
		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));

131
	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
K
Kent Overstreet 已提交
132
	bio->bi_private		= w;
133
	bch_bio_map(bio, NULL);
K
Kent Overstreet 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
}

static void dirty_io_destructor(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	kfree(io);
}

static void write_dirty_finish(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
	struct cached_dev *dc = io->dc;

148
	bio_free_pages(&io->bio);
K
Kent Overstreet 已提交
149 150 151

	/* This is kind of a dumb way of signalling errors. */
	if (KEY_DIRTY(&w->key)) {
152
		int ret;
K
Kent Overstreet 已提交
153
		unsigned i;
154 155 156
		struct keylist keys;

		bch_keylist_init(&keys);
K
Kent Overstreet 已提交
157

K
Kent Overstreet 已提交
158 159 160
		bkey_copy(keys.top, &w->key);
		SET_KEY_DIRTY(keys.top, false);
		bch_keylist_push(&keys);
K
Kent Overstreet 已提交
161 162 163 164

		for (i = 0; i < KEY_PTRS(&w->key); i++)
			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);

165
		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
K
Kent Overstreet 已提交
166

167
		if (ret)
K
Kent Overstreet 已提交
168 169
			trace_bcache_writeback_collision(&w->key);

170
		atomic_long_inc(ret
K
Kent Overstreet 已提交
171 172 173 174 175
				? &dc->disk.c->writeback_keys_failed
				: &dc->disk.c->writeback_keys_done);
	}

	bch_keybuf_del(&dc->writeback_keys, w);
176
	up(&dc->in_flight);
K
Kent Overstreet 已提交
177 178 179 180

	closure_return_with_destructor(cl, dirty_io_destructor);
}

181
static void dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
182 183 184 185
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

186
	if (bio->bi_status)
K
Kent Overstreet 已提交
187 188 189 190 191 192 193 194 195 196
		SET_KEY_DIRTY(&w->key, false);

	closure_put(&io->cl);
}

static void write_dirty(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;

197 198 199 200 201 202 203 204 205 206 207 208
	/*
	 * IO errors are signalled using the dirty bit on the key.
	 * If we failed to read, we should not attempt to write to the
	 * backing device.  Instead, immediately go to write_dirty_finish
	 * to clean up.
	 */
	if (KEY_DIRTY(&w->key)) {
		dirty_init(w);
		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
		bio_set_dev(&io->bio, io->dc->bdev);
		io->bio.bi_end_io	= dirty_endio;
K
Kent Overstreet 已提交
209

210 211
		closure_bio_submit(&io->bio, cl);
	}
K
Kent Overstreet 已提交
212

213
	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
214 215
}

216
static void read_dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
217 218 219 220 221
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
222
			    bio->bi_status, "reading dirty data from cache");
K
Kent Overstreet 已提交
223

224
	dirty_endio(bio);
K
Kent Overstreet 已提交
225 226 227 228 229 230
}

static void read_dirty_submit(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);

231
	closure_bio_submit(&io->bio, cl);
K
Kent Overstreet 已提交
232

233
	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
234 235
}

236
static void read_dirty(struct cached_dev *dc)
K
Kent Overstreet 已提交
237
{
238
	unsigned delay = 0;
K
Kent Overstreet 已提交
239 240
	struct keybuf_key *w;
	struct dirty_io *io;
241 242 243
	struct closure cl;

	closure_init_stack(&cl);
K
Kent Overstreet 已提交
244 245 246 247 248 249

	/*
	 * XXX: if we error, background writeback just spins. Should use some
	 * mempools.
	 */

250 251
	while (!kthread_should_stop()) {

K
Kent Overstreet 已提交
252 253 254 255 256 257
		w = bch_keybuf_next(&dc->writeback_keys);
		if (!w)
			break;

		BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));

258 259 260
		if (KEY_START(&w->key) != dc->last_read ||
		    jiffies_to_msecs(delay) > 50)
			while (!kthread_should_stop() && delay)
261
				delay = schedule_timeout_interruptible(delay);
K
Kent Overstreet 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274

		dc->last_read	= KEY_OFFSET(&w->key);

		io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
			     * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
			     GFP_KERNEL);
		if (!io)
			goto err;

		w->private	= io;
		io->dc		= dc;

		dirty_init(w);
M
Mike Christie 已提交
275
		bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
276
		io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
277
		bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
K
Kent Overstreet 已提交
278 279
		io->bio.bi_end_io	= read_dirty_endio;

280
		if (bio_alloc_pages(&io->bio, GFP_KERNEL))
K
Kent Overstreet 已提交
281 282
			goto err_free;

K
Kent Overstreet 已提交
283
		trace_bcache_writeback(&w->key);
K
Kent Overstreet 已提交
284

285
		down(&dc->in_flight);
286
		closure_call(&io->cl, read_dirty_submit, NULL, &cl);
K
Kent Overstreet 已提交
287 288 289 290 291 292 293 294 295 296 297

		delay = writeback_delay(dc, KEY_SIZE(&w->key));
	}

	if (0) {
err_free:
		kfree(w->private);
err:
		bch_keybuf_del(&dc->writeback_keys, w);
	}

298 299 300 301
	/*
	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
	 * freed) before refilling again
	 */
302 303 304 305 306 307 308 309 310
	closure_sync(&cl);
}

/* Scan for dirty data */

void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
				  uint64_t offset, int nr_sectors)
{
	struct bcache_device *d = c->devices[inode];
311
	unsigned stripe_offset, stripe, sectors_dirty;
312 313 314 315

	if (!d)
		return;

316
	stripe = offset_to_stripe(d, offset);
317 318 319 320 321 322 323 324 325
	stripe_offset = offset & (d->stripe_size - 1);

	while (nr_sectors) {
		int s = min_t(unsigned, abs(nr_sectors),
			      d->stripe_size - stripe_offset);

		if (nr_sectors < 0)
			s = -s;

326 327 328 329 330 331 332 333 334 335
		if (stripe >= d->nr_stripes)
			return;

		sectors_dirty = atomic_add_return(s,
					d->stripe_sectors_dirty + stripe);
		if (sectors_dirty == d->stripe_size)
			set_bit(stripe, d->full_dirty_stripes);
		else
			clear_bit(stripe, d->full_dirty_stripes);

336 337 338 339 340 341 342 343
		nr_sectors -= s;
		stripe_offset = 0;
		stripe++;
	}
}

static bool dirty_pred(struct keybuf *buf, struct bkey *k)
{
344 345 346 347
	struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);

	BUG_ON(KEY_INODE(k) != dc->disk.id);

348 349 350
	return KEY_DIRTY(k);
}

351
static void refill_full_stripes(struct cached_dev *dc)
352
{
353 354 355 356 357
	struct keybuf *buf = &dc->writeback_keys;
	unsigned start_stripe, stripe, next_stripe;
	bool wrapped = false;

	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
358

359 360
	if (stripe >= dc->disk.nr_stripes)
		stripe = 0;
361

362
	start_stripe = stripe;
363 364

	while (1) {
365 366
		stripe = find_next_bit(dc->disk.full_dirty_stripes,
				       dc->disk.nr_stripes, stripe);
367

368 369
		if (stripe == dc->disk.nr_stripes)
			goto next;
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
						 dc->disk.nr_stripes, stripe);

		buf->last_scanned = KEY(dc->disk.id,
					stripe * dc->disk.stripe_size, 0);

		bch_refill_keybuf(dc->disk.c, buf,
				  &KEY(dc->disk.id,
				       next_stripe * dc->disk.stripe_size, 0),
				  dirty_pred);

		if (array_freelist_empty(&buf->freelist))
			return;

		stripe = next_stripe;
next:
		if (wrapped && stripe > start_stripe)
			return;

		if (stripe == dc->disk.nr_stripes) {
			stripe = 0;
			wrapped = true;
		}
394 395 396
	}
}

397 398 399
/*
 * Returns true if we scanned the entire disk
 */
400 401 402
static bool refill_dirty(struct cached_dev *dc)
{
	struct keybuf *buf = &dc->writeback_keys;
403
	struct bkey start = KEY(dc->disk.id, 0, 0);
404
	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
405 406 407 408 409 410 411 412 413 414
	struct bkey start_pos;

	/*
	 * make sure keybuf pos is inside the range for this disk - at bringup
	 * we might not be attached yet so this disk's inode nr isn't
	 * initialized then
	 */
	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
	    bkey_cmp(&buf->last_scanned, &end) > 0)
		buf->last_scanned = start;
415 416 417 418 419 420

	if (dc->partial_stripes_expensive) {
		refill_full_stripes(dc);
		if (array_freelist_empty(&buf->freelist))
			return false;
	}
421

422
	start_pos = buf->last_scanned;
423
	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
424

425 426 427 428 429 430 431 432 433 434 435
	if (bkey_cmp(&buf->last_scanned, &end) < 0)
		return false;

	/*
	 * If we get to the end start scanning again from the beginning, and
	 * only scan up to where we initially started scanning from:
	 */
	buf->last_scanned = start;
	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);

	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
436 437 438 439 440 441 442 443 444 445
}

static int bch_writeback_thread(void *arg)
{
	struct cached_dev *dc = arg;
	bool searched_full_index;

	while (!kthread_should_stop()) {
		down_write(&dc->writeback_lock);
		if (!atomic_read(&dc->has_dirty) ||
446
		    (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		     !dc->writeback_running)) {
			up_write(&dc->writeback_lock);
			set_current_state(TASK_INTERRUPTIBLE);

			if (kthread_should_stop())
				return 0;

			schedule();
			continue;
		}

		searched_full_index = refill_dirty(dc);

		if (searched_full_index &&
		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
			atomic_set(&dc->has_dirty, 0);
			cached_dev_put(dc);
			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
			bch_write_bdev_super(dc, NULL);
		}

		up_write(&dc->writeback_lock);

		bch_ratelimit_reset(&dc->writeback_rate);
		read_dirty(dc);

		if (searched_full_index) {
			unsigned delay = dc->writeback_delay * HZ;

			while (delay &&
			       !kthread_should_stop() &&
478
			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
479
				delay = schedule_timeout_interruptible(delay);
480 481 482 483
		}
	}

	return 0;
K
Kent Overstreet 已提交
484 485
}

486 487
/* Init */

K
Kent Overstreet 已提交
488 489 490 491 492 493
struct sectors_dirty_init {
	struct btree_op	op;
	unsigned	inode;
};

static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
494
				 struct bkey *k)
495
{
K
Kent Overstreet 已提交
496 497
	struct sectors_dirty_init *op = container_of(_op,
						struct sectors_dirty_init, op);
498 499
	if (KEY_INODE(k) > op->inode)
		return MAP_DONE;
500

501 502 503 504 505
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
					     KEY_START(k), KEY_SIZE(k));

	return MAP_CONTINUE;
506 507
}

508
void bch_sectors_dirty_init(struct bcache_device *d)
509
{
K
Kent Overstreet 已提交
510
	struct sectors_dirty_init op;
511

K
Kent Overstreet 已提交
512
	bch_btree_op_init(&op.op, -1);
513
	op.inode = d->id;
514

515
	bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
516
			   sectors_dirty_init_fn, 0);
517 518
}

519
void bch_cached_dev_writeback_init(struct cached_dev *dc)
K
Kent Overstreet 已提交
520
{
521
	sema_init(&dc->in_flight, 64);
K
Kent Overstreet 已提交
522
	init_rwsem(&dc->writeback_lock);
K
Kent Overstreet 已提交
523
	bch_keybuf_init(&dc->writeback_keys);
K
Kent Overstreet 已提交
524 525 526 527 528 529

	dc->writeback_metadata		= true;
	dc->writeback_running		= true;
	dc->writeback_percent		= 10;
	dc->writeback_delay		= 30;
	dc->writeback_rate.rate		= 1024;
530
	dc->writeback_rate_minimum	= 8;
K
Kent Overstreet 已提交
531

532
	dc->writeback_rate_update_seconds = 5;
533 534
	dc->writeback_rate_p_term_inverse = 40;
	dc->writeback_rate_i_term_inverse = 10000;
K
Kent Overstreet 已提交
535

536 537 538 539 540
	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
}

int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
541 542 543 544 545
	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
						WQ_MEM_RECLAIM, 0);
	if (!dc->writeback_write_wq)
		return -ENOMEM;

546 547 548 549 550
	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
					      "bcache_writeback");
	if (IS_ERR(dc->writeback_thread))
		return PTR_ERR(dc->writeback_thread);

K
Kent Overstreet 已提交
551 552 553
	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);

554 555
	bch_writeback_queue(dc);

K
Kent Overstreet 已提交
556 557
	return 0;
}