process.c 20.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

4 5 6 7
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
8
#include <linux/prctl.h>
9 10
#include <linux/slab.h>
#include <linux/sched.h>
11
#include <linux/sched/idle.h>
12
#include <linux/sched/debug.h>
13
#include <linux/sched/task.h>
14
#include <linux/sched/task_stack.h>
15 16
#include <linux/init.h>
#include <linux/export.h>
17
#include <linux/pm.h>
18
#include <linux/tick.h>
A
Amerigo Wang 已提交
19
#include <linux/random.h>
A
Avi Kivity 已提交
20
#include <linux/user-return-notifier.h>
21 22
#include <linux/dmi.h>
#include <linux/utsname.h>
23 24
#include <linux/stackprotector.h>
#include <linux/cpuidle.h>
25
#include <trace/events/power.h>
26
#include <linux/hw_breakpoint.h>
27
#include <asm/cpu.h>
28
#include <asm/apic.h>
29
#include <asm/syscalls.h>
30
#include <linux/uaccess.h>
31
#include <asm/mwait.h>
32
#include <asm/fpu/internal.h>
33
#include <asm/debugreg.h>
34
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
35
#include <asm/tlbflush.h>
36
#include <asm/mce.h>
37
#include <asm/vm86.h>
38
#include <asm/switch_to.h>
39
#include <asm/desc.h>
40
#include <asm/prctl.h>
41
#include <asm/spec-ctrl.h>
42

43 44
#include "process.h"

T
Thomas Gleixner 已提交
45 46 47 48 49 50 51
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
52
__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
53
	.x86_tss = {
54 55 56 57 58 59 60
		/*
		 * .sp0 is only used when entering ring 0 from a lower
		 * privilege level.  Since the init task never runs anything
		 * but ring 0 code, there is no need for a valid value here.
		 * Poison it.
		 */
		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
61 62 63 64 65 66 67 68

		/*
		 * .sp1 is cpu_current_top_of_stack.  The init task never
		 * runs user code, but cpu_current_top_of_stack should still
		 * be well defined before the first context switch.
		 */
		.sp1 = TOP_OF_INIT_STACK,

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
};
85
EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
T
Thomas Gleixner 已提交
86

87 88
DEFINE_PER_CPU(bool, __tss_limit_invalid);
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89

90 91 92 93
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
94 95
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
96
	memcpy(dst, src, arch_task_struct_size);
97 98 99
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
100

101
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102
}
103

104 105 106
/*
 * Free current thread data structures etc..
 */
107
void exit_thread(struct task_struct *tsk)
108
{
109
	struct thread_struct *t = &tsk->thread;
110
	unsigned long *bp = t->io_bitmap_ptr;
111
	struct fpu *fpu = &t->fpu;
112

113
	if (bp) {
114
		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115 116 117 118 119 120 121 122 123

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
124
		kfree(bp);
125
	}
126

127 128
	free_vm86(t);

129
	fpu__drop(fpu);
130 131 132 133 134 135
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

136
	flush_ptrace_hw_breakpoint(tsk);
137
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138

139
	fpu__clear(&tsk->thread.fpu);
140 141 142 143 144 145 146 147 148 149
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
150
		cr4_set_bits(X86_CR4_TSD);
151 152 153 154 155 156 157 158 159 160 161
	preempt_enable();
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
162
		cr4_clear_bits(X86_CR4_TSD);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
DEFINE_PER_CPU(u64, msr_misc_features_shadow);

static void set_cpuid_faulting(bool on)
{
	u64 msrval;

	msrval = this_cpu_read(msr_misc_features_shadow);
	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
	this_cpu_write(msr_misc_features_shadow, msrval);
	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
}

static void disable_cpuid(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(true);
	}
	preempt_enable();
}

static void enable_cpuid(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(false);
	}
	preempt_enable();
}

static int get_cpuid_mode(void)
{
	return !test_thread_flag(TIF_NOCPUID);
}

static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
{
	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
		return -ENODEV;

	if (cpuid_enabled)
		enable_cpuid();
	else
		disable_cpuid();

	return 0;
}

/*
 * Called immediately after a successful exec.
 */
void arch_setup_new_exec(void)
{
	/* If cpuid was previously disabled for this task, re-enable it. */
	if (test_thread_flag(TIF_NOCPUID))
		enable_cpuid();
}

257
static inline void switch_to_bitmap(struct thread_struct *prev,
258 259 260
				    struct thread_struct *next,
				    unsigned long tifp, unsigned long tifn)
{
261 262
	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	if (tifn & _TIF_IO_BITMAP) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
		/*
		 * Make sure that the TSS limit is correct for the CPU
		 * to notice the IO bitmap.
		 */
		refresh_tss_limit();
	} else if (tifp & _TIF_IO_BITMAP) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296
#ifdef CONFIG_SMP

struct ssb_state {
	struct ssb_state	*shared_state;
	raw_spinlock_t		lock;
	unsigned int		disable_state;
	unsigned long		local_state;
};

#define LSTATE_SSB	0

static DEFINE_PER_CPU(struct ssb_state, ssb_state);

void speculative_store_bypass_ht_init(void)
297
{
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
	unsigned int this_cpu = smp_processor_id();
	unsigned int cpu;

	st->local_state = 0;

	/*
	 * Shared state setup happens once on the first bringup
	 * of the CPU. It's not destroyed on CPU hotunplug.
	 */
	if (st->shared_state)
		return;

	raw_spin_lock_init(&st->lock);

	/*
	 * Go over HT siblings and check whether one of them has set up the
	 * shared state pointer already.
	 */
	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
		if (cpu == this_cpu)
			continue;

		if (!per_cpu(ssb_state, cpu).shared_state)
			continue;

		/* Link it to the state of the sibling: */
		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
		return;
	}

	/*
	 * First HT sibling to come up on the core.  Link shared state of
	 * the first HT sibling to itself. The siblings on the same core
	 * which come up later will see the shared state pointer and link
	 * themself to the state of this CPU.
	 */
	st->shared_state = st;
}
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * Logic is: First HT sibling enables SSBD for both siblings in the core
 * and last sibling to disable it, disables it for the whole core. This how
 * MSR_SPEC_CTRL works in "hardware":
 *
 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 */
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
{
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
	u64 msr = x86_amd_ls_cfg_base;

	if (!static_cpu_has(X86_FEATURE_ZEN)) {
		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
352
		wrmsrl(MSR_AMD64_LS_CFG, msr);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		return;
	}

	if (tifn & _TIF_SSBD) {
		/*
		 * Since this can race with prctl(), block reentry on the
		 * same CPU.
		 */
		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
			return;

		msr |= x86_amd_ls_cfg_ssbd_mask;

		raw_spin_lock(&st->shared_state->lock);
		/* First sibling enables SSBD: */
		if (!st->shared_state->disable_state)
			wrmsrl(MSR_AMD64_LS_CFG, msr);
		st->shared_state->disable_state++;
		raw_spin_unlock(&st->shared_state->lock);
372
	} else {
373 374 375 376 377 378 379 380
		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
			return;

		raw_spin_lock(&st->shared_state->lock);
		st->shared_state->disable_state--;
		if (!st->shared_state->disable_state)
			wrmsrl(MSR_AMD64_LS_CFG, msr);
		raw_spin_unlock(&st->shared_state->lock);
381 382
	}
}
383 384 385 386 387 388 389 390 391
#else
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
{
	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);

	wrmsrl(MSR_AMD64_LS_CFG, msr);
}
#endif

392 393 394 395 396 397 398 399 400
static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
{
	/*
	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
	 * so ssbd_tif_to_spec_ctrl() just works.
	 */
	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
}

401 402 403 404 405 406 407 408
/*
 * Update the MSRs managing speculation control, during context switch.
 *
 * tifp: Previous task's thread flags
 * tifn: Next task's thread flags
 */
static __always_inline void __speculation_ctrl_update(unsigned long tifp,
						      unsigned long tifn)
409
{
410
	unsigned long tif_diff = tifp ^ tifn;
411 412 413
	u64 msr = x86_spec_ctrl_base;
	bool updmsr = false;

414 415
	lockdep_assert_irqs_disabled();

416 417 418 419 420 421 422
	/*
	 * If TIF_SSBD is different, select the proper mitigation
	 * method. Note that if SSBD mitigation is disabled or permanentely
	 * enabled this branch can't be taken because nothing can set
	 * TIF_SSBD.
	 */
	if (tif_diff & _TIF_SSBD) {
423 424 425 426 427 428 429 430 431 432
		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
			amd_set_ssb_virt_state(tifn);
		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
			amd_set_core_ssb_state(tifn);
		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
			msr |= ssbd_tif_to_spec_ctrl(tifn);
			updmsr  = true;
		}
	}
433

434 435 436 437 438 439 440 441 442 443
	/*
	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
	 * otherwise avoid the MSR write.
	 */
	if (IS_ENABLED(CONFIG_SMP) &&
	    static_branch_unlikely(&switch_to_cond_stibp)) {
		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
		msr |= stibp_tif_to_spec_ctrl(tifn);
	}

444 445
	if (updmsr)
		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
446
}
447

448 449 450 451 452 453 454
static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
{
	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
		if (task_spec_ssb_disable(tsk))
			set_tsk_thread_flag(tsk, TIF_SSBD);
		else
			clear_tsk_thread_flag(tsk, TIF_SSBD);
455 456 457 458 459

		if (task_spec_ib_disable(tsk))
			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
		else
			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
460 461 462 463 464
	}
	/* Return the updated threadinfo flags*/
	return task_thread_info(tsk)->flags;
}

465
void speculation_ctrl_update(unsigned long tif)
466
{
467 468
	unsigned long flags;

469
	/* Forced update. Make sure all relevant TIF flags are different */
470
	local_irq_save(flags);
471
	__speculation_ctrl_update(~tif, tif);
472
	local_irq_restore(flags);
473 474
}

475 476 477 478 479 480 481 482
/* Called from seccomp/prctl update */
void speculation_ctrl_update_current(void)
{
	preempt_disable();
	speculation_ctrl_update(speculation_ctrl_update_tif(current));
	preempt_enable();
}

483
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
484 485
{
	struct thread_struct *prev, *next;
486
	unsigned long tifp, tifn;
487 488 489 490

	prev = &prev_p->thread;
	next = &next_p->thread;

491 492
	tifn = READ_ONCE(task_thread_info(next_p)->flags);
	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
493
	switch_to_bitmap(prev, next, tifp, tifn);
494 495 496

	propagate_user_return_notify(prev_p, next_p);

497 498 499
	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
	    arch_has_block_step()) {
		unsigned long debugctl, msk;
P
Peter Zijlstra 已提交
500

501
		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
502
		debugctl &= ~DEBUGCTLMSR_BTF;
503 504 505
		msk = tifn & _TIF_BLOCKSTEP;
		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
506
	}
507

508
	if ((tifp ^ tifn) & _TIF_NOTSC)
509
		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
510 511 512

	if ((tifp ^ tifn) & _TIF_NOCPUID)
		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
513

514 515 516 517 518 519 520 521 522
	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
		__speculation_ctrl_update(tifp, tifn);
	} else {
		speculation_ctrl_update_tif(prev_p);
		tifn = speculation_ctrl_update_tif(next_p);

		/* Enforce MSR update to ensure consistent state */
		__speculation_ctrl_update(~tifn, tifn);
	}
523 524
}

525 526 527
/*
 * Idle related variables and functions
 */
528
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
529 530
EXPORT_SYMBOL(boot_option_idle_override);

531
static void (*x86_idle)(void);
532

533 534 535 536 537 538 539
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

T
Thomas Gleixner 已提交
540 541
void arch_cpu_idle_enter(void)
{
542
	tsc_verify_tsc_adjust(false);
T
Thomas Gleixner 已提交
543 544
	local_touch_nmi();
}
545

T
Thomas Gleixner 已提交
546 547 548 549
void arch_cpu_idle_dead(void)
{
	play_dead();
}
550

T
Thomas Gleixner 已提交
551 552 553 554 555
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
556
	x86_idle();
557 558
}

559
/*
T
Thomas Gleixner 已提交
560
 * We use this if we don't have any better idle routine..
561
 */
562
void __cpuidle default_idle(void)
563
{
564
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
565
	safe_halt();
566
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
567
}
568
#ifdef CONFIG_APM_MODULE
569 570 571
EXPORT_SYMBOL(default_idle);
#endif

572 573
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
574
{
575
	bool ret = !!x86_idle;
576

577
	x86_idle = default_idle;
578 579 580

	return ret;
}
581
#endif
582

583 584 585 586 587 588
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
589
	set_cpu_online(smp_processor_id(), false);
590
	disable_local_APIC();
591
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
592

593 594 595 596 597 598 599 600 601 602 603
	/*
	 * Use wbinvd on processors that support SME. This provides support
	 * for performing a successful kexec when going from SME inactive
	 * to SME active (or vice-versa). The cache must be cleared so that
	 * if there are entries with the same physical address, both with and
	 * without the encryption bit, they don't race each other when flushed
	 * and potentially end up with the wrong entry being committed to
	 * memory.
	 */
	if (boot_cpu_has(X86_FEATURE_SME))
		native_wbinvd();
604 605
	for (;;) {
		/*
606 607 608
		 * Use native_halt() so that memory contents don't change
		 * (stack usage and variables) after possibly issuing the
		 * native_wbinvd() above.
609
		 */
610
		native_halt();
611
	}
612 613
}

614
/*
615 616
 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 * states (local apic timer and TSC stop).
617
 */
618
static void amd_e400_idle(void)
619
{
620 621 622 623 624 625 626 627
	/*
	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
	 * gets set after static_cpu_has() places have been converted via
	 * alternatives.
	 */
	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		default_idle();
		return;
628 629
	}

630
	tick_broadcast_enter();
631

632
	default_idle();
633

634 635 636 637 638 639 640
	/*
	 * The switch back from broadcast mode needs to be called with
	 * interrupts disabled.
	 */
	local_irq_disable();
	tick_broadcast_exit();
	local_irq_enable();
641 642
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

658
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
659 660 661 662 663 664
		return 0;

	return 1;
}

/*
665 666 667
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
668
 */
669
static __cpuidle void mwait_idle(void)
670
{
671
	if (!current_set_polling_and_test()) {
672
		trace_cpu_idle_rcuidle(1, smp_processor_id());
673
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
674
			mb(); /* quirk */
675
			clflush((void *)&current_thread_info()->flags);
676
			mb(); /* quirk */
677
		}
678 679 680 681 682 683

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
684
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
685
	} else {
686
		local_irq_enable();
687 688
	}
	__current_clr_polling();
689 690
}

691
void select_idle_routine(const struct cpuinfo_x86 *c)
692
{
693
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
694
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
695
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
696
#endif
T
Thomas Gleixner 已提交
697
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
698 699
		return;

700
	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
701
		pr_info("using AMD E400 aware idle routine\n");
702
		x86_idle = amd_e400_idle;
703 704 705
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
706
	} else
707
		x86_idle = default_idle;
708 709
}

710
void amd_e400_c1e_apic_setup(void)
711
{
712 713 714 715 716 717
	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
		local_irq_disable();
		tick_broadcast_force();
		local_irq_enable();
	}
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
void __init arch_post_acpi_subsys_init(void)
{
	u32 lo, hi;

	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
		return;

	/*
	 * AMD E400 detection needs to happen after ACPI has been enabled. If
	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
	 * MSR_K8_INT_PENDING_MSG.
	 */
	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
		return;

	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);

	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
		mark_tsc_unstable("TSC halt in AMD C1E");
	pr_info("System has AMD C1E enabled\n");
}

743 744
static int __init idle_setup(char *str)
{
745 746 747
	if (!str)
		return -EINVAL;

748
	if (!strcmp(str, "poll")) {
749
		pr_info("using polling idle threads\n");
750
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
751
		cpu_idle_poll_ctrl(true);
752
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
753 754 755 756 757 758 759
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
760
		x86_idle = default_idle;
761
		boot_option_idle_override = IDLE_HALT;
762 763 764 765 766 767 768
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
769
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
770
	} else
771 772 773 774 775 776
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
777 778 779 780 781 782 783 784 785
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
786
	return randomize_page(mm->brk, 0x02000000);
A
Amerigo Wang 已提交
787 788
}

789 790 791 792 793 794 795 796
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
797
	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
798 799 800 801 802
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

803 804 805
	if (!try_get_task_stack(p))
		return 0;

806 807
	start = (unsigned long)task_stack_page(p);
	if (!start)
808
		goto out;
809 810 811 812 813 814 815 816

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
817
	 * ----------- bottom = start
818 819 820 821 822 823 824 825 826 827
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
828
	bottom = start;
829 830 831

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
832
		goto out;
833

834
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
835 836
	do {
		if (fp < bottom || fp > top)
837
			goto out;
838
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
839 840 841 842
		if (!in_sched_functions(ip)) {
			ret = ip;
			goto out;
		}
843
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
844
	} while (count++ < 16 && p->state != TASK_RUNNING);
845 846 847 848

out:
	put_task_stack(p);
	return ret;
849
}
850 851 852 853

long do_arch_prctl_common(struct task_struct *task, int option,
			  unsigned long cpuid_enabled)
{
854 855 856 857 858 859 860
	switch (option) {
	case ARCH_GET_CPUID:
		return get_cpuid_mode();
	case ARCH_SET_CPUID:
		return set_cpuid_mode(task, cpuid_enabled);
	}

861 862
	return -EINVAL;
}