reg.c 54.4 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36
#include <linux/slab.h>
37 38 39 40 41
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44
#include "regdb.h"
45
#include "nl80211.h"
46

47
#ifdef CONFIG_CFG80211_REG_DEBUG
48
#define REG_DBG_PRINT(format, args...) \
49
	do { \
50
		printk(KERN_DEBUG format , ## args); \
51 52
	} while (0)
#else
53
#define REG_DBG_PRINT(args...)
54 55
#endif

56
/* Receipt of information from last regulatory request */
57
static struct regulatory_request *last_request;
58

59 60
/* To trigger userspace events */
static struct platform_device *reg_pdev;
61

62 63
/*
 * Central wireless core regulatory domains, we only need two,
64
 * the current one and a world regulatory domain in case we have no
65 66
 * information to give us an alpha2
 */
67
const struct ieee80211_regdomain *cfg80211_regdomain;
68

69 70 71 72 73 74
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
75
static DEFINE_MUTEX(reg_mutex);
76 77
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

78
/* Used to queue up regulatory hints */
79 80 81
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

82 83 84 85 86 87 88 89 90 91 92 93
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

94 95
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
96
	.n_reg_rules = 5,
97 98
	.alpha2 =  "00",
	.reg_rules = {
99 100
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
101 102 103
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
104 105
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
106 107 108 109 110 111 112
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
113
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
114 115
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
116 117 118 119

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
120
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
121 122
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
123 124 125
	}
};

126 127
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
128

129
static char *ieee80211_regdom = "00";
130
static char user_alpha2[2];
131

132 133 134 135 136
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
137 138 139 140 141 142 143 144 145 146
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
147

148
	cfg80211_world_regdom = &world_regdom;
149 150 151
	cfg80211_regdomain = NULL;
}

152 153 154 155
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
156
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
157
{
158
	BUG_ON(!last_request);
159 160 161 162 163 164 165

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

166
bool is_world_regdom(const char *alpha2)
167 168 169 170 171 172 173
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
174

175
static bool is_alpha2_set(const char *alpha2)
176 177 178 179 180 181 182
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
183

184 185 186 187 188 189 190
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
191

192
static bool is_unknown_alpha2(const char *alpha2)
193 194 195
{
	if (!alpha2)
		return false;
196 197 198 199
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
200 201 202 203
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
204

205 206 207 208
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
209 210
	/*
	 * Special case where regulatory domain is the
211
	 * result of an intersection between two regulatory domain
212 213
	 * structures
	 */
214 215 216 217 218
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

219
static bool is_an_alpha2(const char *alpha2)
220 221 222 223 224 225 226
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
227

228
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
229 230 231 232 233 234 235 236 237
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

238
static bool regdom_changes(const char *alpha2)
239
{
240 241
	assert_cfg80211_lock();

242 243 244 245 246 247 248
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
301
static DEFINE_MUTEX(reg_regdb_search_mutex);
302 303 304 305 306 307 308

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

309
	mutex_lock(&reg_regdb_search_mutex);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
332
	mutex_unlock(&reg_regdb_search_mutex);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

350
	mutex_lock(&reg_regdb_search_mutex);
351
	list_add_tail(&request->list, &reg_regdb_search_list);
352
	mutex_unlock(&reg_regdb_search_mutex);
353 354 355 356 357 358 359

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

360 361 362 363
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

379 380 381
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

382 383 384 385 386 387 388
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
389
bool reg_is_valid_request(const char *alpha2)
390
{
391 392
	assert_cfg80211_lock();

393 394 395 396
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
397
}
398

399
/* Sanity check on a regulatory rule */
400
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401
{
402
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 404
	u32 freq_diff;

405
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 407 408 409 410 411 412
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

413 414
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
415 416 417 418 419
		return false;

	return true;
}

420
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421
{
422
	const struct ieee80211_reg_rule *reg_rule = NULL;
423
	unsigned int i;
424

425 426
	if (!rd->n_reg_rules)
		return false;
427

428 429 430
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

431 432 433 434 435 436 437
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
438 439
}

440 441 442
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
443
{
444 445 446 447 448 449 450 451 452 453
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
454
}
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

481 482 483 484
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

562 563
	/*
	 * First we get a count of the rules we'll need, then we actually
564 565 566
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
567 568
	 * All rules that do check out OK are valid.
	 */
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
596 597
			/*
			 * This time around instead of using the stack lets
598
			 * write to the target rule directly saving ourselves
599 600
			 * a memcpy()
			 */
601 602 603
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
604 605 606 607
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

626 627 628 629
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
630 631 632 633 634 635 636 637 638 639 640 641
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

642 643
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
644
			      u32 desired_bw_khz,
645 646
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
647 648
{
	int i;
649
	bool band_rule_found = false;
650
	const struct ieee80211_regdomain *regd;
651 652 653 654
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
655

656
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
657

658 659 660 661
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
662 663
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 665 666 667
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
668 669
		return -EINVAL;

670
	for (i = 0; i < regd->n_reg_rules; i++) {
671 672 673 674
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

675
		rr = &regd->reg_rules[i];
676 677
		fr = &rr->freq_range;
		pr = &rr->power_rule;
678

679 680
		/*
		 * We only need to know if one frequency rule was
681
		 * was in center_freq's band, that's enough, so lets
682 683
		 * not overwrite it once found
		 */
684 685 686
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

687 688 689
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
690

691
		if (band_rule_found && bw_fits) {
692
			*reg_rule = rr;
693
			return 0;
694 695 696
		}
	}

697 698 699
	if (!band_rule_found)
		return -ERANGE;

700
	return -EINVAL;
701 702
}

703 704 705 706
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
707
{
708
	assert_cfg80211_lock();
709 710 711 712 713
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
714
}
715
EXPORT_SYMBOL(freq_reg_info);
716

717 718 719 720 721 722 723 724 725
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
726 727
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
728 729
{
	int r;
730 731
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
732 733
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
734
	const struct ieee80211_freq_range *freq_range = NULL;
735 736
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
737
	struct wiphy *request_wiphy = NULL;
738

739 740
	assert_cfg80211_lock();

741 742
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

743 744 745 746 747
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
748

749 750 751 752
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
753

754
	if (r)
755 756
		return;

757
	power_rule = &reg_rule->power_rule;
758 759 760 761
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
762

763
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
764
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
765
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
766 767
		/*
		 * This gaurantees the driver's requested regulatory domain
768
		 * will always be used as a base for further regulatory
769 770
		 * settings
		 */
771
		chan->flags = chan->orig_flags =
772
			map_regdom_flags(reg_rule->flags) | bw_flags;
773 774 775 776 777 778 779
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

780
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
781
	chan->max_antenna_gain = min(chan->orig_mag,
782
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
783
	if (chan->orig_mpwr)
784 785
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
786
	else
787
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
788 789
}

790
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
791
{
792 793 794 795 796
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
797 798

	for (i = 0; i < sband->n_channels; i++)
799
		handle_channel(wiphy, band, i);
800 801
}

802 803
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
804 805 806
{
	if (!last_request)
		return true;
807
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
808
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
809
		return true;
810 811 812 813
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
814
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
815
	    !is_world_regdom(last_request->alpha2))
816 817 818 819
		return true;
	return false;
}

820
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
821
{
822
	struct cfg80211_registered_device *rdev;
823

824 825
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
826 827
}

828 829 830 831 832 833
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
834 835
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
836 837 838 839 840 841 842 843 844

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

845 846 847 848 849
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
850
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
851 852
		return;

853 854 855
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

856
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
857
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
858
		channel_changed = true;
859 860
	}

861
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
862
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
863
		channel_changed = true;
864 865
	}

866 867
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
919 920
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
921
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
922 923 924 925 926 927 928
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
929 930 931 932 933 934
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
935 936 937 938 939
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
990
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
991
	else
992
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
993 994

	if (is_ht40_not_allowed(channel_after))
995
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
996
	else
997
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1027 1028
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1029 1030
{
	enum ieee80211_band band;
1031

1032
	if (ignore_reg_update(wiphy, initiator))
1033
		goto out;
1034
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1035
		if (wiphy->bands[band])
1036
			handle_band(wiphy, band);
1037
	}
1038 1039
out:
	reg_process_beacons(wiphy);
1040
	reg_process_ht_flags(wiphy);
1041
	if (wiphy->reg_notifier)
1042
		wiphy->reg_notifier(wiphy, last_request);
1043 1044
}

1045 1046 1047 1048 1049 1050
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1051 1052
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1053 1054
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1055
	const struct ieee80211_freq_range *freq_range = NULL;
1056 1057 1058
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1059
	assert_reg_lock();
1060

1061 1062 1063 1064
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1065 1066 1067 1068 1069
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1070 1071 1072 1073 1074 1075 1076

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1077 1078 1079 1080
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1081

1082
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1105
	unsigned int bands_set = 0;
1106

1107
	mutex_lock(&reg_mutex);
1108
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1109 1110 1111 1112
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1113
	}
1114
	mutex_unlock(&reg_mutex);
1115 1116 1117 1118 1119 1120

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1121
}
1122 1123
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1124 1125 1126 1127
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1128 1129
#define REG_INTERSECT	1

1130 1131
/* This has the logic which determines when a new request
 * should be ignored. */
1132 1133
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1134
{
1135
	struct wiphy *last_wiphy = NULL;
1136 1137 1138

	assert_cfg80211_lock();

1139 1140 1141 1142
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1143
	switch (pending_request->initiator) {
1144
	case NL80211_REGDOM_SET_BY_CORE:
1145
		return 0;
1146
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1147 1148 1149

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1150
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1151
			return -EINVAL;
1152 1153
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1154
			if (last_wiphy != wiphy) {
1155 1156
				/*
				 * Two cards with two APs claiming different
1157
				 * Country IE alpha2s. We could
1158 1159 1160
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1161
				if (regdom_changes(pending_request->alpha2))
1162 1163 1164
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1165 1166 1167 1168
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1169
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1170 1171 1172
				return 0;
			return -EALREADY;
		}
1173
		return REG_INTERSECT;
1174 1175
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1176
			if (regdom_changes(pending_request->alpha2))
1177
				return 0;
1178
			return -EALREADY;
1179
		}
1180 1181 1182 1183 1184 1185

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1186
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1187
		    !regdom_changes(pending_request->alpha2))
1188 1189
			return -EALREADY;

1190
		return REG_INTERSECT;
1191 1192
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1193
			return REG_INTERSECT;
1194 1195 1196 1197
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1198
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1199 1200
			  last_request->intersect)
			return -EOPNOTSUPP;
1201 1202 1203 1204
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1205 1206 1207
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1208
			if (regdom_changes(last_request->alpha2))
1209 1210 1211
				return -EAGAIN;
		}

1212
		if (!regdom_changes(pending_request->alpha2))
1213 1214
			return -EALREADY;

1215 1216 1217 1218 1219 1220
		return 0;
	}

	return -EINVAL;
}

1221 1222 1223 1224
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1225
 * @pending_request: the regulatory request currently being processed
1226 1227
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1228
 * what it believes should be the current regulatory domain.
1229 1230 1231 1232
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1233
 * Caller must hold &cfg80211_mutex and &reg_mutex
1234
 */
1235 1236
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1237
{
1238
	bool intersect = false;
1239 1240
	int r = 0;

1241 1242
	assert_cfg80211_lock();

1243
	r = ignore_request(wiphy, pending_request);
1244

1245
	if (r == REG_INTERSECT) {
1246 1247
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1248
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1249 1250
			if (r) {
				kfree(pending_request);
1251
				return r;
1252
			}
1253
		}
1254
		intersect = true;
1255
	} else if (r) {
1256 1257
		/*
		 * If the regulatory domain being requested by the
1258
		 * driver has already been set just copy it to the
1259 1260
		 * wiphy
		 */
1261
		if (r == -EALREADY &&
1262 1263
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1264
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1265 1266
			if (r) {
				kfree(pending_request);
1267
				return r;
1268
			}
1269 1270 1271
			r = -EALREADY;
			goto new_request;
		}
1272
		kfree(pending_request);
1273
		return r;
1274
	}
1275

1276
new_request:
1277
	kfree(last_request);
1278

1279 1280
	last_request = pending_request;
	last_request->intersect = intersect;
1281

1282
	pending_request = NULL;
1283

1284 1285 1286 1287 1288
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1289
	/* When r == REG_INTERSECT we do need to call CRDA */
1290 1291 1292 1293 1294 1295 1296 1297
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1298
		return r;
1299
	}
1300

1301
	return call_crda(last_request->alpha2);
1302 1303
}

1304
/* This processes *all* regulatory hints */
1305
static void reg_process_hint(struct regulatory_request *reg_request)
1306 1307 1308 1309 1310 1311 1312
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1313
	mutex_lock(&reg_mutex);
1314 1315 1316 1317

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1318
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1319
	    !wiphy) {
1320
		kfree(reg_request);
1321 1322 1323
		goto out;
	}

1324
	r = __regulatory_hint(wiphy, reg_request);
1325
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1326 1327
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1328 1329
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1330
	mutex_unlock(&reg_mutex);
1331 1332 1333
	mutex_unlock(&cfg80211_mutex);
}

1334
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1346 1347
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1348 1349 1350 1351 1352
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1353 1354 1355
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1356
	struct cfg80211_registered_device *rdev;
1357 1358
	struct reg_beacon *pending_beacon, *tmp;

1359 1360 1361 1362
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1379 1380
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1391 1392 1393
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1394
	reg_process_pending_beacon_hints();
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1408 1409 1410 1411
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1412 1413 1414 1415
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1416 1417
	kfree(last_request);
	last_request = NULL;
1418 1419 1420 1421 1422 1423 1424 1425

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1426
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1427

1428 1429 1430 1431 1432
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1433
	reg_process_hint(request);
1434

1435
	return 0;
1436 1437
}

1438 1439
/* User hints */
int regulatory_hint_user(const char *alpha2)
1440
{
1441 1442
	struct regulatory_request *request;

1443
	BUG_ON(!alpha2);
1444

1445 1446 1447 1448 1449 1450 1451
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1452
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1478
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1479 1480 1481 1482

	queue_regulatory_request(request);

	return 0;
1483 1484 1485
}
EXPORT_SYMBOL(regulatory_hint);

1486
/* Caller must hold reg_mutex */
1487
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1488
			char *alpha2, enum environment_cap env)
1489
{
1490 1491
	struct wiphy *request_wiphy;

1492
	assert_reg_lock();
1493

1494 1495 1496 1497
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1498 1499 1500
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1501
		return false;
1502 1503

	if (likely(request_wiphy != wiphy))
1504 1505 1506
		return (last_request->alpha2[0] == alpha2[0] &&
			last_request->alpha2[1] == alpha2[1] &&
			last_request->country_ie_env == env);
1507 1508
	/*
	 * We should not have let these through at this point, they
1509
	 * should have been picked up earlier by the first alpha2 check
1510 1511
	 * on the device
	 */
1512 1513 1514
	if (WARN_ON((last_request->alpha2[0] == alpha2[0] &&
			last_request->alpha2[1] == alpha2[1] &&
			last_request->country_ie_env == env )))
1515 1516 1517 1518
		return true;
	return false;
}

1519 1520 1521 1522
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1523
void regulatory_hint_11d(struct wiphy *wiphy,
1524 1525 1526
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1527 1528 1529 1530
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1531
	struct regulatory_request *request;
1532

1533
	mutex_lock(&reg_mutex);
1534

1535 1536
	if (unlikely(!last_request))
		goto out;
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1553
	/*
1554
	 * We will run this only upon a successful connection on cfg80211.
1555 1556
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1557
	 */
1558 1559
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1560 1561
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1562

1563 1564
	/*
	 * This will not happen right now but we leave it here for the
1565 1566
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1567 1568 1569 1570 1571
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
1572
	if (WARN_ON(reg_same_country_ie_hint(wiphy, alpha2, env)))
1573
		goto free_rd_out;
1574

1575 1576 1577 1578 1579
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

	request->wiphy_idx = get_wiphy_idx(wiphy);
1580 1581
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1582
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1583 1584
	request->country_ie_env = env;

1585
	mutex_unlock(&reg_mutex);
1586

1587 1588 1589
	queue_regulatory_request(request);

	return;
1590 1591 1592

free_rd_out:
	kfree(rd);
1593
out:
1594
	mutex_unlock(&reg_mutex);
1595
}
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
				REG_DBG_PRINT("cfg80211: Keeping preference on "
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
		REG_DBG_PRINT("cfg80211: Keeping preference on "
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1739 1740 1741 1742 1743 1744
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1762
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1763 1764
{
	unsigned int i;
1765 1766 1767
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1768

1769
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1770 1771 1772 1773 1774 1775 1776
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1777 1778 1779 1780
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1781
		if (power_rule->max_antenna_gain)
1782
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1783 1784 1785 1786 1787 1788 1789
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1790
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1791 1792 1793 1794 1795 1796 1797 1798
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1799
static void print_regdomain(const struct ieee80211_regdomain *rd)
1800 1801
{

1802 1803
	if (is_intersected_alpha2(rd->alpha2)) {

1804 1805
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1806 1807
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1808
				last_request->wiphy_idx);
1809
			if (rdev) {
1810 1811
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1812 1813
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1814 1815
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1816
					"domain intersected:\n");
1817
		} else
1818 1819
			printk(KERN_INFO "cfg80211: Current regulatory "
				"domain intersected:\n");
1820
	} else if (is_world_regdom(rd->alpha2))
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1836
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1837 1838 1839 1840 1841 1842
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1843
/* Takes ownership of rd only if it doesn't fail */
1844
static int __set_regdom(const struct ieee80211_regdomain *rd)
1845
{
1846
	const struct ieee80211_regdomain *intersected_rd = NULL;
1847
	struct cfg80211_registered_device *rdev = NULL;
1848
	struct wiphy *request_wiphy;
1849 1850 1851
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1852
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1853 1854 1855 1856 1857 1858 1859 1860 1861
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1862
	if (!last_request)
1863 1864
		return -EINVAL;

1865 1866
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1867
	 * rd is non static (it means CRDA was present and was used last)
1868 1869
	 * and the pending request came in from a country IE
	 */
1870
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1871 1872 1873 1874
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1875
		if (!regdom_changes(rd->alpha2))
1876 1877 1878
			return -EINVAL;
	}

1879 1880
	/*
	 * Now lets set the regulatory domain, update all driver channels
1881 1882
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1883 1884
	 * internal EEPROM data
	 */
1885

1886
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1887 1888
		return -EINVAL;

1889 1890 1891 1892 1893
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1894 1895
	}

1896 1897
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1898
	if (!last_request->intersect) {
1899 1900
		int r;

1901
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1902 1903 1904 1905 1906
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1907 1908 1909 1910
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1911

1912 1913 1914 1915 1916 1917
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
1918

1919
		r = reg_copy_regd(&request_wiphy->regd, rd);
1920 1921 1922
		if (r)
			return r;

1923 1924 1925 1926 1927 1928 1929
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

1930
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1931

1932 1933 1934
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
1935

1936 1937
		/*
		 * We can trash what CRDA provided now.
1938
		 * However if a driver requested this specific regulatory
1939 1940
		 * domain we keep it for its private use
		 */
1941
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1942
			request_wiphy->regd = rd;
1943 1944 1945
		else
			kfree(rd);

1946 1947 1948 1949 1950 1951
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
1952 1953
	}

1954 1955 1956
	if (!intersected_rd)
		return -EINVAL;

1957
	rdev = wiphy_to_dev(request_wiphy);
1958

1959 1960 1961
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
1962 1963 1964 1965 1966 1967

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

1968
	reset_regdomains();
1969
	cfg80211_regdomain = intersected_rd;
1970 1971 1972 1973 1974

	return 0;
}


1975 1976
/*
 * Use this call to set the current regulatory domain. Conflicts with
1977
 * multiple drivers can be ironed out later. Caller must've already
1978 1979
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
1980
int set_regdom(const struct ieee80211_regdomain *rd)
1981 1982 1983
{
	int r;

1984 1985
	assert_cfg80211_lock();

1986 1987
	mutex_lock(&reg_mutex);

1988 1989
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
1990 1991
	if (r) {
		kfree(rd);
1992
		mutex_unlock(&reg_mutex);
1993
		return r;
1994
	}
1995 1996

	/* This would make this whole thing pointless */
1997 1998
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
1999 2000

	/* update all wiphys now with the new established regulatory domain */
2001
	update_all_wiphy_regulatory(last_request->initiator);
2002

2003
	print_regdomain(cfg80211_regdomain);
2004

2005 2006
	nl80211_send_reg_change_event(last_request);

2007 2008
	mutex_unlock(&reg_mutex);

2009 2010 2011
	return r;
}

2012
/* Caller must hold cfg80211_mutex */
2013 2014
void reg_device_remove(struct wiphy *wiphy)
{
2015
	struct wiphy *request_wiphy = NULL;
2016

2017 2018
	assert_cfg80211_lock();

2019 2020
	mutex_lock(&reg_mutex);

2021 2022
	kfree(wiphy->regd);

2023 2024
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2025

2026
	if (!request_wiphy || request_wiphy != wiphy)
2027
		goto out;
2028

2029
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2030
	last_request->country_ie_env = ENVIRON_ANY;
2031 2032
out:
	mutex_unlock(&reg_mutex);
2033 2034
}

2035
int __init regulatory_init(void)
2036
{
2037
	int err = 0;
2038

2039 2040 2041
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2042

2043
	spin_lock_init(&reg_requests_lock);
2044
	spin_lock_init(&reg_pending_beacons_lock);
2045

2046
	cfg80211_regdomain = cfg80211_world_regdom;
2047

2048 2049 2050
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2051 2052
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2053
	if (err) {
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2068
#endif
2069
	}
2070

2071 2072 2073 2074 2075 2076 2077
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2078 2079 2080
	return 0;
}

2081
void /* __init_or_exit */ regulatory_exit(void)
2082
{
2083
	struct regulatory_request *reg_request, *tmp;
2084
	struct reg_beacon *reg_beacon, *btmp;
2085 2086 2087

	cancel_work_sync(&reg_work);

2088
	mutex_lock(&cfg80211_mutex);
2089
	mutex_lock(&reg_mutex);
2090

2091
	reset_regdomains();
2092

2093 2094
	kfree(last_request);

2095
	platform_device_unregister(reg_pdev);
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2125
	mutex_unlock(&reg_mutex);
2126
	mutex_unlock(&cfg80211_mutex);
2127
}