intel_pm.c 208.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <linux/vgaarb.h>
34
#include <drm/i915_powerwell.h>
35
#include <linux/pm_runtime.h>
36

B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59 60
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
61
 *
62 63
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
64
 *
65 66
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
67 68
 */

69
static void i8xx_disable_fbc(struct drm_device *dev)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

91
static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 93 94
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
95
	struct drm_framebuffer *fb = crtc->primary->fb;
96
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97 98
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
99
	int i;
100
	u32 fbc_ctl;
101

102
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103 104 105
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

106 107 108 109 110
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
111 112 113 114 115

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

116 117 118 119 120
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121
		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122 123 124
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
125 126

	/* enable it... */
127 128 129
	fbc_ctl = I915_READ(FBC_CONTROL);
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130 131 132 133 134 135
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

136
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 139
}

140
static bool i8xx_fbc_enabled(struct drm_device *dev)
141 142 143 144 145 146
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

147
static void g4x_enable_fbc(struct drm_crtc *crtc)
148 149 150
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_framebuffer *fb = crtc->primary->fb;
152
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153 154 155
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

156 157 158 159 160
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
	else
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161 162 163 164 165
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;

	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
166
	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167

168
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 170
}

171
static void g4x_disable_fbc(struct drm_device *dev)
172 173 174 175 176 177 178 179 180 181 182 183 184 185
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

186
static bool g4x_fbc_enabled(struct drm_device *dev)
187 188 189 190 191 192 193 194 195 196 197 198
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
199 200 201 202

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203

204 205 206 207 208 209 210 211 212 213
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
214

215
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 217
}

218
static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 220 221
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
222
	struct drm_framebuffer *fb = crtc->primary->fb;
223
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224 225 226
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

227
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
229 230 231 232 233 234 235 236
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
237
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
238 239
		break;
	case 1:
240
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
241 242
		break;
	}
243 244 245
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
246 247

	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249 250 251 252 253 254 255 256 257 258
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

259
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 261
}

262
static void ironlake_disable_fbc(struct drm_device *dev)
263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

277
static bool ironlake_fbc_enabled(struct drm_device *dev)
278 279 280 281 282 283
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

284
static void gen7_enable_fbc(struct drm_crtc *crtc)
285 286 287
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
288
	struct drm_framebuffer *fb = crtc->primary->fb;
289
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291
	u32 dpfc_ctl;
292

293 294
	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
295 296 297 298 299 300 301 302
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
303
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
304 305
		break;
	case 1:
306
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
307 308 309
		break;
	}

310 311
	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;

312 313 314
	if (dev_priv->fbc.false_color)
		dpfc_ctl |= FBC_CTL_FALSE_COLOR;

315
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316

R
Rodrigo Vivi 已提交
317
	if (IS_IVYBRIDGE(dev)) {
318
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
319 320 321
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
322
	} else {
323
		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324 325 326
		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
			   HSW_FBCQ_DIS);
R
Rodrigo Vivi 已提交
327
	}
328

329 330 331 332 333 334
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

335
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 337
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
357
	if (work == dev_priv->fbc.fbc_work) {
358 359 360
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
361
		if (work->crtc->primary->fb == work->fb) {
362
			dev_priv->display.enable_fbc(work->crtc);
363

364
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
365
			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
366
			dev_priv->fbc.y = work->crtc->y;
367 368
		}

369
		dev_priv->fbc.fbc_work = NULL;
370 371 372 373 374 375 376 377
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
378
	if (dev_priv->fbc.fbc_work == NULL)
379 380 381 382 383
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
384
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
385 386
	 * entirely asynchronously.
	 */
387
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
388
		/* tasklet was killed before being run, clean up */
389
		kfree(dev_priv->fbc.fbc_work);
390 391 392 393 394 395

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
396
	dev_priv->fbc.fbc_work = NULL;
397 398
}

399
static void intel_enable_fbc(struct drm_crtc *crtc)
400 401 402 403 404 405 406 407 408 409
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

410
	work = kzalloc(sizeof(*work), GFP_KERNEL);
411
	if (work == NULL) {
412
		DRM_ERROR("Failed to allocate FBC work structure\n");
413
		dev_priv->display.enable_fbc(crtc);
414 415 416 417
		return;
	}

	work->crtc = crtc;
418
	work->fb = crtc->primary->fb;
419 420
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

421
	dev_priv->fbc.fbc_work = work;
422 423 424 425 426 427 428 429 430 431 432

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
433 434
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
435 436 437 438 439 440 441 442 443 444 445 446 447 448
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
449
	dev_priv->fbc.plane = -1;
450 451
}

452 453 454 455 456 457 458 459 460 461
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

462 463 464 465 466 467 468 469 470 471
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
472
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct drm_i915_gem_object *obj;
488
	const struct drm_display_mode *adjusted_mode;
489
	unsigned int max_width, max_height;
490

491
	if (!HAS_FBC(dev)) {
492
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
493
		return;
494
	}
495

496
	if (!i915.powersave) {
497 498
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
499
		return;
500
	}
501 502 503 504 505 506 507 508 509 510

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
511
	for_each_crtc(dev, tmp_crtc) {
512
		if (intel_crtc_active(tmp_crtc) &&
513
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
514
			if (crtc) {
515 516
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
517 518 519 520 521 522
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

523
	if (!crtc || crtc->primary->fb == NULL) {
524 525
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
526 527 528 529
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
530
	fb = crtc->primary->fb;
531
	obj = intel_fb_obj(fb);
532
	adjusted_mode = &intel_crtc->config.adjusted_mode;
533

534
	if (i915.enable_fbc < 0) {
535 536
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
537
		goto out_disable;
538
	}
539
	if (!i915.enable_fbc) {
540 541
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
542 543
		goto out_disable;
	}
544 545
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
546 547 548
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
549 550
		goto out_disable;
	}
551

552 553 554 555
	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
		max_width = 4096;
		max_height = 4096;
	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
556 557
		max_width = 4096;
		max_height = 2048;
558
	} else {
559 560
		max_width = 2048;
		max_height = 1536;
561
	}
562 563
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
564 565
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
566 567
		goto out_disable;
	}
B
Ben Widawsky 已提交
568
	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
569
	    intel_crtc->plane != PLANE_A) {
570
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
571
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
572 573 574 575 576 577 578 579
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
580 581
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
582 583
		goto out_disable;
	}
584 585 586 587 588 589
	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
		goto out_disable;
	}
590 591 592 593 594

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

595
	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
B
Ben Widawsky 已提交
596
					      drm_format_plane_cpp(fb->pixel_format, 0))) {
597 598
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
599 600 601
		goto out_disable;
	}

602 603 604 605 606
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
607 608 609
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

640
	intel_enable_fbc(crtc);
641
	dev_priv->fbc.no_fbc_reason = FBC_OK;
642 643 644 645 646 647 648 649
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
650
	i915_gem_stolen_cleanup_compression(dev);
651 652
}

653 654
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
655
	struct drm_i915_private *dev_priv = dev->dev_private;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
694
	struct drm_i915_private *dev_priv = dev->dev_private;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

720
	dev_priv->ips.r_t = dev_priv->mem_freq;
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
752
		dev_priv->ips.c_m = 0;
753
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
754
		dev_priv->ips.c_m = 1;
755
	} else {
756
		dev_priv->ips.c_m = 2;
757 758 759
	}
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

798
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

822
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
823
{
824 825
	struct drm_device *dev = dev_priv->dev;
	u32 val;
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
846

847 848
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

867
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

883
static int i830_get_fifo_size(struct drm_device *dev, int plane)
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

900
static int i845_get_fifo_size(struct drm_device *dev, int plane)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
918 919 920 921 922
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
923 924
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
925 926 927 928 929
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
930 931
};
static const struct intel_watermark_params pineview_cursor_wm = {
932 933 934 935 936
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
937 938
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
939 940 941 942 943
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
944 945
};
static const struct intel_watermark_params g4x_wm_info = {
946 947 948 949 950
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
951 952
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
953 954 955 956 957
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
958 959
};
static const struct intel_watermark_params valleyview_wm_info = {
960 961 962 963 964
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
965 966
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
967 968 969 970 971
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
972 973
};
static const struct intel_watermark_params i965_cursor_wm_info = {
974 975 976 977 978
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
979 980
};
static const struct intel_watermark_params i945_wm_info = {
981 982 983 984 985
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
986 987
};
static const struct intel_watermark_params i915_wm_info = {
988 989 990 991 992
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
993
};
994
static const struct intel_watermark_params i830_wm_info = {
995 996 997 998 999
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1000
};
1001
static const struct intel_watermark_params i845_wm_info = {
1002 1003 1004 1005 1006
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

1063
	for_each_crtc(dev, crtc) {
1064
		if (intel_crtc_active(crtc)) {
1065 1066 1067 1068 1069 1070 1071 1072 1073
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1074
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1075
{
1076
	struct drm_device *dev = unused_crtc->dev;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1087
		intel_set_memory_cxsr(dev_priv, false);
1088 1089 1090 1091 1092
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1093
		const struct drm_display_mode *adjusted_mode;
1094
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1095 1096 1097 1098
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

1138
		intel_set_memory_cxsr(dev_priv, true);
1139
	} else {
1140
		intel_set_memory_cxsr(dev_priv, false);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1154
	const struct drm_display_mode *adjusted_mode;
1155 1156 1157 1158 1159
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1160
	if (!intel_crtc_active(crtc)) {
1161 1162 1163 1164 1165
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1166
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1167
	clock = adjusted_mode->crtc_clock;
1168
	htotal = adjusted_mode->crtc_htotal;
1169
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1170
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
1183
	line_time_us = max(htotal * 1000 / clock, 1);
1184
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1185
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1240
	const struct drm_display_mode *adjusted_mode;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1253
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1254
	clock = adjusted_mode->crtc_clock;
1255
	htotal = adjusted_mode->crtc_htotal;
1256
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1257
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1258

1259
	line_time_us = max(htotal * 1000 / clock, 1);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
1271
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1272 1273 1274 1275 1276 1277 1278 1279
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

1280 1281 1282 1283
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
1284 1285
{
	int entries;
1286
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1287

1288
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1289 1290
		return false;

1291 1292
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
1293

1294
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1295 1296 1297
	*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
				       DRAIN_LATENCY_PRECISION_32;
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1298

1299 1300
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

1313
static void vlv_update_drain_latency(struct drm_crtc *crtc)
1314
{
1315 1316 1317 1318 1319 1320
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
1321

1322 1323 1324 1325 1326 1327 1328 1329
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
1330

1331 1332 1333 1334 1335 1336 1337
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_PLANE_PRECISION_64 :
					   DDL_PLANE_PRECISION_32;
		plane_dl |= plane_prec | drain_latency;
1338 1339
	}

1340 1341 1342 1343
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
1344

1345 1346 1347 1348 1349 1350 1351
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_CURSOR_PRECISION_64 :
					   DDL_CURSOR_PRECISION_32;
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1352
	}
1353 1354

	I915_WRITE(VLV_DDL(pipe), plane_dl);
1355 1356 1357 1358
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1359
static void valleyview_update_wm(struct drm_crtc *crtc)
1360
{
1361
	struct drm_device *dev = crtc->dev;
1362 1363 1364 1365
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1366
	int ignore_plane_sr, ignore_cursor_sr;
1367
	unsigned int enabled = 0;
1368
	bool cxsr_enabled;
1369

1370
	vlv_update_drain_latency(crtc);
1371

1372
	if (g4x_compute_wm0(dev, PIPE_A,
1373 1374 1375
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1376
		enabled |= 1 << PIPE_A;
1377

1378
	if (g4x_compute_wm0(dev, PIPE_B,
1379 1380 1381
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1382
		enabled |= 1 << PIPE_B;
1383 1384 1385 1386 1387 1388

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1389 1390 1391 1392 1393
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1394
			     &ignore_plane_sr, &cursor_sr)) {
1395
		cxsr_enabled = true;
1396
	} else {
1397
		cxsr_enabled = false;
1398
		intel_set_memory_cxsr(dev_priv, false);
1399 1400
		plane_sr = cursor_sr = 0;
	}
1401

1402 1403
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1404 1405 1406 1407 1408 1409 1410 1411
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1412
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1413
	I915_WRITE(DSPFW2,
1414
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1415 1416
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1417 1418
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1419 1420 1421

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;

	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_SPRITE_PRECISION_64(sprite) :
					   DDL_SPRITE_PRECISION_32(sprite);
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

1534
static void g4x_update_wm(struct drm_crtc *crtc)
1535
{
1536
	struct drm_device *dev = crtc->dev;
1537 1538 1539 1540 1541
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1542
	bool cxsr_enabled;
1543

1544
	if (g4x_compute_wm0(dev, PIPE_A,
1545 1546 1547
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1548
		enabled |= 1 << PIPE_A;
1549

1550
	if (g4x_compute_wm0(dev, PIPE_B,
1551 1552 1553
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1554
		enabled |= 1 << PIPE_B;
1555 1556 1557 1558 1559 1560

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1561
			     &plane_sr, &cursor_sr)) {
1562
		cxsr_enabled = true;
1563
	} else {
1564
		cxsr_enabled = false;
1565
		intel_set_memory_cxsr(dev_priv, false);
1566 1567
		plane_sr = cursor_sr = 0;
	}
1568

1569 1570
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1571 1572 1573 1574 1575 1576 1577 1578
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1579
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1580
	I915_WRITE(DSPFW2,
1581
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1582 1583 1584
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1585
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1586
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1587 1588 1589

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1590 1591
}

1592
static void i965_update_wm(struct drm_crtc *unused_crtc)
1593
{
1594
	struct drm_device *dev = unused_crtc->dev;
1595 1596 1597 1598
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1599
	bool cxsr_enabled;
1600 1601 1602 1603 1604 1605

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1606 1607
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1608
		int clock = adjusted_mode->crtc_clock;
1609
		int htotal = adjusted_mode->crtc_htotal;
1610
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1611
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1612 1613 1614
		unsigned long line_time_us;
		int entries;

1615
		line_time_us = max(htotal * 1000 / clock, 1);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1629
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1641
		cxsr_enabled = true;
1642
	} else {
1643
		cxsr_enabled = false;
1644
		/* Turn off self refresh if both pipes are enabled */
1645
		intel_set_memory_cxsr(dev_priv, false);
1646 1647 1648 1649 1650 1651 1652
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1653 1654 1655 1656 1657
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1658 1659
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1660 1661 1662

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1663 1664
}

1665
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1666
{
1667
	struct drm_device *dev = unused_crtc->dev;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1682
		wm_info = &i830_wm_info;
1683 1684 1685

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1686
	if (intel_crtc_active(crtc)) {
1687
		const struct drm_display_mode *adjusted_mode;
1688
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1689 1690 1691
		if (IS_GEN2(dev))
			cpp = 4;

1692 1693
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1694
					       wm_info, fifo_size, cpp,
1695 1696 1697 1698 1699 1700 1701
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1702
	if (intel_crtc_active(crtc)) {
1703
		const struct drm_display_mode *adjusted_mode;
1704
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1705 1706 1707
		if (IS_GEN2(dev))
			cpp = 4;

1708 1709
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1710
					       wm_info, fifo_size, cpp,
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1721
	if (IS_I915GM(dev) && enabled) {
1722
		struct drm_i915_gem_object *obj;
1723

1724
		obj = intel_fb_obj(enabled->primary->fb);
1725 1726

		/* self-refresh seems busted with untiled */
1727
		if (obj->tiling_mode == I915_TILING_NONE)
1728 1729 1730
			enabled = NULL;
	}

1731 1732 1733 1734 1735 1736
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1737
	intel_set_memory_cxsr(dev_priv, false);
1738 1739 1740 1741 1742

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1743 1744
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1745
		int clock = adjusted_mode->crtc_clock;
1746
		int htotal = adjusted_mode->crtc_htotal;
1747
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1748
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1749 1750 1751
		unsigned long line_time_us;
		int entries;

1752
		line_time_us = max(htotal * 1000 / clock, 1);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1783 1784
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1785 1786
}

1787
static void i845_update_wm(struct drm_crtc *unused_crtc)
1788
{
1789
	struct drm_device *dev = unused_crtc->dev;
1790 1791
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1792
	const struct drm_display_mode *adjusted_mode;
1793 1794 1795 1796 1797 1798 1799
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1800 1801
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1802
				       &i845_wm_info,
1803
				       dev_priv->display.get_fifo_size(dev, 0),
1804
				       4, latency_ns);
1805 1806 1807 1808 1809 1810 1811 1812
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1813 1814
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1815 1816
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1817
	uint32_t pixel_rate;
1818

1819
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1820 1821 1822 1823

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1824
	if (intel_crtc->config.pch_pfit.enabled) {
1825
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1826
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1827

1828 1829
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1844
/* latency must be in 0.1us units. */
1845
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1846 1847 1848 1849
			       uint32_t latency)
{
	uint64_t ret;

1850 1851 1852
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1853 1854 1855 1856 1857 1858
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1859
/* latency must be in 0.1us units. */
1860
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1861 1862 1863 1864 1865
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1866 1867 1868
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1869 1870 1871 1872 1873 1874
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1875
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1876 1877 1878 1879 1880
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1881
struct ilk_pipe_wm_parameters {
1882 1883 1884
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1885 1886 1887
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1888 1889
};

1890
struct ilk_wm_maximums {
1891 1892 1893 1894 1895 1896
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1897 1898 1899 1900 1901 1902 1903
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1904 1905 1906 1907
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1908
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1909 1910
				   uint32_t mem_value,
				   bool is_lp)
1911
{
1912 1913
	uint32_t method1, method2;

1914
	if (!params->active || !params->pri.enabled)
1915 1916
		return 0;

1917
	method1 = ilk_wm_method1(params->pixel_rate,
1918
				 params->pri.bytes_per_pixel,
1919 1920 1921 1922 1923
				 mem_value);

	if (!is_lp)
		return method1;

1924
	method2 = ilk_wm_method2(params->pixel_rate,
1925
				 params->pipe_htotal,
1926 1927
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1928 1929 1930
				 mem_value);

	return min(method1, method2);
1931 1932
}

1933 1934 1935 1936
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1937
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1938 1939 1940 1941
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1942
	if (!params->active || !params->spr.enabled)
1943 1944
		return 0;

1945
	method1 = ilk_wm_method1(params->pixel_rate,
1946
				 params->spr.bytes_per_pixel,
1947
				 mem_value);
1948
	method2 = ilk_wm_method2(params->pixel_rate,
1949
				 params->pipe_htotal,
1950 1951
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1952 1953 1954 1955
				 mem_value);
	return min(method1, method2);
}

1956 1957 1958 1959
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1960
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1961 1962
				   uint32_t mem_value)
{
1963
	if (!params->active || !params->cur.enabled)
1964 1965
		return 0;

1966
	return ilk_wm_method2(params->pixel_rate,
1967
			      params->pipe_htotal,
1968 1969
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1970 1971 1972
			      mem_value);
}

1973
/* Only for WM_LP. */
1974
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1975
				   uint32_t pri_val)
1976
{
1977
	if (!params->active || !params->pri.enabled)
1978 1979
		return 0;

1980
	return ilk_wm_fbc(pri_val,
1981 1982
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1983 1984
}

1985 1986
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1987 1988 1989
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1990 1991 1992 1993 1994
		return 768;
	else
		return 512;
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

2029 2030 2031
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2032
				     const struct intel_wm_config *config,
2033 2034 2035 2036 2037 2038
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
2039
	if (is_sprite && !config->sprites_enabled)
2040 2041 2042
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2043
	if (level == 0 || config->num_pipes_active > 1) {
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2055
	if (config->sprites_enabled) {
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2067
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2068 2069 2070 2071
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2072 2073
				      int level,
				      const struct intel_wm_config *config)
2074 2075
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2076
	if (level > 0 && config->num_pipes_active > 1)
2077 2078 2079
		return 64;

	/* otherwise just report max that registers can hold */
2080
	return ilk_cursor_wm_reg_max(dev, level);
2081 2082
}

2083
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2084 2085 2086
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2087
				    struct ilk_wm_maximums *max)
2088
{
2089 2090 2091
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2092
	max->fbc = ilk_fbc_wm_reg_max(dev);
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2105
static bool ilk_validate_wm_level(int level,
2106
				  const struct ilk_wm_maximums *max,
2107
				  struct intel_wm_level *result)
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2146
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2147
				 int level,
2148
				 const struct ilk_pipe_wm_parameters *p,
2149
				 struct intel_wm_level *result)
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2169 2170
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2171 2172
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2173 2174
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2175
	u32 linetime, ips_linetime;
2176

2177 2178
	if (!intel_crtc_active(crtc))
		return 0;
2179

2180 2181 2182
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2183 2184 2185
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2186
					 intel_ddi_get_cdclk_freq(dev_priv));
2187

2188 2189
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2190 2191
}

2192 2193 2194 2195
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2196
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2197 2198 2199 2200 2201
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2202 2203 2204 2205
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2206 2207 2208 2209 2210 2211 2212
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2213 2214 2215 2216 2217 2218 2219
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2220 2221 2222
	}
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2241
int ilk_wm_max_level(const struct drm_device *dev)
2242 2243
{
	/* how many WM levels are we expecting */
2244
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2245
		return 4;
2246
	else if (INTEL_INFO(dev)->gen >= 6)
2247
		return 3;
2248
	else
2249 2250 2251 2252 2253 2254 2255 2256
		return 2;
}

static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2314
static void ilk_setup_wm_latency(struct drm_device *dev)
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2327 2328 2329 2330

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2331 2332 2333

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2334 2335
}

2336
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2337
				      struct ilk_pipe_wm_parameters *p)
2338
{
2339 2340 2341 2342
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2343

2344 2345
	if (!intel_crtc_active(crtc))
		return;
2346

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	p->active = true;
	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
2357

2358
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2359 2360
		struct intel_plane *intel_plane = to_intel_plane(plane);

2361
		if (intel_plane->pipe == pipe) {
2362
			p->spr = intel_plane->wm;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2374
	for_each_intel_crtc(dev, intel_crtc) {
2375
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2376

2377 2378
		if (!wm->pipe_enabled)
			continue;
2379

2380 2381 2382
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2383
	}
2384 2385
}

2386 2387
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2388
				  const struct ilk_pipe_wm_parameters *params,
2389 2390 2391
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2392
	const struct drm_i915_private *dev_priv = dev->dev_private;
2393 2394 2395 2396 2397 2398 2399
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2400
	struct ilk_wm_maximums max;
2401

2402 2403 2404 2405
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2406 2407 2408 2409 2410 2411 2412 2413
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2414
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2415

2416
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2417
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2418

2419 2420 2421
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2422
	/* At least LP0 must be valid */
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2456 2457
	ret_wm->enable = true;

2458
	for_each_intel_crtc(dev, intel_crtc) {
2459 2460 2461 2462 2463
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2464

2465 2466 2467 2468 2469
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2470
		if (!wm->enable)
2471
			ret_wm->enable = false;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2484
			 const struct intel_wm_config *config,
2485
			 const struct ilk_wm_maximums *max,
2486 2487 2488
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2489
	int last_enabled_level = max_level;
2490

2491 2492 2493 2494 2495
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2496 2497
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2498 2499 2500 2501 2502 2503 2504

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2505 2506 2507 2508 2509
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2510 2511 2512 2513 2514 2515

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2516 2517
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2518 2519 2520
			wm->fbc_val = 0;
		}
	}
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2535 2536
}

2537 2538 2539 2540 2541 2542
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2543 2544 2545 2546 2547
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2548
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2549 2550 2551 2552 2553
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2554
static void ilk_compute_wm_results(struct drm_device *dev,
2555
				   const struct intel_pipe_wm *merged,
2556
				   enum intel_ddb_partitioning partitioning,
2557
				   struct ilk_wm_values *results)
2558
{
2559 2560
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2561

2562
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2563
	results->partitioning = partitioning;
2564

2565
	/* LP1+ register values */
2566
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2567
		const struct intel_wm_level *r;
2568

2569
		level = ilk_wm_lp_to_level(wm_lp, merged);
2570

2571
		r = &merged->wm[level];
2572

2573 2574 2575 2576 2577
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2578
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2579 2580 2581
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2582 2583 2584
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2585 2586 2587 2588 2589 2590 2591
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2592 2593 2594 2595
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2596 2597 2598 2599 2600
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2601
	}
2602

2603
	/* LP0 register values */
2604
	for_each_intel_crtc(dev, intel_crtc) {
2605 2606 2607 2608 2609 2610 2611 2612
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2613

2614 2615 2616 2617
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2618 2619 2620
	}
}

2621 2622
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2623
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2624 2625
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2626
{
2627 2628
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2629

2630 2631 2632 2633 2634
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2635 2636
	}

2637 2638
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2639 2640 2641
			return r2;
		else
			return r1;
2642
	} else if (level1 > level2) {
2643 2644 2645 2646 2647 2648
		return r1;
	} else {
		return r2;
	}
}

2649 2650 2651 2652 2653 2654 2655 2656 2657
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2658 2659
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

	for_each_pipe(pipe) {
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2709 2710
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2711
{
2712
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2713
	bool changed = false;
2714

2715 2716 2717
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2718
		changed = true;
2719 2720 2721 2722
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2723
		changed = true;
2724 2725 2726 2727
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2728
		changed = true;
2729
	}
2730

2731 2732 2733 2734
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2735

2736 2737 2738 2739 2740 2741 2742
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2743 2744
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2745 2746
{
	struct drm_device *dev = dev_priv->dev;
2747
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2748 2749 2750 2751 2752 2753 2754 2755 2756
	unsigned int dirty;
	uint32_t val;

	dirty = ilk_compute_wm_dirty(dev, previous, results);
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2757
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2758
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2759
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2760
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2761
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2762 2763
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2764
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2765
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2766
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2767
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2768
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2769 2770
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2771
	if (dirty & WM_DIRTY_DDB) {
2772
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2787 2788
	}

2789
	if (dirty & WM_DIRTY_FBC) {
2790 2791 2792 2793 2794 2795 2796 2797
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2798 2799 2800 2801 2802
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2803 2804 2805 2806 2807
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2808

2809
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2810
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2811
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2812
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2813
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2814
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2815 2816

	dev_priv->wm.hw = *results;
2817 2818
}

2819 2820 2821 2822 2823 2824 2825
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2826
static void ilk_update_wm(struct drm_crtc *crtc)
2827
{
2828
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2829
	struct drm_device *dev = crtc->dev;
2830
	struct drm_i915_private *dev_priv = dev->dev_private;
2831 2832 2833
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
2834
	enum intel_ddb_partitioning partitioning;
2835
	struct intel_pipe_wm pipe_wm = {};
2836
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2837
	struct intel_wm_config config = {};
2838

2839
	ilk_compute_wm_parameters(crtc, &params);
2840 2841 2842 2843 2844

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2845

2846
	intel_crtc->wm.active = pipe_wm;
2847

2848 2849
	ilk_compute_wm_config(dev, &config);

2850
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2851
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2852 2853

	/* 5/6 split only in single pipe config on IVB+ */
2854 2855
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2856
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2857
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2858

2859
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2860
	} else {
2861
		best_lp_wm = &lp_wm_1_2;
2862 2863
	}

2864
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2865
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2866

2867
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2868

2869
	ilk_write_wm_values(dev_priv, &results);
2870 2871
}

2872 2873 2874 2875 2876
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
2877
{
2878
	struct drm_device *dev = plane->dev;
2879
	struct intel_plane *intel_plane = to_intel_plane(plane);
2880

2881 2882 2883
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
2884
	intel_plane->wm.vert_pixels = sprite_width;
2885
	intel_plane->wm.bytes_per_pixel = pixel_size;
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

2897
	ilk_update_wm(crtc);
2898 2899
}

2900 2901 2902 2903
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2904
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2915
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2916
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2917

2918 2919 2920
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2950
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2951 2952
	struct drm_crtc *crtc;

2953
	for_each_crtc(dev, crtc)
2954 2955 2956 2957 2958 2959 2960
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2961 2962 2963 2964
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
2965

2966
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2967 2968 2969 2970 2971
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2972 2973 2974 2975 2976

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3009
void intel_update_watermarks(struct drm_crtc *crtc)
3010
{
3011
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3012 3013

	if (dev_priv->display.update_wm)
3014
		dev_priv->display.update_wm(crtc);
3015 3016
}

3017 3018
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3019 3020 3021
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3022
				    bool enabled, bool scaled)
3023
{
3024
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3025 3026

	if (dev_priv->display.update_sprite_wm)
3027 3028
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3029
						   pixel_size, enabled, scaled);
3030 3031
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3046
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3061
	i915_gem_object_ggtt_unpin(ctx);
3062 3063 3064 3065 3066
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3067 3068 3069 3070 3071 3072 3073 3074 3075
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3076 3077 3078 3079 3080
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3081 3082
	assert_spin_locked(&mchdev_lock);

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3100
static void ironlake_enable_drps(struct drm_device *dev)
3101 3102 3103 3104 3105
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3106 3107
	spin_lock_irq(&mchdev_lock);

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3131 3132
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3133

3134 3135 3136
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3153
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3154
		DRM_ERROR("stuck trying to change perf mode\n");
3155
	mdelay(1);
3156 3157 3158

	ironlake_set_drps(dev, fstart);

3159
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3160
		I915_READ(0x112e0);
3161 3162
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3163
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3164 3165

	spin_unlock_irq(&mchdev_lock);
3166 3167
}

3168
static void ironlake_disable_drps(struct drm_device *dev)
3169 3170
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3171 3172 3173 3174 3175
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3176 3177 3178 3179 3180 3181 3182 3183 3184

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3185
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3186
	mdelay(1);
3187 3188
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3189
	mdelay(1);
3190

3191
	spin_unlock_irq(&mchdev_lock);
3192 3193
}

3194 3195 3196 3197 3198
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3199
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3200
{
3201
	u32 limits;
3202

3203 3204 3205 3206 3207 3208
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3209 3210 3211
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3212 3213 3214 3215

	return limits;
}

3216 3217 3218 3219 3220 3221 3222
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3223
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3224 3225 3226 3227
			new_power = BETWEEN;
		break;

	case BETWEEN:
3228
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3229
			new_power = LOW_POWER;
3230
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3231 3232 3233 3234
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3235
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3236 3237 3238 3239
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3240
	if (val == dev_priv->rps.min_freq_softlimit)
3241
		new_power = LOW_POWER;
3242
	if (val == dev_priv->rps.max_freq_softlimit)
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3308 3309 3310 3311 3312 3313 3314 3315 3316
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3317 3318 3319
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3320 3321 3322 3323 3324 3325
	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
		mask |= GEN6_PM_RP_UP_EI_EXPIRED;

3326 3327 3328
	if (IS_GEN8(dev_priv->dev))
		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;

3329 3330 3331
	return ~mask;
}

3332 3333 3334
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3335 3336 3337
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3338

3339
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3340 3341
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3342

C
Chris Wilson 已提交
3343 3344 3345 3346 3347
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3348

3349
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3350 3351 3352 3353 3354 3355 3356
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3357
	}
3358 3359 3360 3361

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3362
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3363
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3364

3365 3366
	POSTING_READ(GEN6_RPNSWREQ);

3367
	dev_priv->rps.cur_freq = val;
3368
	trace_intel_gpu_freq_change(val * 50);
3369 3370
}

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3382 3383 3384 3385 3386 3387 3388 3389
	struct drm_device *dev = dev_priv->dev;

	/* Latest VLV doesn't need to force the gfx clock */
	if (dev->pdev->revision >= 0xd) {
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3390 3391 3392 3393
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3394
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3395 3396 3397 3398 3399
		return;

	/* Mask turbo interrupt so that they will not come in between */
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);

3400
	vlv_force_gfx_clock(dev_priv, true);
3401

3402
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3403 3404

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3405
					dev_priv->rps.min_freq_softlimit);
3406 3407 3408 3409 3410

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
				& GENFREQSTATUS) == 0, 5))
		DRM_ERROR("timed out waiting for Punit\n");

3411
	vlv_force_gfx_clock(dev_priv, false);
3412

3413 3414
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3415 3416
}

3417 3418
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3419 3420
	struct drm_device *dev = dev_priv->dev;

3421
	mutex_lock(&dev_priv->rps.hw_lock);
3422
	if (dev_priv->rps.enabled) {
3423 3424 3425
		if (IS_CHERRYVIEW(dev))
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		else if (IS_VALLEYVIEW(dev))
3426
			vlv_set_rps_idle(dev_priv);
3427
		else
3428
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3429 3430
		dev_priv->rps.last_adj = 0;
	}
3431 3432 3433 3434 3435
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
3436 3437
	struct drm_device *dev = dev_priv->dev;

3438
	mutex_lock(&dev_priv->rps.hw_lock);
3439
	if (dev_priv->rps.enabled) {
3440
		if (IS_VALLEYVIEW(dev))
3441
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3442
		else
3443
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3444 3445
		dev_priv->rps.last_adj = 0;
	}
3446 3447 3448
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3449 3450 3451
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3452

3453
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3454 3455
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3456

3457
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3458 3459
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq,
3460
			 vlv_gpu_freq(dev_priv, val), val);
3461

3462 3463
	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3464

3465
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3466

3467
	dev_priv->rps.cur_freq = val;
3468
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3469 3470
}

3471 3472 3473 3474
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3475
	I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
				   ~dev_priv->pm_rps_events);
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
	 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
	 * gen8_enable_rps will clean up. */

	spin_lock_irq(&dev_priv->irq_lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->irq_lock);

	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
}

3491
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3492 3493 3494 3495
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3496 3497
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
				~dev_priv->pm_rps_events);
3498 3499 3500 3501 3502
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3503
	spin_lock_irq(&dev_priv->irq_lock);
3504
	dev_priv->rps.pm_iir = 0;
3505
	spin_unlock_irq(&dev_priv->irq_lock);
3506

3507
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3508 3509
}

3510
static void gen6_disable_rps(struct drm_device *dev)
3511 3512 3513 3514
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3515
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3516

3517 3518 3519 3520
	if (IS_BROADWELL(dev))
		gen8_disable_rps_interrupts(dev);
	else
		gen6_disable_rps_interrupts(dev);
3521 3522
}

3523 3524 3525 3526 3527
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3528 3529

	gen8_disable_rps_interrupts(dev);
3530 3531
}

3532 3533 3534 3535 3536
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3537

3538
	gen6_disable_rps_interrupts(dev);
3539 3540
}

B
Ben Widawsky 已提交
3541 3542
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3543 3544 3545 3546 3547 3548
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3549 3550 3551 3552
	DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
		      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3553 3554
}

I
Imre Deak 已提交
3555
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3556
{
3557 3558 3559 3560
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3561 3562 3563 3564
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3565
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	if (enable_rc6 >= 0) {
		int mask;

		if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3576 3577
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3578 3579 3580

		return enable_rc6 & mask;
	}
3581

3582 3583 3584
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3585

3586
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3587
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3588 3589

	return INTEL_RC6_ENABLE;
3590 3591
}

I
Imre Deak 已提交
3592 3593 3594 3595 3596
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3597 3598 3599 3600 3601 3602
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
	WARN_ON(dev_priv->rps.pm_iir);
3603
	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3604 3605 3606 3607
	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	spin_unlock_irq(&dev_priv->irq_lock);
}

3608 3609 3610 3611 3612
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
3613
	WARN_ON(dev_priv->rps.pm_iir);
3614
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3615
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3616 3617 3618
	spin_unlock_irq(&dev_priv->irq_lock);
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* XXX: only BYT has a special efficient freq */
	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}

3640 3641 3642
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3643
	struct intel_engine_cs *ring;
3644 3645 3646 3647 3648 3649 3650 3651
	uint32_t rc6_mask = 0, rp_state_cap;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3652
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3653 3654 3655 3656 3657

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3658
	parse_rp_state_cap(dev_priv, rp_state_cap);
3659 3660 3661 3662 3663 3664 3665 3666

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
3667 3668 3669 3670
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3671 3672 3673 3674

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3675
	intel_print_rc6_info(dev, rc6_mask);
3676 3677 3678 3679 3680 3681 3682 3683
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
3684 3685

	/* 4 Program defaults and thresholds for RPS*/
3686 3687 3688 3689
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3690 3691 3692 3693 3694
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3695 3696
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3709
		   GEN6_RP_MEDIA_IS_GFX |
3710 3711 3712 3713 3714 3715 3716 3717
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);

3718
	gen8_enable_rps_interrupts(dev);
3719

3720
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3721 3722
}

3723
static void gen6_enable_rps(struct drm_device *dev)
3724
{
3725
	struct drm_i915_private *dev_priv = dev->dev_private;
3726
	struct intel_engine_cs *ring;
3727
	u32 rp_state_cap;
3728
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3729 3730
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3731
	int i, ret;
3732

3733
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3749
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3750

3751 3752
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

3753
	parse_rp_state_cap(dev_priv, rp_state_cap);
J
Jeff McGee 已提交
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3764 3765
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3766 3767 3768

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3769
	if (IS_IVYBRIDGE(dev))
3770 3771 3772
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3773
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3774 3775
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3776
	/* Check if we are enabling RC6 */
3777 3778 3779 3780
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3781 3782 3783 3784
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3785

3786 3787 3788
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3789

B
Ben Widawsky 已提交
3790
	intel_print_rc6_info(dev, rc6_mask);
3791 3792 3793 3794 3795 3796

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3797 3798
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3799 3800
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3801
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3802
	if (ret)
B
Ben Widawsky 已提交
3803
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3804 3805 3806 3807

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3808
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3809
				 (pcu_mbox & 0xff) * 50);
3810
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3811 3812
	}

3813
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3814
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3815

3816
	gen6_enable_rps_interrupts(dev);
3817

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3832
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3833 3834
}

3835
static void __gen6_update_ring_freq(struct drm_device *dev)
3836
{
3837
	struct drm_i915_private *dev_priv = dev->dev_private;
3838
	int min_freq = 15;
3839 3840
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3841
	int scaling_factor = 180;
3842
	struct cpufreq_policy *policy;
3843

3844
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3845

3846 3847 3848 3849 3850 3851 3852 3853 3854
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
3855
		max_ia_freq = tsc_khz;
3856
	}
3857 3858 3859 3860

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3861
	min_ring_freq = I915_READ(DCLK) & 0xf;
3862 3863
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3864

3865 3866 3867 3868 3869
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3870
	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3871
	     gpu_freq--) {
3872
		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3873 3874
		unsigned int ia_freq = 0, ring_freq = 0;

3875 3876 3877 3878
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
3879
			ring_freq = mult_frac(gpu_freq, 5, 4);
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3896

B
Ben Widawsky 已提交
3897 3898
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3899 3900 3901
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3902 3903 3904
	}
}

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3917
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
{
	u32 val, rp0;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp1;
}

3947
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3948 3949 3950 3951 3952 3953 3954 3955
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
	return rpn;
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

3967
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3968 3969 3970
{
	u32 val, rp0;

3971
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

3984
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3985
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3986
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3987 3988 3989 3990 3991
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

3992
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3993
{
3994
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3995 3996
}

3997 3998 3999 4000 4001 4002 4003 4004 4005
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
}

4035 4036 4037 4038 4039 4040 4041 4042
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4043 4044
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4045 4046 4047 4048 4049 4050 4051 4052
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4053
								      I915_GTT_OFFSET_NONE,
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4109 4110 4111 4112 4113
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4129 4130
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4131 4132
	struct drm_i915_private *dev_priv = dev->dev_private;

4133
	cherryview_setup_pctx(dev);
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

	mutex_lock(&dev_priv->rps.hw_lock);

	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4148 4149 4150 4151 4152
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4166 4167
}

4168 4169 4170 4171 4172
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4173 4174 4175 4176
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4177
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4224 4225 4226 4227 4228 4229 4230 4231
	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

4232 4233 4234 4235
	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);

4236 4237 4238
	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4239
		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4260 4261
	gen8_enable_rps_interrupts(dev);

4262 4263 4264
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}

4265 4266 4267
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4268
	struct intel_engine_cs *ring;
4269
	u32 gtfifodbg, val, rc6_mode = 0;
4270 4271 4272 4273
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4274 4275
	valleyview_check_pctx(dev_priv);

4276
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4277 4278
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4279 4280 4281
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4282 4283
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4284 4285 4286 4287 4288 4289 4290

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4291
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4308
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4309 4310

	/* allows RC6 residency counter to work */
4311
	I915_WRITE(VLV_COUNTER_CONTROL,
4312 4313
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4314 4315
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4316

4317
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4318
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4319 4320 4321

	intel_print_rc6_info(dev, rc6_mode);

4322
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4323

4324
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4325 4326 4327 4328

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4329
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4330
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4331 4332
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);
4333

4334
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4335 4336
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);
4337

4338
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4339

4340
	gen6_enable_rps_interrupts(dev);
4341

4342
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4343 4344
}

4345
void ironlake_teardown_rc6(struct drm_device *dev)
4346 4347 4348
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4349
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4350
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4351 4352
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4353 4354
	}

4355
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4356
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4357 4358
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4359 4360 4361
	}
}

4362
static void ironlake_disable_rc6(struct drm_device *dev)
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4384 4385 4386
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4387 4388
		return -ENOMEM;

4389 4390 4391
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4392 4393 4394 4395 4396 4397 4398
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4399
static void ironlake_enable_rc6(struct drm_device *dev)
4400 4401
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4402
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4403
	bool was_interruptible;
4404 4405 4406 4407 4408 4409 4410 4411
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4412 4413
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4414
	ret = ironlake_setup_rc6(dev);
4415
	if (ret)
4416 4417
		return;

4418 4419 4420
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4421 4422 4423 4424
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4425
	ret = intel_ring_begin(ring, 6);
4426 4427
	if (ret) {
		ironlake_teardown_rc6(dev);
4428
		dev_priv->mm.interruptible = was_interruptible;
4429 4430 4431
		return;
	}

4432 4433
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4434
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4435 4436 4437 4438 4439 4440 4441 4442
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4443 4444 4445 4446 4447 4448

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4449 4450
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4451
	if (ret) {
4452
		DRM_ERROR("failed to enable ironlake power savings\n");
4453 4454 4455 4456
		ironlake_teardown_rc6(dev);
		return;
	}

4457
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4458
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4459

4460
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4461 4462
}

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4492
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4493 4494 4495 4496 4497 4498
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4499 4500
	assert_spin_locked(&mchdev_lock);

4501
	diff1 = now - dev_priv->ips.last_time1;
4502 4503 4504 4505 4506 4507 4508

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4509
		return dev_priv->ips.chipset_power;
4510 4511 4512 4513 4514 4515 4516 4517

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4518 4519
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4520 4521
		diff += total_count;
	} else {
4522
		diff = total_count - dev_priv->ips.last_count1;
4523 4524 4525
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4526 4527
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4538 4539
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4540

4541
	dev_priv->ips.chipset_power = ret;
4542 4543 4544 4545

	return ret;
}

4546 4547
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
4548
	struct drm_device *dev = dev_priv->dev;
4549 4550
	unsigned long val;

4551
	if (INTEL_INFO(dev)->gen != 5)
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
4580
	struct drm_device *dev = dev_priv->dev;
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
4714
	if (INTEL_INFO(dev)->is_mobile)
4715 4716 4717 4718 4719
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4720
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4721
{
4722
	u64 now, diff, diffms;
4723 4724
	u32 count;

4725
	assert_spin_locked(&mchdev_lock);
4726

4727 4728 4729
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
4730 4731 4732 4733 4734 4735 4736

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4737 4738
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4739 4740
		diff += count;
	} else {
4741
		diff = count - dev_priv->ips.last_count2;
4742 4743
	}

4744 4745
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4746 4747 4748 4749

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4750
	dev_priv->ips.gfx_power = diff;
4751 4752
}

4753 4754
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
4755 4756 4757
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
4758 4759
		return;

4760
	spin_lock_irq(&mchdev_lock);
4761 4762 4763

	__i915_update_gfx_val(dev_priv);

4764
	spin_unlock_irq(&mchdev_lock);
4765 4766
}

4767
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4768 4769 4770 4771
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4772 4773
	assert_spin_locked(&mchdev_lock);

4774
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4794
	corr2 = (corr * dev_priv->ips.corr);
4795 4796 4797 4798

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4799
	__i915_update_gfx_val(dev_priv);
4800

4801
	return dev_priv->ips.gfx_power + state2;
4802 4803
}

4804 4805
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
4806
	struct drm_device *dev = dev_priv->dev;
4807 4808
	unsigned long val;

4809
	if (INTEL_INFO(dev)->gen != 5)
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4832
	spin_lock_irq(&mchdev_lock);
4833 4834 4835 4836
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4837 4838
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4839 4840 4841 4842

	ret = chipset_val + graphics_val;

out_unlock:
4843
	spin_unlock_irq(&mchdev_lock);
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4859
	spin_lock_irq(&mchdev_lock);
4860 4861 4862 4863 4864 4865
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4866 4867
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4868 4869

out_unlock:
4870
	spin_unlock_irq(&mchdev_lock);
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4887
	spin_lock_irq(&mchdev_lock);
4888 4889 4890 4891 4892 4893
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4894 4895
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4896 4897

out_unlock:
4898
	spin_unlock_irq(&mchdev_lock);
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4912
	struct intel_engine_cs *ring;
4913
	bool ret = false;
4914
	int i;
4915

4916
	spin_lock_irq(&mchdev_lock);
4917 4918 4919 4920
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4921 4922
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4923 4924

out_unlock:
4925
	spin_unlock_irq(&mchdev_lock);
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4942
	spin_lock_irq(&mchdev_lock);
4943 4944 4945 4946 4947 4948
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4949
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4950

4951
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4952 4953 4954
		ret = false;

out_unlock:
4955
	spin_unlock_irq(&mchdev_lock);
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4983 4984
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4985
	spin_lock_irq(&mchdev_lock);
4986
	i915_mch_dev = dev_priv;
4987
	spin_unlock_irq(&mchdev_lock);
4988 4989 4990 4991 4992 4993

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4994
	spin_lock_irq(&mchdev_lock);
4995
	i915_mch_dev = NULL;
4996
	spin_unlock_irq(&mchdev_lock);
4997
}
4998

4999
static void intel_init_emon(struct drm_device *dev)
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5067
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5068 5069
}

5070 5071
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5072 5073
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5074 5075 5076
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5077
		valleyview_init_gt_powersave(dev);
5078 5079 5080 5081
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5082 5083 5084
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5085
		valleyview_cleanup_gt_powersave(dev);
5086 5087
}

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Interrupts should be disabled already to avoid re-arming. */
5101
	WARN_ON(intel_irqs_enabled(dev_priv));
5102 5103 5104 5105

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	cancel_work_sync(&dev_priv->rps.work);
5106 5107 5108

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5109 5110
}

5111 5112
void intel_disable_gt_powersave(struct drm_device *dev)
{
5113 5114
	struct drm_i915_private *dev_priv = dev->dev_private;

5115
	/* Interrupts should be disabled already to avoid re-arming. */
5116
	WARN_ON(intel_irqs_enabled(dev_priv));
5117

5118
	if (IS_IRONLAKE_M(dev)) {
5119
		ironlake_disable_drps(dev);
5120
		ironlake_disable_rc6(dev);
5121
	} else if (INTEL_INFO(dev)->gen >= 6) {
5122
		intel_suspend_gt_powersave(dev);
5123

5124
		mutex_lock(&dev_priv->rps.hw_lock);
5125 5126 5127
		if (IS_CHERRYVIEW(dev))
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5128 5129 5130
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5131
		dev_priv->rps.enabled = false;
5132
		mutex_unlock(&dev_priv->rps.hw_lock);
5133
	}
5134 5135
}

5136 5137 5138 5139 5140 5141 5142
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5143
	mutex_lock(&dev_priv->rps.hw_lock);
5144

5145 5146 5147
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5148
		valleyview_enable_rps(dev);
5149 5150
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5151
		__gen6_update_ring_freq(dev);
5152 5153
	} else {
		gen6_enable_rps(dev);
5154
		__gen6_update_ring_freq(dev);
5155
	}
5156
	dev_priv->rps.enabled = true;
5157
	mutex_unlock(&dev_priv->rps.hw_lock);
5158 5159

	intel_runtime_pm_put(dev_priv);
5160 5161
}

5162 5163
void intel_enable_gt_powersave(struct drm_device *dev)
{
5164 5165
	struct drm_i915_private *dev_priv = dev->dev_private;

5166
	if (IS_IRONLAKE_M(dev)) {
5167
		mutex_lock(&dev->struct_mutex);
5168 5169 5170
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5171
		mutex_unlock(&dev->struct_mutex);
5172
	} else if (INTEL_INFO(dev)->gen >= 6) {
5173 5174 5175 5176
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5177 5178 5179 5180 5181 5182 5183
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5184
		 */
5185 5186 5187
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5188 5189 5190
	}
}

5191 5192 5193 5194 5195 5196 5197 5198
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->rps.enabled = false;
	intel_enable_gt_powersave(dev);
}

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5211 5212 5213 5214 5215 5216 5217 5218 5219
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5220
		intel_flush_primary_plane(dev_priv, pipe);
5221 5222 5223
	}
}

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5238
static void ironlake_init_clock_gating(struct drm_device *dev)
5239 5240
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5241
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5242

5243 5244 5245 5246
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5247 5248 5249
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5267
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5268 5269 5270
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5271 5272

	ilk_init_lp_watermarks(dev);
5273 5274 5275 5276 5277 5278 5279 5280 5281

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5282
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5283 5284 5285 5286 5287 5288 5289 5290
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5291 5292
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5293 5294 5295 5296 5297 5298
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5299

5300
	/* WaDisableRenderCachePipelinedFlush:ilk */
5301 5302
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5303

5304 5305 5306
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5307
	g4x_disable_trickle_feed(dev);
5308

5309 5310 5311 5312 5313 5314 5315
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5316
	uint32_t val;
5317 5318 5319 5320 5321 5322

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5323 5324 5325
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5326 5327
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5328 5329 5330
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5331
	for_each_pipe(pipe) {
5332 5333 5334
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5335
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5336
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5337 5338 5339
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5340 5341
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5342 5343 5344 5345 5346
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5347 5348
}

5349 5350 5351 5352 5353 5354
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5355 5356 5357
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5358 5359
}

5360
static void gen6_init_clock_gating(struct drm_device *dev)
5361 5362
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5363
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5364

5365
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5366 5367 5368 5369 5370

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5371
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5372 5373 5374
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5375
	/* WaSetupGtModeTdRowDispatch:snb */
5376 5377 5378 5379
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5380 5381 5382
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5383 5384 5385
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5386 5387 5388 5389
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5390 5391 5392 5393
	 */
	I915_WRITE(GEN6_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5394
	ilk_init_lp_watermarks(dev);
5395 5396

	I915_WRITE(CACHE_MODE_0,
5397
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5413
	 *
5414 5415
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5416 5417 5418 5419 5420
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5421
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5422 5423
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5424

5425 5426 5427 5428 5429 5430 5431 5432
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5433 5434 5435 5436 5437 5438 5439 5440
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5441 5442
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5443 5444 5445 5446 5447 5448 5449
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5450 5451 5452 5453
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5454

5455
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5456

5457
	cpt_init_clock_gating(dev);
5458 5459

	gen6_check_mch_setup(dev);
5460 5461 5462 5463 5464 5465
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5466
	/*
5467
	 * WaVSThreadDispatchOverride:ivb,vlv
5468 5469 5470 5471
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5472 5473 5474 5475 5476 5477 5478 5479
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5492 5493 5494 5495 5496

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5497 5498
}

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

B
Ben Widawsky 已提交
5511 5512 5513
static void gen8_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5514
	enum pipe pipe;
B
Ben Widawsky 已提交
5515 5516 5517 5518

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5519 5520 5521 5522

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5523 5524 5525 5526
	/* WaDisablePartialInstShootdown:bdw */
	I915_WRITE(GEN8_ROW_CHICKEN,
		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));

5527 5528 5529 5530 5531
	/* WaDisableThreadStallDopClockGating:bdw */
	/* FIXME: Unclear whether we really need this on production bdw. */
	I915_WRITE(GEN8_ROW_CHICKEN,
		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));

5532 5533 5534 5535
	/*
	 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
	 * pre-production hardware
	 */
5536 5537
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5538 5539
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5540 5541
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5542
	I915_WRITE(_3D_CHICKEN3,
5543
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5544

5545 5546 5547
	I915_WRITE(COMMON_SLICE_CHICKEN2,
		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));

5548 5549 5550
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));

5551 5552 5553 5554
	/* WaDisableDopClockGating:bdw May not be needed for production */
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5555
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5556
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5557

5558
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5559 5560 5561
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5562
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5563 5564
	for_each_pipe(pipe) {
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5565
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5566
			   BDW_DPRS_MASK_VBLANK_SRD);
5567
	}
5568 5569 5570 5571 5572 5573 5574 5575

	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	I915_WRITE(HDC_CHICKEN0,
		   I915_READ(HDC_CHICKEN0) |
		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5576 5577 5578 5579 5580 5581

	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5582 5583 5584 5585

	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5586 5587 5588 5589
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5590 5591 5592
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5593 5594 5595

	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5596 5597 5598 5599

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5600 5601 5602 5603

	/* Wa4x4STCOptimizationDisable:bdw */
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
B
Ben Widawsky 已提交
5604 5605
}

5606 5607 5608 5609
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5610
	ilk_init_lp_watermarks(dev);
5611

5612 5613 5614 5615 5616
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5617
	/* This is required by WaCatErrorRejectionIssue:hsw */
5618 5619 5620 5621
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5622 5623 5624
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5625

5626 5627 5628
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5629 5630 5631 5632
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

5633
	/* WaDisable4x2SubspanOptimization:hsw */
5634 5635
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5636

5637 5638 5639
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5640 5641 5642 5643
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5644 5645 5646 5647
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5648
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5649 5650
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5651 5652 5653
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5654

5655
	lpt_init_clock_gating(dev);
5656 5657
}

5658
static void ivybridge_init_clock_gating(struct drm_device *dev)
5659 5660
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5661
	uint32_t snpcr;
5662

5663
	ilk_init_lp_watermarks(dev);
5664

5665
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5666

5667
	/* WaDisableEarlyCull:ivb */
5668 5669 5670
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5671
	/* WaDisableBackToBackFlipFix:ivb */
5672 5673 5674 5675
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5676
	/* WaDisablePSDDualDispatchEnable:ivb */
5677 5678 5679 5680
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5681 5682 5683
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5684
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5685 5686 5687
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5688
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5689 5690 5691
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5692 5693 5694 5695
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5696 5697 5698 5699
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5700 5701
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5702
	}
5703

5704
	/* WaForceL3Serialization:ivb */
5705 5706 5707
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5708
	/*
5709
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5710
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5711 5712
	 */
	I915_WRITE(GEN6_UCGCTL2,
5713
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5714

5715
	/* This is required by WaCatErrorRejectionIssue:ivb */
5716 5717 5718 5719
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5720
	g4x_disable_trickle_feed(dev);
5721 5722

	gen7_setup_fixed_func_scheduler(dev_priv);
5723

5724 5725 5726 5727 5728
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
5729

5730
	/* WaDisable4x2SubspanOptimization:ivb */
5731 5732
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5733

5734 5735 5736
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5737 5738 5739 5740
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5741 5742 5743 5744
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5745 5746 5747 5748
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5749

5750 5751
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5752 5753

	gen6_check_mch_setup(dev);
5754 5755
}

5756
static void valleyview_init_clock_gating(struct drm_device *dev)
5757 5758
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5759 5760 5761 5762 5763 5764 5765
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	mutex_unlock(&dev_priv->rps.hw_lock);
	switch ((val >> 6) & 3) {
	case 0:
5766
	case 1:
5767
		dev_priv->mem_freq = 800;
5768
		break;
5769
	case 2:
5770
		dev_priv->mem_freq = 1066;
5771
		break;
5772
	case 3:
5773
		dev_priv->mem_freq = 1333;
5774
		break;
5775 5776
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5777

5778
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5779

5780
	/* WaDisableEarlyCull:vlv */
5781 5782 5783
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5784
	/* WaDisableBackToBackFlipFix:vlv */
5785 5786 5787 5788
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5789
	/* WaPsdDispatchEnable:vlv */
5790
	/* WaDisablePSDDualDispatchEnable:vlv */
5791
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5792 5793
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5794

5795 5796 5797
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5798
	/* WaForceL3Serialization:vlv */
5799 5800 5801
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5802
	/* WaDisableDopClockGating:vlv */
5803 5804 5805
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5806
	/* This is required by WaCatErrorRejectionIssue:vlv */
5807 5808 5809 5810
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5811 5812
	gen7_setup_fixed_func_scheduler(dev_priv);

5813
	/*
5814
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5815
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5816 5817
	 */
	I915_WRITE(GEN6_UCGCTL2,
5818
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5819

5820 5821 5822 5823 5824
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5825

5826
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5827

5828 5829 5830 5831
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
5832 5833
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5834

5835 5836 5837 5838 5839 5840
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

5841
	/*
5842
	 * WaDisableVLVClockGating_VBIIssue:vlv
5843 5844 5845
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5846
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5847 5848
}

5849 5850 5851
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);
	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->rps.hw_lock);
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
			dev_priv->mem_freq = 1600;
			break;
	case 2:
			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
			dev_priv->mem_freq = 1600;
			break;
	case 3:
			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
			dev_priv->mem_freq = 2000;
			break;
	case 4:
			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
			dev_priv->mem_freq = 1600;
			break;
	case 5:
			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
			dev_priv->mem_freq = 1600;
			break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5881 5882 5883 5884

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5885 5886 5887 5888

	/* WaDisablePartialInstShootdown:chv */
	I915_WRITE(GEN8_ROW_CHICKEN,
		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5889 5890 5891 5892

	/* WaDisableThreadStallDopClockGating:chv */
	I915_WRITE(GEN8_ROW_CHICKEN,
		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5893 5894 5895 5896 5897 5898

	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5899 5900 5901 5902

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5903 5904 5905 5906

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5907 5908 5909 5910

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5911 5912 5913 5914

	/* WaDisableSamplerPowerBypass:chv (pre-production hw) */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928

	/* WaDisableGunitClockGating:chv (pre-production hw) */
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
		   GINT_DIS);

	/* WaDisableFfDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));

	/* WaDisableDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5929 5930
}

5931
static void g4x_init_clock_gating(struct drm_device *dev)
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5947 5948 5949 5950

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5951

5952 5953 5954
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5955
	g4x_disable_trickle_feed(dev);
5956 5957
}

5958
static void crestline_init_clock_gating(struct drm_device *dev)
5959 5960 5961 5962 5963 5964 5965 5966
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5967 5968
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5969 5970 5971

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5972 5973
}

5974
static void broadwater_init_clock_gating(struct drm_device *dev)
5975 5976 5977 5978 5979 5980 5981 5982 5983
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
5984 5985
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5986 5987 5988

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5989 5990
}

5991
static void gen3_init_clock_gating(struct drm_device *dev)
5992 5993 5994 5995 5996 5997 5998
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
5999 6000 6001

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6002 6003 6004

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6005 6006

	/* interrupts should cause a wake up from C3 */
6007
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6008 6009 6010

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6011 6012
}

6013
static void i85x_init_clock_gating(struct drm_device *dev)
6014 6015 6016 6017
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6018 6019 6020 6021

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6022 6023
}

6024
static void i830_init_clock_gating(struct drm_device *dev)
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

6038 6039 6040 6041 6042 6043
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

6057 6058 6059 6060 6061
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
6062
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6063 6064 6065 6066 6067 6068
				   struct i915_power_well *power_well)
{
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

6069 6070
bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
					  enum intel_display_power_domain domain)
6071 6072
{
	struct i915_power_domains *power_domains;
6073 6074 6075 6076 6077 6078
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;

	if (dev_priv->pm.suspended)
		return false;
6079 6080

	power_domains = &dev_priv->power_domains;
6081

6082
	is_enabled = true;
6083

6084 6085 6086
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		if (power_well->always_on)
			continue;
6087

6088
		if (!power_well->hw_enabled) {
6089 6090 6091 6092
			is_enabled = false;
			break;
		}
	}
6093

6094
	return is_enabled;
6095 6096
}

6097
bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6098
				 enum intel_display_power_domain domain)
6099
{
6100
	struct i915_power_domains *power_domains;
6101
	bool ret;
6102

6103 6104 6105
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6106
	ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6107 6108
	mutex_unlock(&power_domains->lock);

6109
	return ret;
6110 6111
}

6112 6113 6114 6115 6116 6117
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
 */
6118 6119 6120 6121
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

6136 6137
	if (IS_BROADWELL(dev))
		gen8_irq_power_well_post_enable(dev_priv);
6138 6139
}

6140
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6141
			       struct i915_power_well *power_well, bool enable)
6142
{
6143 6144
	bool is_enabled, enable_requested;
	uint32_t tmp;
6145

6146
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6147 6148
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6149

6150 6151
	if (enable) {
		if (!enable_requested)
6152 6153
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
6154

6155 6156 6157
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6158
				      HSW_PWR_WELL_STATE_ENABLED), 20))
6159 6160
				DRM_ERROR("Timeout enabling power well\n");
		}
6161

6162
		hsw_power_well_post_enable(dev_priv);
6163 6164 6165
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6166
			POSTING_READ(HSW_PWR_WELL_DRIVER);
6167
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
6168 6169
		}
	}
6170
}
6171

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);

	/*
	 * We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now.
	 */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, true);
}

static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, false);
}

6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
}

static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
					     struct i915_power_well *power_well)
{
	return true;
}

6208 6209
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
6210
{
6211
	enum punit_power_well power_well_id = power_well->data;
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
			 PUNIT_PWRGT_PWR_GATE(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
	ctrl &= ~mask;
	ctrl |= state;
	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}

static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, true);
}

static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, false);
}

static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	int power_well_id = power_well->data;
	bool enabled = false;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
	if (state == ctrl)
		enabled = true;

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
	WARN_ON(ctrl != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	vlv_set_power_well(dev_priv, power_well, true);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_enable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	/*
6310 6311
	 * During driver initialization/resume we can avoid restoring the
	 * part of the HW/SW state that will be inited anyway explicitly.
6312
	 */
6313 6314 6315 6316
	if (dev_priv->power_domains.initializing)
		return;

	intel_hpd_init(dev_priv->dev);
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332

	i915_redisable_vga_power_on(dev_priv->dev);
}

static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_disable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	vlv_set_power_well(dev_priv, power_well, false);
}

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */

	vlv_set_power_well(dev_priv, power_well, true);

	/*
	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
	 *   b.	The other bits such as sfr settings / modesel may all
	 *	be set to 0.
	 *
	 * This should only be done on init and resume from S3 with
	 * both PLLs disabled, or we risk losing DPIO and PLL
	 * synchronization.
	 */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}

static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	struct drm_device *dev = dev_priv->dev;
	enum pipe pipe;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	for_each_pipe(pipe)
		assert_pll_disabled(dev_priv, pipe);

	/* Assert common reset */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);

	vlv_set_power_well(dev_priv, power_well, false);
}

6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV);
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	} else {
		phy = DPIO_PHY1;
		I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	}
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
	vlv_set_power_well(dev_priv, power_well, true);

	/* Poll for phypwrgood signal */
	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
		DRM_ERROR("Display PHY %d is not power up\n", phy);

6411 6412
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
		   PHY_COM_LANE_RESET_DEASSERT(phy));
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
}

static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		assert_pll_disabled(dev_priv, PIPE_A);
		assert_pll_disabled(dev_priv, PIPE_B);
	} else {
		phy = DPIO_PHY1;
		assert_pll_disabled(dev_priv, PIPE_C);
	}

6432 6433
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
		   ~PHY_COM_LANE_RESET_DEASSERT(phy));
6434 6435 6436 6437

	vlv_set_power_well(dev_priv, power_well, false);
}

6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	enum pipe pipe = power_well->data;
	bool enabled;
	u32 state, ctrl;

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
	enabled = state == DP_SSS_PWR_ON(pipe);

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
	WARN_ON(ctrl << 16 != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well,
				    bool enable)
{
	enum pipe pipe = power_well->data;
	u32 state;
	u32 ctrl;

	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	ctrl &= ~DP_SSC_MASK(pipe);
	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}

static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, true);
}

static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, false);
}

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
static void check_power_well_state(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);

	if (power_well->always_on || !i915.disable_power_well) {
		if (!enabled)
			goto mismatch;

		return;
	}

	if (enabled != (power_well->count > 0))
		goto mismatch;

	return;

mismatch:
	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
		  power_well->name, power_well->always_on, enabled,
		  power_well->count, i915.disable_power_well);
}

6550
void intel_display_power_get(struct drm_i915_private *dev_priv,
6551 6552
			     enum intel_display_power_domain domain)
{
6553
	struct i915_power_domains *power_domains;
6554 6555
	struct i915_power_well *power_well;
	int i;
6556

6557 6558
	intel_runtime_pm_get(dev_priv);

6559 6560 6561
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6562

6563 6564 6565
	for_each_power_well(i, power_well, BIT(domain), power_domains) {
		if (!power_well->count++) {
			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6566
			power_well->ops->enable(dev_priv, power_well);
6567
			power_well->hw_enabled = true;
6568 6569 6570 6571
		}

		check_power_well_state(dev_priv, power_well);
	}
6572

6573 6574
	power_domains->domain_use_count[domain]++;

6575
	mutex_unlock(&power_domains->lock);
6576 6577
}

6578
void intel_display_power_put(struct drm_i915_private *dev_priv,
6579 6580
			     enum intel_display_power_domain domain)
{
6581
	struct i915_power_domains *power_domains;
6582 6583
	struct i915_power_well *power_well;
	int i;
6584

6585 6586 6587
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6588 6589 6590

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
6591

6592 6593 6594
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		WARN_ON(!power_well->count);

6595 6596
		if (!--power_well->count && i915.disable_power_well) {
			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6597
			power_well->hw_enabled = false;
6598
			power_well->ops->disable(dev_priv, power_well);
6599 6600 6601
		}

		check_power_well_state(dev_priv, power_well);
6602
	}
6603

6604
	mutex_unlock(&power_domains->lock);
6605 6606

	intel_runtime_pm_put(dev_priv);
6607 6608
}

6609
static struct i915_power_domains *hsw_pwr;
6610 6611

/* Display audio driver power well request */
6612
int i915_request_power_well(void)
6613
{
6614 6615
	struct drm_i915_private *dev_priv;

6616 6617
	if (!hsw_pwr)
		return -ENODEV;
6618

6619 6620
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6621
	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6622
	return 0;
6623 6624 6625 6626
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
6627
int i915_release_power_well(void)
6628
{
6629 6630
	struct drm_i915_private *dev_priv;

6631 6632
	if (!hsw_pwr)
		return -ENODEV;
6633

6634 6635
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6636
	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6637
	return 0;
6638 6639 6640
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
/*
 * Private interface for the audio driver to get CDCLK in kHz.
 *
 * Caller must request power well using i915_request_power_well() prior to
 * making the call.
 */
int i915_get_cdclk_freq(void)
{
	struct drm_i915_private *dev_priv;

	if (!hsw_pwr)
		return -ENODEV;

	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);

	return intel_ddi_get_cdclk_freq(dev_priv);
}
EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);


6662 6663 6664 6665
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)

#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
	BIT(POWER_DOMAIN_PIPE_A) |			\
6666
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
I
Imre Deak 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675
	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_CRT) |			\
P
Paulo Zanoni 已提交
6676
	BIT(POWER_DOMAIN_PLLS) |			\
6677
	BIT(POWER_DOMAIN_INIT))
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
#define HSW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
	HSW_ALWAYS_ON_POWER_DOMAINS |			\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK

#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_CRT) |		\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
#define CHV_PIPE_A_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_A) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_B_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_B) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_C_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_C) |	\
	BIT(POWER_DOMAIN_INIT))

6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6742 6743 6744 6745 6746 6747 6748 6749 6750
#define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6751 6752 6753 6754 6755 6756
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
	.sync_hw = i9xx_always_on_power_well_noop,
	.enable = i9xx_always_on_power_well_noop,
	.disable = i9xx_always_on_power_well_noop,
	.is_enabled = i9xx_always_on_power_well_enabled,
};
6757

6758 6759 6760 6761 6762 6763 6764
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
	.sync_hw = chv_pipe_power_well_sync_hw,
	.enable = chv_pipe_power_well_enable,
	.disable = chv_pipe_power_well_disable,
	.is_enabled = chv_pipe_power_well_enabled,
};

6765 6766 6767 6768 6769 6770 6771
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = chv_dpio_cmn_power_well_enable,
	.disable = chv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6772 6773 6774 6775 6776
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
6777
		.ops = &i9xx_always_on_power_well_ops,
6778 6779 6780
	},
};

6781 6782 6783 6784 6785 6786 6787
static const struct i915_power_well_ops hsw_power_well_ops = {
	.sync_hw = hsw_power_well_sync_hw,
	.enable = hsw_power_well_enable,
	.disable = hsw_power_well_disable,
	.is_enabled = hsw_power_well_enabled,
};

6788
static struct i915_power_well hsw_power_wells[] = {
6789 6790 6791 6792
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6793
		.ops = &i9xx_always_on_power_well_ops,
6794
	},
6795 6796
	{
		.name = "display",
6797
		.domains = HSW_DISPLAY_POWER_DOMAINS,
6798
		.ops = &hsw_power_well_ops,
6799 6800 6801 6802
	},
};

static struct i915_power_well bdw_power_wells[] = {
6803 6804 6805 6806
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6807
		.ops = &i9xx_always_on_power_well_ops,
6808
	},
6809 6810
	{
		.name = "display",
6811
		.domains = BDW_DISPLAY_POWER_DOMAINS,
6812
		.ops = &hsw_power_well_ops,
6813 6814 6815
	},
};

6816 6817 6818 6819 6820 6821 6822
static const struct i915_power_well_ops vlv_display_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_display_power_well_enable,
	.disable = vlv_display_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6823 6824 6825 6826 6827 6828 6829
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_dpio_cmn_power_well_enable,
	.disable = vlv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_power_well_enable,
	.disable = vlv_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well vlv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
6886 6887 6888 6889
	{
		.name = "dpio-common",
		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6890
		.ops = &vlv_dpio_cmn_power_well_ops,
6891
	},
6892 6893
};

6894 6895 6896 6897 6898 6899 6900
static struct i915_power_well chv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
6901 6902 6903 6904 6905 6906 6907
#if 0
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925
	{
		.name = "pipe-a",
		.domains = CHV_PIPE_A_POWER_DOMAINS,
		.data = PIPE_A,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-b",
		.domains = CHV_PIPE_B_POWER_DOMAINS,
		.data = PIPE_B,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-c",
		.domains = CHV_PIPE_C_POWER_DOMAINS,
		.data = PIPE_C,
		.ops = &chv_pipe_power_well_ops,
	},
6926
#endif
6927 6928
	{
		.name = "dpio-common-bc",
6929 6930 6931 6932 6933 6934
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6935 6936 6937 6938 6939
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
	{
		.name = "dpio-common-d",
6940 6941 6942 6943 6944 6945
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6946 6947 6948
		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
#if 0
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
	{
		.name = "dpio-tx-d-01",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
	},
	{
		.name = "dpio-tx-d-23",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
	},
6992
#endif
6993 6994
};

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
						 enum punit_power_well power_well_id)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->data == power_well_id)
			return power_well;
	}

	return NULL;
}

7010 7011 7012 7013 7014
#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

7015
int intel_power_domains_init(struct drm_i915_private *dev_priv)
7016
{
7017
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
7018

7019
	mutex_init(&power_domains->lock);
7020

7021 7022 7023 7024
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
7025
	if (IS_HASWELL(dev_priv->dev)) {
7026 7027
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
7028
	} else if (IS_BROADWELL(dev_priv->dev)) {
7029 7030
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
7031 7032
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, chv_power_wells);
7033 7034
	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, vlv_power_wells);
7035
	} else {
7036
		set_power_wells(power_domains, i9xx_always_on_power_well);
7037
	}
7038 7039 7040 7041

	return 0;
}

7042
void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7043 7044 7045 7046
{
	hsw_pwr = NULL;
}

7047
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7048
{
7049 7050
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
7051
	int i;
7052

7053
	mutex_lock(&power_domains->lock);
7054
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7055
		power_well->ops->sync_hw(dev_priv, power_well);
7056 7057 7058
		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
								     power_well);
	}
7059
	mutex_unlock(&power_domains->lock);
7060 7061
}

7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *disp2d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);

	/* nothing to do if common lane is already off */
	if (!cmn->ops->is_enabled(dev_priv, cmn))
		return;

	/* If the display might be already active skip this */
	if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
		return;

	DRM_DEBUG_KMS("toggling display PHY side reset\n");

	/* cmnlane needs DPLL registers */
	disp2d->ops->enable(dev_priv, disp2d);

	/*
	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
	 * Need to assert and de-assert PHY SB reset by gating the
	 * common lane power, then un-gating it.
	 * Simply ungating isn't enough to reset the PHY enough to get
	 * ports and lanes running.
	 */
	cmn->ops->disable(dev_priv, cmn);
}

7093
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7094
{
7095
	struct drm_device *dev = dev_priv->dev;
7096 7097 7098
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

	power_domains->initializing = true;
7099 7100 7101 7102 7103 7104 7105

	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
		mutex_lock(&power_domains->lock);
		vlv_cmnlane_wa(dev_priv);
		mutex_unlock(&power_domains->lock);
	}

7106
	/* For now, we need the power well to be always enabled. */
7107 7108
	intel_display_set_init_power(dev_priv, true);
	intel_power_domains_resume(dev_priv);
7109
	power_domains->initializing = false;
7110 7111
}

7112 7113
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
7114
	intel_runtime_pm_get(dev_priv);
7115 7116 7117 7118
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
7119
	intel_runtime_pm_put(dev_priv);
7120 7121
}

7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
	pm_runtime_get_noresume(device);
}

7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_set_active(device);

7168 7169 7170 7171 7172 7173 7174 7175 7176
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!intel_enable_rc6(dev)) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		return;
	}

7177 7178 7179
	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);
7180 7181

	pm_runtime_put_autosuspend(device);
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
}

void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

7192 7193 7194
	if (!intel_enable_rc6(dev))
		return;

7195 7196 7197 7198 7199
	/* Make sure we're not suspended first. */
	pm_runtime_get_sync(device);
	pm_runtime_disable(device);
}

7200 7201 7202 7203 7204
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7205
	if (HAS_FBC(dev)) {
7206
		if (INTEL_INFO(dev)->gen >= 7) {
7207
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7208 7209 7210 7211 7212
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
7213 7214 7215 7216 7217
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
7218
		} else {
7219 7220 7221
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
7222 7223 7224

			/* This value was pulled out of someone's hat */
			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7225 7226 7227
		}
	}

7228 7229 7230 7231 7232 7233
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7234 7235
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
7236
		ilk_setup_wm_latency(dev);
7237

7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7250
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7251
		else if (IS_GEN6(dev))
7252
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7253
		else if (IS_IVYBRIDGE(dev))
7254
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7255
		else if (IS_HASWELL(dev))
7256
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7257
		else if (INTEL_INFO(dev)->gen == 8)
B
Ben Widawsky 已提交
7258
			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
7259
	} else if (IS_CHERRYVIEW(dev)) {
7260
		dev_priv->display.update_wm = cherryview_update_wm;
7261
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7262 7263
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7264 7265
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
7266
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7280
			intel_set_memory_cxsr(dev_priv, false);
7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7298 7299 7300
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7301
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7302 7303
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7304
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7305 7306 7307 7308 7309 7310 7311 7312
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7313 7314 7315
	}
}

B
Ben Widawsky 已提交
7316 7317
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
7318
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
7342
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7362

7363
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7364
{
7365
	int div;
7366

7367
	/* 4 x czclk */
7368
	switch (dev_priv->mem_freq) {
7369
	case 800:
7370
		div = 10;
7371 7372
		break;
	case 1066:
7373
		div = 12;
7374 7375
		break;
	case 1333:
7376
		div = 16;
7377 7378 7379 7380 7381
		break;
	default:
		return -1;
	}

7382
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7383 7384
}

7385
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7386
{
7387
	int mul;
7388

7389
	/* 4 x czclk */
7390
	switch (dev_priv->mem_freq) {
7391
	case 800:
7392
		mul = 10;
7393 7394
		break;
	case 1066:
7395
		mul = 12;
7396 7397
		break;
	case 1333:
7398
		mul = 16;
7399 7400 7401 7402 7403
		break;
	default:
		return -1;
	}

7404
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7405 7406
}

7407
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
{
	int div, freq;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		div = 5;
		break;
	case 267:
		div = 6;
		break;
	case 320:
	case 333:
	case 400:
		div = 8;
		break;
	default:
		return -1;
	}

	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);

	return freq;
}

7432
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480
{
	int mul, opcode;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		mul = 5;
		break;
	case 267:
		mul = 6;
		break;
	case 320:
	case 333:
	case 400:
		mul = 8;
		break;
	default:
		return -1;
	}

	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);

	return opcode;
}

int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_gpu_freq(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_gpu_freq(dev_priv, val);

	return ret;
}

int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_freq_opcode(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_freq_opcode(dev_priv, val);

	return ret;
}

D
Daniel Vetter 已提交
7481
void intel_pm_setup(struct drm_device *dev)
7482 7483 7484
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7485 7486
	mutex_init(&dev_priv->rps.hw_lock);

7487 7488
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7489

7490
	dev_priv->pm.suspended = false;
7491
	dev_priv->pm._irqs_disabled = false;
7492
}