workqueue.c 106.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
61
	 * assoc_mutex of all pools on the gcwq to avoid changing binding
62 63
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83

T
Tejun Heo 已提交
84 85 86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
119
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120
 *
121 122
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
123
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
124 125
 */

126
struct global_cwq;
127
struct worker_pool;
L
Linus Torvalds 已提交
128

129 130 131 132
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
133
struct worker {
T
Tejun Heo 已提交
134 135 136 137 138
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
139

T
Tejun Heo 已提交
140
	struct work_struct	*current_work;	/* L: work being processed */
141
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
143
	struct task_struct	*task;		/* I: worker task */
144
	struct worker_pool	*pool;		/* I: the associated pool */
145 146 147
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
148
	int			id;		/* I: worker id */
149 150 151

	/* for rebinding worker to CPU */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
152 153
};

154 155
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
156
	unsigned int		flags;		/* X: flags */
157 158 159

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
160 161

	/* nr_idle includes the ones off idle_list for rebinding */
162 163 164 165 166 167
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

168
	struct mutex		assoc_mutex;	/* protect GCWQ_DISASSOCIATED */
169 170 171
	struct ida		worker_ida;	/* L: for worker IDs */
};

172
/*
173 174 175
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
176 177 178 179
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
180
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
181

182
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
183 184 185
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

186 187
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
188 189
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
190
/*
191
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
192 193
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
194 195
 */
struct cpu_workqueue_struct {
196
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
197
	struct workqueue_struct *wq;		/* I: the owning workqueue */
198 199 200 201
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
202
	int			nr_active;	/* L: nr of active works */
203
	int			max_active;	/* L: max active works */
204
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
205
};
L
Linus Torvalds 已提交
206

207 208 209 210 211 212 213 214 215
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

216 217 218 219 220 221 222 223 224 225
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
226
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
227 228 229 230 231 232 233 234 235
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
236 237 238 239 240 241

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
242
	unsigned int		flags;		/* W: WQ_* flags */
243 244 245 246 247
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
248
	struct list_head	list;		/* W: list of all workqueues */
249 250 251 252 253 254 255 256 257

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

258
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
259 260
	struct worker		*rescuer;	/* I: rescue worker */

261
	int			nr_drainers;	/* W: drain in progress */
262
	int			saved_max_active; /* W: saved cwq max_active */
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
267 268
};

269 270
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
271
struct workqueue_struct *system_highpri_wq __read_mostly;
272
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
273
struct workqueue_struct *system_long_wq __read_mostly;
274
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
275
struct workqueue_struct *system_unbound_wq __read_mostly;
276
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
277
struct workqueue_struct *system_freezable_wq __read_mostly;
278
EXPORT_SYMBOL_GPL(system_freezable_wq);
279

280 281 282
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

283
#define for_each_worker_pool(pool, gcwq)				\
284 285
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
286

287 288 289 290
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

340 341 342 343
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

344 345 346 347 348
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
384
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
420
	.debug_hint	= work_debug_hint,
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

456 457
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
458
static LIST_HEAD(workqueues);
459
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
460

461 462 463 464 465
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
466
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
467
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
468

469 470 471 472 473 474
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
475 476 477
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
478

T
Tejun Heo 已提交
479
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
480

481 482 483 484 485
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

486 487
static struct global_cwq *get_gcwq(unsigned int cpu)
{
488 489 490 491
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
492 493
}

494
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
495
{
496
	int cpu = pool->gcwq->cpu;
497
	int idx = worker_pool_pri(pool);
498

499
	if (cpu != WORK_CPU_UNBOUND)
500
		return &per_cpu(pool_nr_running, cpu)[idx];
501
	else
502
		return &unbound_pool_nr_running[idx];
503 504
}

T
Tejun Heo 已提交
505 506
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
507
{
508
	if (!(wq->flags & WQ_UNBOUND)) {
509
		if (likely(cpu < nr_cpu_ids))
510 511 512 513
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
531

532
/*
533 534 535
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
536
 *
537 538 539 540
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
541
 *
542 543 544 545
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
546
 *
547 548 549 550
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
551
 */
552 553
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
554
{
555
	BUG_ON(!work_pending(work));
556 557
	atomic_long_set(&work->data, data | flags | work_static(work));
}
558

559 560 561 562 563
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
564
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
565 566
}

567 568
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
569
{
570 571 572 573 574 575 576
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
577
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
578
}
579

580
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
581
{
582
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
583
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
584 585
}

586
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
587
{
588
	unsigned long data = atomic_long_read(&work->data);
589

590 591 592 593
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
594 595
}

596
static struct global_cwq *get_work_gcwq(struct work_struct *work)
597
{
598
	unsigned long data = atomic_long_read(&work->data);
599 600
	unsigned int cpu;

601 602
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
603
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
604

605
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
606
	if (cpu == WORK_CPU_NONE)
607 608
		return NULL;

609
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
610
	return get_gcwq(cpu);
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

629
/*
630 631 632
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
633 634
 */

635
static bool __need_more_worker(struct worker_pool *pool)
636
{
637
	return !atomic_read(get_pool_nr_running(pool));
638 639
}

640
/*
641 642
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
643 644 645 646
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
647
 */
648
static bool need_more_worker(struct worker_pool *pool)
649
{
650
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
651
}
652

653
/* Can I start working?  Called from busy but !running workers. */
654
static bool may_start_working(struct worker_pool *pool)
655
{
656
	return pool->nr_idle;
657 658 659
}

/* Do I need to keep working?  Called from currently running workers. */
660
static bool keep_working(struct worker_pool *pool)
661
{
662
	atomic_t *nr_running = get_pool_nr_running(pool);
663

664
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
665 666 667
}

/* Do we need a new worker?  Called from manager. */
668
static bool need_to_create_worker(struct worker_pool *pool)
669
{
670
	return need_more_worker(pool) && !may_start_working(pool);
671
}
672

673
/* Do I need to be the manager? */
674
static bool need_to_manage_workers(struct worker_pool *pool)
675
{
676
	return need_to_create_worker(pool) ||
677
		(pool->flags & POOL_MANAGE_WORKERS);
678 679 680
}

/* Do we have too many workers and should some go away? */
681
static bool too_many_workers(struct worker_pool *pool)
682
{
683
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
684 685
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
686

687 688 689 690 691 692 693
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

694
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
695 696
}

697
/*
698 699 700
 * Wake up functions.
 */

701
/* Return the first worker.  Safe with preemption disabled */
702
static struct worker *first_worker(struct worker_pool *pool)
703
{
704
	if (unlikely(list_empty(&pool->idle_list)))
705 706
		return NULL;

707
	return list_first_entry(&pool->idle_list, struct worker, entry);
708 709 710 711
}

/**
 * wake_up_worker - wake up an idle worker
712
 * @pool: worker pool to wake worker from
713
 *
714
 * Wake up the first idle worker of @pool.
715 716 717 718
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
719
static void wake_up_worker(struct worker_pool *pool)
720
{
721
	struct worker *worker = first_worker(pool);
722 723 724 725 726

	if (likely(worker))
		wake_up_process(worker->task);
}

727
/**
728 729 730 731 732 733 734 735 736 737 738 739 740 741
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

742
	if (!(worker->flags & WORKER_NOT_RUNNING))
743
		atomic_inc(get_pool_nr_running(worker->pool));
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
765
	struct worker_pool *pool = worker->pool;
766
	atomic_t *nr_running = get_pool_nr_running(pool);
767

768
	if (worker->flags & WORKER_NOT_RUNNING)
769 770 771 772 773 774 775 776 777 778
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
779 780 781 782 783
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
784
	 */
785
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
786
		to_wakeup = first_worker(pool);
787 788 789 790 791
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
792
 * @worker: self
793 794 795
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
796 797 798
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
799
 *
800 801
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
802 803 804 805
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
806
	struct worker_pool *pool = worker->pool;
807

808 809
	WARN_ON_ONCE(worker->task != current);

810 811 812 813 814 815 816
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
817
		atomic_t *nr_running = get_pool_nr_running(pool);
818 819 820

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
821
			    !list_empty(&pool->worklist))
822
				wake_up_worker(pool);
823 824 825 826
		} else
			atomic_dec(nr_running);
	}

827 828 829 830
	worker->flags |= flags;
}

/**
831
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
832
 * @worker: self
833 834
 * @flags: flags to clear
 *
835
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
836
 *
837 838
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
839 840 841
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
842
	struct worker_pool *pool = worker->pool;
843 844
	unsigned int oflags = worker->flags;

845 846
	WARN_ON_ONCE(worker->task != current);

847
	worker->flags &= ~flags;
848

849 850 851 852 853
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
854 855
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
856
			atomic_inc(get_pool_nr_running(pool));
857 858
}

T
Tejun Heo 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
931
 */
932 933
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
934
{
935 936
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
937 938
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

980
static void cwq_activate_delayed_work(struct work_struct *work)
981
{
982
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
983 984 985 986 987 988 989

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

990 991 992 993 994 995 996 997
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
1009
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1010 1011 1012 1013 1014 1015 1016
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1017 1018 1019 1020 1021
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1043
/**
1044
 * try_to_grab_pending - steal work item from worklist and disable irq
1045 1046
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1047
 * @flags: place to store irq state
1048 1049 1050 1051 1052 1053 1054
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1055 1056
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1057
 *
1058
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1059 1060 1061
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1062 1063 1064 1065
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1066
 * This function is safe to call from any context including IRQ handler.
1067
 */
1068 1069
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1070 1071 1072
{
	struct global_cwq *gcwq;

1073 1074
	local_irq_save(*flags);

1075 1076 1077 1078
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1079 1080 1081 1082 1083
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1084 1085 1086 1087 1088
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1098
		goto fail;
1099

1100
	spin_lock(&gcwq->lock);
1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1122 1123
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1124
				get_work_color(work));
1125

1126
			spin_unlock(&gcwq->lock);
1127
			return 1;
1128 1129
		}
	}
1130 1131 1132 1133 1134 1135
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1136
	return -EAGAIN;
1137 1138
}

T
Tejun Heo 已提交
1139
/**
1140
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1141 1142 1143 1144 1145
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1146 1147
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1148 1149
 *
 * CONTEXT:
1150
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1151
 */
O
Oleg Nesterov 已提交
1152
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1153 1154
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1155
{
1156
	struct worker_pool *pool = cwq->pool;
1157

T
Tejun Heo 已提交
1158
	/* we own @work, set data and link */
1159
	set_work_cwq(work, cwq, extra_flags);
1160

1161 1162 1163 1164 1165
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1166

1167
	list_add_tail(&work->entry, head);
1168 1169 1170 1171 1172 1173 1174 1175

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1176 1177
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1212
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1213 1214
			 struct work_struct *work)
{
1215 1216
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1217
	struct list_head *worklist;
1218
	unsigned int work_flags;
1219
	unsigned int req_cpu = cpu;
1220 1221 1222 1223 1224 1225 1226 1227

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1228

1229
	debug_work_activate(work);
1230

1231
	/* if dying, only works from the same workqueue are allowed */
1232
	if (unlikely(wq->flags & WQ_DRAINING) &&
1233
	    WARN_ON_ONCE(!is_chained_work(wq)))
1234 1235
		return;

1236 1237
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1238 1239
		struct global_cwq *last_gcwq;

1240
		if (cpu == WORK_CPU_UNBOUND)
1241 1242
			cpu = raw_smp_processor_id();

1243
		/*
1244 1245 1246 1247
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1248
		 */
1249
		gcwq = get_gcwq(cpu);
1250 1251 1252
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1253 1254
			struct worker *worker;

1255
			spin_lock(&last_gcwq->lock);
1256 1257 1258 1259 1260 1261 1262

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1263 1264
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1265
			}
1266 1267 1268
		} else {
			spin_lock(&gcwq->lock);
		}
1269 1270
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1271
		spin_lock(&gcwq->lock);
1272 1273 1274 1275
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1276
	trace_workqueue_queue_work(req_cpu, cwq, work);
1277

1278
	if (WARN_ON(!list_empty(&work->entry))) {
1279
		spin_unlock(&gcwq->lock);
1280 1281
		return;
	}
1282

1283
	cwq->nr_in_flight[cwq->work_color]++;
1284
	work_flags = work_color_to_flags(cwq->work_color);
1285 1286

	if (likely(cwq->nr_active < cwq->max_active)) {
1287
		trace_workqueue_activate_work(work);
1288
		cwq->nr_active++;
1289
		worklist = &cwq->pool->worklist;
1290 1291
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1292
		worklist = &cwq->delayed_works;
1293
	}
1294

1295
	insert_work(cwq, work, worklist, work_flags);
1296

1297
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1298 1299
}

1300
/**
1301 1302
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1303 1304 1305
 * @wq: workqueue to use
 * @work: work to queue
 *
1306
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1307
 *
1308 1309
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1310
 */
1311 1312
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1313
{
1314
	bool ret = false;
1315
	unsigned long flags;
1316

1317
	local_irq_save(flags);
1318

1319
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1320
		__queue_work(cpu, wq, work);
1321
		ret = true;
1322
	}
1323

1324
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1325 1326
	return ret;
}
1327
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1328

1329
/**
1330
 * queue_work - queue work on a workqueue
1331 1332 1333
 * @wq: workqueue to use
 * @work: work to queue
 *
1334
 * Returns %false if @work was already on a queue, %true otherwise.
1335
 *
1336 1337
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1338
 */
1339
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1340
{
1341
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1342
}
1343
EXPORT_SYMBOL_GPL(queue_work);
1344

1345
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1346
{
1347
	struct delayed_work *dwork = (struct delayed_work *)__data;
1348
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1349

1350
	/* should have been called from irqsafe timer with irq already off */
1351
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1352
}
1353
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1354

1355 1356
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1357
{
1358 1359 1360 1361 1362 1363 1364 1365 1366
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
	BUG_ON(timer_pending(timer));
	BUG_ON(!list_empty(&work->entry));

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1378
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1379

1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1388 1389 1390 1391 1392 1393 1394
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1395
			lcpu = gcwq->cpu;
1396
		if (lcpu == WORK_CPU_UNBOUND)
1397 1398 1399 1400 1401 1402 1403
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1404
	dwork->cpu = cpu;
1405 1406 1407 1408 1409 1410
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1411 1412
}

1413 1414 1415 1416
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1417
 * @dwork: work to queue
1418 1419
 * @delay: number of jiffies to wait before queueing
 *
1420 1421 1422
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1423
 */
1424 1425
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1426
{
1427
	struct work_struct *work = &dwork->work;
1428
	bool ret = false;
1429
	unsigned long flags;
1430

1431 1432
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1433

1434
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435
		__queue_delayed_work(cpu, wq, dwork, delay);
1436
		ret = true;
1437
	}
1438

1439
	local_irq_restore(flags);
1440 1441
	return ret;
}
1442
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1443

1444 1445 1446 1447 1448 1449
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1450
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1451
 */
1452
bool queue_delayed_work(struct workqueue_struct *wq,
1453 1454
			struct delayed_work *dwork, unsigned long delay)
{
1455
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1456 1457
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1474
 * This function is safe to call from any context including IRQ handler.
1475 1476 1477 1478 1479 1480 1481
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1482

1483 1484 1485
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1486

1487 1488 1489
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1490
	}
1491 1492

	/* -ENOENT from try_to_grab_pending() becomes %true */
1493 1494
	return ret;
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1511

T
Tejun Heo 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1523
{
1524 1525
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1526 1527 1528 1529 1530

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1531 1532
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1533
	pool->nr_idle++;
1534
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1535 1536

	/* idle_list is LIFO */
1537
	list_add(&worker->entry, &pool->idle_list);
1538

1539 1540
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1541

1542
	/*
1543 1544 1545 1546
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1547
	 */
1548
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1549
		     pool->nr_workers == pool->nr_idle &&
1550
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1564
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1565 1566

	BUG_ON(!(worker->flags & WORKER_IDLE));
1567
	worker_clr_flags(worker, WORKER_IDLE);
1568
	pool->nr_idle--;
T
Tejun Heo 已提交
1569 1570 1571
	list_del_init(&worker->entry);
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1588 1589 1590 1591 1592
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1603
__acquires(&gcwq->lock)
1604
{
1605
	struct global_cwq *gcwq = worker->pool->gcwq;
1606 1607 1608
	struct task_struct *task = worker->task;

	while (true) {
1609
		/*
1610 1611 1612 1613
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1614
		 */
1615 1616
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1627 1628 1629 1630 1631 1632
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1633
		cpu_relax();
1634
		cond_resched();
1635 1636 1637
	}
}

1638
/*
1639
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1640
 * list_empty(@worker->entry) before leaving idle and call this function.
1641 1642 1643 1644 1645
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1646 1647 1648
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1649

1650 1651 1652
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1653 1654
}

1655
/*
1656
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1657 1658 1659
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1660
 */
1661
static void busy_worker_rebind_fn(struct work_struct *work)
1662 1663
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1664
	struct global_cwq *gcwq = worker->pool->gcwq;
1665

1666 1667
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1668 1669 1670 1671

	spin_unlock_irq(&gcwq->lock);
}

1672 1673 1674 1675 1676 1677 1678
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1679 1680 1681 1682
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1683
 *
1684 1685 1686 1687
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1688
 *
1689 1690 1691 1692
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1693 1694 1695 1696
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1697
	struct worker *worker, *n;
1698 1699 1700 1701 1702 1703
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
1704
		lockdep_assert_held(&pool->assoc_mutex);
1705

1706
	/* dequeue and kick idle ones */
1707
	for_each_worker_pool(pool, gcwq) {
1708 1709 1710 1711 1712 1713 1714
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1715

1716 1717 1718 1719
			/*
			 * worker_thread() will see the above dequeuing
			 * and call idle_worker_rebind().
			 */
1720 1721 1722 1723
			wake_up_process(worker->task);
		}
	}

1724
	/* rebind busy workers */
1725 1726
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;
1727
		struct workqueue_struct *wq;
1728 1729 1730 1731 1732 1733

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1734

1735 1736 1737 1738 1739 1740 1741 1742
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;
1743

1744 1745 1746
		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1747
	}
1748 1749
}

T
Tejun Heo 已提交
1750 1751 1752 1753 1754
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1755 1756
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1757
		INIT_LIST_HEAD(&worker->scheduled);
1758
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1759 1760
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1761
	}
T
Tejun Heo 已提交
1762 1763 1764 1765 1766
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1767
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1768
 *
1769
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1779
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1780
{
1781
	struct global_cwq *gcwq = pool->gcwq;
1782
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1783
	struct worker *worker = NULL;
1784
	int id = -1;
T
Tejun Heo 已提交
1785

1786
	spin_lock_irq(&gcwq->lock);
1787
	while (ida_get_new(&pool->worker_ida, &id)) {
1788
		spin_unlock_irq(&gcwq->lock);
1789
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1790
			goto fail;
1791
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1792
	}
1793
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1794 1795 1796 1797 1798

	worker = alloc_worker();
	if (!worker)
		goto fail;

1799
	worker->pool = pool;
T
Tejun Heo 已提交
1800 1801
	worker->id = id;

1802
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1803
		worker->task = kthread_create_on_node(worker_thread,
1804 1805
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1806 1807
	else
		worker->task = kthread_create(worker_thread, worker,
1808
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1809 1810 1811
	if (IS_ERR(worker->task))
		goto fail;

1812 1813 1814
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1815
	/*
1816 1817 1818 1819 1820 1821 1822
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1823
	 */
1824
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1825
		kthread_bind(worker->task, gcwq->cpu);
1826
	} else {
1827
		worker->task->flags |= PF_THREAD_BOUND;
1828
		worker->flags |= WORKER_UNBOUND;
1829
	}
T
Tejun Heo 已提交
1830 1831 1832 1833

	return worker;
fail:
	if (id >= 0) {
1834
		spin_lock_irq(&gcwq->lock);
1835
		ida_remove(&pool->worker_ida, id);
1836
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1846
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1847 1848
 *
 * CONTEXT:
1849
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1850 1851 1852
 */
static void start_worker(struct worker *worker)
{
1853
	worker->flags |= WORKER_STARTED;
1854
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1855
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1856 1857 1858 1859 1860 1861 1862
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1863 1864 1865 1866
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1867 1868 1869
 */
static void destroy_worker(struct worker *worker)
{
1870 1871
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1872 1873 1874 1875
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1876
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1877

T
Tejun Heo 已提交
1878
	if (worker->flags & WORKER_STARTED)
1879
		pool->nr_workers--;
T
Tejun Heo 已提交
1880
	if (worker->flags & WORKER_IDLE)
1881
		pool->nr_idle--;
T
Tejun Heo 已提交
1882 1883

	list_del_init(&worker->entry);
1884
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1885 1886 1887

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1888 1889 1890
	kthread_stop(worker->task);
	kfree(worker);

1891
	spin_lock_irq(&gcwq->lock);
1892
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1893 1894
}

1895
static void idle_worker_timeout(unsigned long __pool)
1896
{
1897 1898
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1899 1900 1901

	spin_lock_irq(&gcwq->lock);

1902
	if (too_many_workers(pool)) {
1903 1904 1905 1906
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1907
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1908 1909 1910
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1911
			mod_timer(&pool->idle_timer, expires);
1912 1913
		else {
			/* it's been idle for too long, wake up manager */
1914
			pool->flags |= POOL_MANAGE_WORKERS;
1915
			wake_up_worker(pool);
1916
		}
1917 1918 1919 1920
	}

	spin_unlock_irq(&gcwq->lock);
}
1921

1922 1923 1924 1925
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1926
	unsigned int cpu;
1927 1928 1929 1930 1931

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1932
	cpu = cwq->pool->gcwq->cpu;
1933 1934 1935
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1936
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1937 1938 1939 1940
		wake_up_process(wq->rescuer->task);
	return true;
}

1941
static void gcwq_mayday_timeout(unsigned long __pool)
1942
{
1943 1944
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1945 1946 1947 1948
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1949
	if (need_to_create_worker(pool)) {
1950 1951 1952 1953 1954 1955
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1956
		list_for_each_entry(work, &pool->worklist, entry)
1957
			send_mayday(work);
L
Linus Torvalds 已提交
1958
	}
1959 1960 1961

	spin_unlock_irq(&gcwq->lock);

1962
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1963 1964
}

1965 1966
/**
 * maybe_create_worker - create a new worker if necessary
1967
 * @pool: pool to create a new worker for
1968
 *
1969
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1970 1971
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1972
 * sent to all rescuers with works scheduled on @pool to resolve
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1987
static bool maybe_create_worker(struct worker_pool *pool)
1988 1989
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1990
{
1991 1992 1993
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1994 1995
		return false;
restart:
1996 1997
	spin_unlock_irq(&gcwq->lock);

1998
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1999
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2000 2001 2002 2003

	while (true) {
		struct worker *worker;

2004
		worker = create_worker(pool);
2005
		if (worker) {
2006
			del_timer_sync(&pool->mayday_timer);
2007 2008
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
2009
			BUG_ON(need_to_create_worker(pool));
2010 2011 2012
			return true;
		}

2013
		if (!need_to_create_worker(pool))
2014
			break;
L
Linus Torvalds 已提交
2015

2016 2017
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2018

2019
		if (!need_to_create_worker(pool))
2020 2021 2022
			break;
	}

2023
	del_timer_sync(&pool->mayday_timer);
2024
	spin_lock_irq(&gcwq->lock);
2025
	if (need_to_create_worker(pool))
2026 2027 2028 2029 2030 2031
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2032
 * @pool: pool to destroy workers for
2033
 *
2034
 * Destroy @pool workers which have been idle for longer than
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2045
static bool maybe_destroy_workers(struct worker_pool *pool)
2046 2047
{
	bool ret = false;
L
Linus Torvalds 已提交
2048

2049
	while (too_many_workers(pool)) {
2050 2051
		struct worker *worker;
		unsigned long expires;
2052

2053
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2054
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2055

2056
		if (time_before(jiffies, expires)) {
2057
			mod_timer(&pool->idle_timer, expires);
2058
			break;
2059
		}
L
Linus Torvalds 已提交
2060

2061 2062
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2063
	}
2064

2065
	return ret;
2066 2067
}

2068
/**
2069 2070
 * manage_workers - manage worker pool
 * @worker: self
2071
 *
2072 2073 2074 2075 2076 2077 2078
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2079 2080
 *
 * CONTEXT:
2081 2082 2083 2084 2085 2086
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
2087
 */
2088
static bool manage_workers(struct worker *worker)
2089
{
2090
	struct worker_pool *pool = worker->pool;
2091
	bool ret = false;
2092

2093
	if (pool->flags & POOL_MANAGING_WORKERS)
2094
		return ret;
2095

2096
	pool->flags |= POOL_MANAGING_WORKERS;
2097

2098 2099 2100 2101 2102 2103
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2104
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2105 2106
	 * manager against CPU hotplug.
	 *
2107
	 * assoc_mutex would always be free unless CPU hotplug is in
2108 2109
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
2110
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2111
		spin_unlock_irq(&pool->gcwq->lock);
2112
		mutex_lock(&pool->assoc_mutex);
2113 2114
		/*
		 * CPU hotplug could have happened while we were waiting
2115
		 * for assoc_mutex.  Hotplug itself can't handle us
2116 2117 2118
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2119
		 * As hotplug is now excluded via assoc_mutex, we can
2120 2121 2122 2123 2124 2125 2126 2127
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2128

2129 2130
		ret = true;
	}
2131

2132
	pool->flags &= ~POOL_MANAGE_WORKERS;
2133 2134

	/*
2135 2136
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2137
	 */
2138 2139
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2140

2141
	pool->flags &= ~POOL_MANAGING_WORKERS;
2142
	mutex_unlock(&pool->assoc_mutex);
2143
	return ret;
2144 2145
}

2146 2147
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2148
 * @worker: self
2149 2150 2151 2152 2153 2154 2155 2156 2157
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2158
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2159
 */
T
Tejun Heo 已提交
2160
static void process_one_work(struct worker *worker, struct work_struct *work)
2161 2162
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2163
{
2164
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2165 2166
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
2167
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2168
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2169
	work_func_t f = work->func;
2170
	int work_color;
2171
	struct worker *collision;
2172 2173 2174 2175 2176 2177 2178 2179
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2180 2181 2182
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2183
#endif
2184 2185 2186 2187 2188
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2189
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2190
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2191 2192
		     raw_smp_processor_id() != gcwq->cpu);

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2205
	/* claim and dequeue */
2206
	debug_work_deactivate(work);
T
Tejun Heo 已提交
2207
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
2208
	worker->current_work = work;
2209
	worker->current_cwq = cwq;
2210
	work_color = get_work_color(work);
2211

2212 2213
	list_del_init(&work->entry);

2214 2215 2216 2217 2218 2219 2220
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2221 2222 2223 2224
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2225 2226
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2227

2228
	/*
2229 2230 2231 2232
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2233 2234
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2235

2236
	spin_unlock_irq(&gcwq->lock);
2237

2238
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2239
	lock_map_acquire(&lockdep_map);
2240
	trace_workqueue_execute_start(work);
2241
	f(work);
2242 2243 2244 2245 2246
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2247 2248 2249 2250
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2251 2252 2253
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
		       current->comm, preempt_count(), task_pid_nr(current), f);
2254 2255 2256 2257
		debug_show_held_locks(current);
		dump_stack();
	}

2258
	spin_lock_irq(&gcwq->lock);
2259

2260 2261 2262 2263
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2264
	/* we're done with it, release */
T
Tejun Heo 已提交
2265
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2266
	worker->current_work = NULL;
2267
	worker->current_cwq = NULL;
2268
	cwq_dec_nr_in_flight(cwq, work_color);
2269 2270
}

2271 2272 2273 2274 2275 2276 2277 2278 2279
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2280
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2281 2282 2283
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2284
{
2285 2286
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2287
						struct work_struct, entry);
T
Tejun Heo 已提交
2288
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2289 2290 2291
	}
}

T
Tejun Heo 已提交
2292 2293
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2294
 * @__worker: self
T
Tejun Heo 已提交
2295
 *
2296 2297 2298 2299 2300
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2301
 */
T
Tejun Heo 已提交
2302
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2303
{
T
Tejun Heo 已提交
2304
	struct worker *worker = __worker;
2305 2306
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2307

2308 2309
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2310 2311
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2312

2313 2314
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
T
Tejun Heo 已提交
2315
		spin_unlock_irq(&gcwq->lock);
2316

2317
		/* if DIE is set, destruction is requested */
2318 2319 2320 2321 2322
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2323
		/* otherwise, rebind */
2324 2325
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2326
	}
2327

T
Tejun Heo 已提交
2328
	worker_leave_idle(worker);
2329
recheck:
2330
	/* no more worker necessary? */
2331
	if (!need_more_worker(pool))
2332 2333 2334
		goto sleep;

	/* do we need to manage? */
2335
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2336 2337
		goto recheck;

T
Tejun Heo 已提交
2338 2339 2340 2341 2342 2343 2344
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2345 2346 2347 2348 2349 2350 2351 2352
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2353
		struct work_struct *work =
2354
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2355 2356 2357 2358 2359 2360
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2361
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2362 2363 2364
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2365
		}
2366
	} while (keep_working(pool));
2367 2368

	worker_set_flags(worker, WORKER_PREP, false);
2369
sleep:
2370
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2371
		goto recheck;
2372

T
Tejun Heo 已提交
2373
	/*
2374 2375 2376 2377 2378
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2379 2380 2381 2382 2383 2384
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2411
	bool is_unbound = wq->flags & WQ_UNBOUND;
2412 2413 2414 2415 2416 2417
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2418 2419
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2420
		return 0;
2421
	}
2422

2423 2424 2425 2426
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2427
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2428 2429
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2430 2431
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2432 2433 2434
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2435
		mayday_clear_cpu(cpu, wq->mayday_mask);
2436 2437

		/* migrate to the target cpu if possible */
2438
		rescuer->pool = pool;
2439 2440 2441 2442 2443 2444 2445
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2446
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2447 2448 2449 2450
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2451 2452 2453 2454 2455 2456

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2457 2458
		if (keep_working(pool))
			wake_up_worker(pool);
2459

2460 2461 2462 2463 2464
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2465 2466
}

O
Oleg Nesterov 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2478 2479 2480 2481
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2482 2483
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2484
 *
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2498 2499
 *
 * CONTEXT:
2500
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2501
 */
2502
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2503 2504
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2505
{
2506 2507 2508
	struct list_head *head;
	unsigned int linked = 0;

2509
	/*
2510
	 * debugobject calls are safe here even with gcwq->lock locked
2511 2512 2513 2514
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2515
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2516
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2517
	init_completion(&barr->done);
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2534
	debug_work_activate(&barr->work);
2535 2536
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2537 2538
}

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2572
{
2573 2574
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2575

2576 2577 2578
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2579
	}
2580

2581
	for_each_cwq_cpu(cpu, wq) {
2582
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2583
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2584

2585
		spin_lock_irq(&gcwq->lock);
2586

2587 2588
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2589

2590 2591 2592 2593 2594 2595
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2596

2597 2598 2599 2600
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2601

2602
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2603
	}
2604

2605 2606
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2607

2608
	return wait;
L
Linus Torvalds 已提交
2609 2610
}

2611
/**
L
Linus Torvalds 已提交
2612
 * flush_workqueue - ensure that any scheduled work has run to completion.
2613
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2614 2615 2616 2617
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2618 2619
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2620
 */
2621
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2622
{
2623 2624 2625 2626 2627 2628
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2629

2630 2631
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2693 2694 2695 2696
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2764
}
2765
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2797
		bool drained;
2798

2799
		spin_lock_irq(&cwq->pool->gcwq->lock);
2800
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2801
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2802 2803

		if (drained)
2804 2805 2806 2807
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2808 2809
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2820
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2821
{
2822
	struct worker *worker = NULL;
2823
	struct global_cwq *gcwq;
2824 2825 2826
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2827 2828
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2829
		return false;
2830

2831
	spin_lock_irq(&gcwq->lock);
2832 2833 2834
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2835 2836
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2837 2838
		 */
		smp_rmb();
2839
		cwq = get_work_cwq(work);
2840
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2841
			goto already_gone;
2842
	} else {
2843
		worker = find_worker_executing_work(gcwq, work);
2844
		if (!worker)
T
Tejun Heo 已提交
2845
			goto already_gone;
2846
		cwq = worker->current_cwq;
2847
	}
2848

2849
	insert_wq_barrier(cwq, barr, work, worker);
2850
	spin_unlock_irq(&gcwq->lock);
2851

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2862
	lock_map_release(&cwq->wq->lockdep_map);
2863

2864
	return true;
T
Tejun Heo 已提交
2865
already_gone:
2866
	spin_unlock_irq(&gcwq->lock);
2867
	return false;
2868
}
2869 2870 2871 2872 2873

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2874 2875
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2876 2877 2878 2879 2880 2881 2882 2883 2884
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2885 2886 2887
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2888
	if (start_flush_work(work, &barr)) {
2889 2890 2891
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2892
	} else {
2893
		return false;
2894 2895
	}
}
2896
EXPORT_SYMBOL_GPL(flush_work);
2897

2898
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2899
{
2900
	unsigned long flags;
2901 2902 2903
	int ret;

	do {
2904 2905 2906 2907 2908 2909
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2910
			flush_work(work);
2911 2912
	} while (unlikely(ret < 0));

2913 2914 2915 2916
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2917
	flush_work(work);
2918
	clear_work_data(work);
2919 2920 2921
	return ret;
}

2922
/**
2923 2924
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2925
 *
2926 2927 2928 2929
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2930
 *
2931 2932
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2933
 *
2934
 * The caller must ensure that the workqueue on which @work was last
2935
 * queued can't be destroyed before this function returns.
2936 2937 2938
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2939
 */
2940
bool cancel_work_sync(struct work_struct *work)
2941
{
2942
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2943
}
2944
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2945

2946
/**
2947 2948
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2949
 *
2950 2951 2952
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2953
 *
2954 2955 2956
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2957
 */
2958 2959
bool flush_delayed_work(struct delayed_work *dwork)
{
2960
	local_irq_disable();
2961
	if (del_timer_sync(&dwork->timer))
2962
		__queue_work(dwork->cpu,
2963
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2964
	local_irq_enable();
2965 2966 2967 2968
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2969
/**
2970 2971
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2972
 *
2973 2974 2975 2976 2977
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2978
 *
2979
 * This function is safe to call from any context including IRQ handler.
2980
 */
2981
bool cancel_delayed_work(struct delayed_work *dwork)
2982
{
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
2995
	return ret;
2996
}
2997
EXPORT_SYMBOL(cancel_delayed_work);
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3009
{
3010
	return __cancel_work_timer(&dwork->work, true);
3011
}
3012
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3013

3014
/**
3015 3016 3017 3018 3019 3020
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3021
bool schedule_work_on(int cpu, struct work_struct *work)
3022
{
3023
	return queue_work_on(cpu, system_wq, work);
3024 3025 3026
}
EXPORT_SYMBOL(schedule_work_on);

3027 3028 3029 3030
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3031 3032
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3033 3034 3035 3036
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3037
 */
3038
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3039
{
3040
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3041
}
3042
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3043

3044 3045 3046
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3047
 * @dwork: job to be done
3048 3049 3050 3051 3052
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3053 3054
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3055
{
3056
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3057
}
3058
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3059

3060 3061
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3062 3063
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3064 3065 3066 3067
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3068
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3069
{
3070
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3071
}
3072
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3073

3074
/**
3075
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3076 3077
 * @func: the function to call
 *
3078 3079
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3080
 * schedule_on_each_cpu() is very slow.
3081 3082 3083
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3084
 */
3085
int schedule_on_each_cpu(work_func_t func)
3086 3087
{
	int cpu;
3088
	struct work_struct __percpu *works;
3089

3090 3091
	works = alloc_percpu(struct work_struct);
	if (!works)
3092
		return -ENOMEM;
3093

3094 3095
	get_online_cpus();

3096
	for_each_online_cpu(cpu) {
3097 3098 3099
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3100
		schedule_work_on(cpu, work);
3101
	}
3102 3103 3104 3105

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3106
	put_online_cpus();
3107
	free_percpu(works);
3108 3109 3110
	return 0;
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3135 3136
void flush_scheduled_work(void)
{
3137
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3138
}
3139
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3140

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3153
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3154 3155
{
	if (!in_interrupt()) {
3156
		fn(&ew->work);
3157 3158 3159
		return 0;
	}

3160
	INIT_WORK(&ew->work, fn);
3161 3162 3163 3164 3165 3166
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3167 3168
int keventd_up(void)
{
3169
	return system_wq != NULL;
L
Linus Torvalds 已提交
3170 3171
}

3172
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3173
{
3174
	/*
T
Tejun Heo 已提交
3175 3176 3177
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3178
	 */
T
Tejun Heo 已提交
3179 3180 3181
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3182

3183
	if (!(wq->flags & WQ_UNBOUND))
3184
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3185
	else {
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3198
	}
3199

3200
	/* just in case, make sure it's actually aligned */
3201 3202
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3203 3204
}

3205
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3206
{
3207
	if (!(wq->flags & WQ_UNBOUND))
3208 3209 3210
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3211
		kfree(*(void **)(wq->cpu_wq.single + 1));
3212
	}
T
Tejun Heo 已提交
3213 3214
}

3215 3216
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3217
{
3218 3219 3220
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3221 3222
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3223

3224
	return clamp_val(max_active, 1, lim);
3225 3226
}

3227
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3228 3229 3230
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3231
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3232
{
3233
	va_list args, args1;
L
Linus Torvalds 已提交
3234
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3235
	unsigned int cpu;
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3250

3251 3252 3253 3254 3255 3256 3257
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3258
	max_active = max_active ?: WQ_DFL_ACTIVE;
3259
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3260

3261
	/* init wq */
3262
	wq->flags = flags;
3263
	wq->saved_max_active = max_active;
3264 3265 3266 3267
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3268

3269
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3270
	INIT_LIST_HEAD(&wq->list);
3271

3272 3273 3274
	if (alloc_cwqs(wq) < 0)
		goto err;

3275
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3276
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3277
		struct global_cwq *gcwq = get_gcwq(cpu);
3278
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3279

T
Tejun Heo 已提交
3280
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3281
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3282
		cwq->wq = wq;
3283
		cwq->flush_color = -1;
3284 3285
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3286
	}
T
Tejun Heo 已提交
3287

3288 3289 3290
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3291
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3292 3293 3294 3295 3296 3297
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3298 3299
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3300 3301 3302 3303 3304
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3305 3306
	}

3307 3308 3309 3310 3311
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3312
	spin_lock(&workqueue_lock);
3313

3314
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3315
		for_each_cwq_cpu(cpu, wq)
3316 3317
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3318
	list_add(&wq->list, &workqueues);
3319

T
Tejun Heo 已提交
3320 3321
	spin_unlock(&workqueue_lock);

3322
	return wq;
T
Tejun Heo 已提交
3323 3324
err:
	if (wq) {
3325
		free_cwqs(wq);
3326
		free_mayday_mask(wq->mayday_mask);
3327
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3328 3329 3330
		kfree(wq);
	}
	return NULL;
3331
}
3332
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3333

3334 3335 3336 3337 3338 3339 3340 3341
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3342
	unsigned int cpu;
3343

3344 3345
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3346

3347 3348 3349 3350
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3351
	spin_lock(&workqueue_lock);
3352
	list_del(&wq->list);
3353
	spin_unlock(&workqueue_lock);
3354

3355
	/* sanity check */
3356
	for_each_cwq_cpu(cpu, wq) {
3357 3358 3359 3360 3361
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3362 3363
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3364
	}
3365

3366 3367
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3368
		free_mayday_mask(wq->mayday_mask);
3369
		kfree(wq->rescuer);
3370 3371
	}

3372
	free_cwqs(wq);
3373 3374 3375 3376
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3411
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3412 3413 3414 3415 3416

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3417
	for_each_cwq_cpu(cpu, wq) {
3418 3419 3420 3421
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3422
		if (!(wq->flags & WQ_FREEZABLE) ||
3423
		    !(gcwq->flags & GCWQ_FREEZING))
3424
			cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3425

3426
		spin_unlock_irq(&gcwq->lock);
3427
	}
3428

3429
	spin_unlock(&workqueue_lock);
3430
}
3431
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3432

3433
/**
3434 3435 3436
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3437
 *
3438 3439 3440
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3441
 *
3442 3443
 * RETURNS:
 * %true if congested, %false otherwise.
3444
 */
3445
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3446
{
3447 3448 3449
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3450
}
3451
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3452

3453
/**
3454 3455
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3456
 *
3457
 * RETURNS:
3458
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3459
 */
3460
unsigned int work_cpu(struct work_struct *work)
3461
{
3462
	struct global_cwq *gcwq = get_work_gcwq(work);
3463

3464
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3465
}
3466
EXPORT_SYMBOL_GPL(work_cpu);
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3482
{
3483 3484 3485
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3486

3487 3488
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3489

3490
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3491

3492 3493 3494 3495
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3496

3497
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3498

3499
	return ret;
L
Linus Torvalds 已提交
3500
}
3501
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3502

3503 3504 3505
/*
 * CPU hotplug.
 *
3506 3507 3508 3509 3510 3511 3512
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3513 3514 3515
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3516
 */
L
Linus Torvalds 已提交
3517

3518
/* claim manager positions of all pools */
3519
static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3520 3521 3522 3523
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
3524
		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3525
	spin_lock_irq(&gcwq->lock);
3526 3527 3528
}

/* release manager positions */
3529
static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3530 3531 3532
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3533
	spin_unlock_irq(&gcwq->lock);
3534
	for_each_worker_pool(pool, gcwq)
3535
		mutex_unlock(&pool->assoc_mutex);
3536 3537
}

3538
static void gcwq_unbind_fn(struct work_struct *work)
3539
{
3540
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3541
	struct worker_pool *pool;
3542 3543 3544
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3545

3546 3547
	BUG_ON(gcwq->cpu != smp_processor_id());

3548
	gcwq_claim_assoc_and_lock(gcwq);
3549

3550 3551 3552 3553 3554 3555
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3556
	for_each_worker_pool(pool, gcwq)
3557
		list_for_each_entry(worker, &pool->idle_list, entry)
3558
			worker->flags |= WORKER_UNBOUND;
3559

3560
	for_each_busy_worker(worker, i, pos, gcwq)
3561
		worker->flags |= WORKER_UNBOUND;
3562

3563 3564
	gcwq->flags |= GCWQ_DISASSOCIATED;

3565
	gcwq_release_assoc_and_unlock(gcwq);
3566

3567
	/*
3568
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3569 3570
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3571 3572
	 */
	schedule();
3573

3574
	/*
3575 3576 3577 3578 3579 3580 3581 3582 3583
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3584
	 */
3585 3586
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3587 3588
}

T
Tejun Heo 已提交
3589 3590 3591 3592
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3593
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3594 3595
					       unsigned long action,
					       void *hcpu)
3596 3597
{
	unsigned int cpu = (unsigned long)hcpu;
3598
	struct global_cwq *gcwq = get_gcwq(cpu);
3599
	struct worker_pool *pool;
3600

T
Tejun Heo 已提交
3601
	switch (action & ~CPU_TASKS_FROZEN) {
3602
	case CPU_UP_PREPARE:
3603
		for_each_worker_pool(pool, gcwq) {
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3616
		}
T
Tejun Heo 已提交
3617
		break;
3618

3619 3620
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3621
		gcwq_claim_assoc_and_lock(gcwq);
3622
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3623
		rebind_workers(gcwq);
3624
		gcwq_release_assoc_and_unlock(gcwq);
3625
		break;
3626
	}
3627 3628 3629 3630 3631 3632 3633
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3634
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3635 3636 3637
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3638 3639 3640
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3641 3642
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3643 3644
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3645
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3646 3647
		flush_work(&unbind_work);
		break;
3648 3649 3650 3651
	}
	return NOTIFY_OK;
}

3652
#ifdef CONFIG_SMP
3653

3654
struct work_for_cpu {
3655
	struct work_struct work;
3656 3657 3658 3659 3660
	long (*fn)(void *);
	void *arg;
	long ret;
};

3661
static void work_for_cpu_fn(struct work_struct *work)
3662
{
3663 3664
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3665 3666 3667 3668 3669 3670 3671 3672 3673
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3674 3675
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3676
 * The caller must not hold any locks which would prevent @fn from completing.
3677 3678 3679
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3680
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3681

3682 3683 3684
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3685 3686 3687 3688 3689
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3690 3691 3692 3693 3694
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3695 3696 3697
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3698 3699
 *
 * CONTEXT:
3700
 * Grabs and releases workqueue_lock and gcwq->lock's.
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3711
	for_each_gcwq_cpu(cpu) {
3712
		struct global_cwq *gcwq = get_gcwq(cpu);
3713
		struct workqueue_struct *wq;
3714 3715 3716

		spin_lock_irq(&gcwq->lock);

3717 3718 3719
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3720 3721 3722
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3723
			if (cwq && wq->flags & WQ_FREEZABLE)
3724 3725
				cwq->max_active = 0;
		}
3726 3727

		spin_unlock_irq(&gcwq->lock);
3728 3729 3730 3731 3732 3733
	}

	spin_unlock(&workqueue_lock);
}

/**
3734
 * freeze_workqueues_busy - are freezable workqueues still busy?
3735 3736 3737 3738 3739 3740 3741 3742
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3743 3744
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3755
	for_each_gcwq_cpu(cpu) {
3756
		struct workqueue_struct *wq;
3757 3758 3759 3760 3761 3762 3763
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3764
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3783
 * frozen works are transferred to their respective gcwq worklists.
3784 3785
 *
 * CONTEXT:
3786
 * Grabs and releases workqueue_lock and gcwq->lock's.
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3797
	for_each_gcwq_cpu(cpu) {
3798
		struct global_cwq *gcwq = get_gcwq(cpu);
3799
		struct worker_pool *pool;
3800
		struct workqueue_struct *wq;
3801 3802 3803

		spin_lock_irq(&gcwq->lock);

3804 3805 3806
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3807 3808 3809
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3810
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3811 3812 3813
				continue;

			/* restore max_active and repopulate worklist */
3814
			cwq_set_max_active(cwq, wq->saved_max_active);
3815
		}
3816

3817 3818
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3819

3820
		spin_unlock_irq(&gcwq->lock);
3821 3822 3823 3824 3825 3826 3827 3828
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3829
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3830
{
T
Tejun Heo 已提交
3831
	unsigned int cpu;
T
Tejun Heo 已提交
3832
	int i;
T
Tejun Heo 已提交
3833

3834 3835 3836 3837
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3838
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3839
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3840 3841

	/* initialize gcwqs */
3842
	for_each_gcwq_cpu(cpu) {
3843
		struct global_cwq *gcwq = get_gcwq(cpu);
3844
		struct worker_pool *pool;
3845 3846 3847

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3848
		gcwq->flags |= GCWQ_DISASSOCIATED;
3849

T
Tejun Heo 已提交
3850 3851 3852
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3853 3854 3855 3856
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3857

3858 3859 3860
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3861

3862 3863 3864
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3865
			mutex_init(&pool->assoc_mutex);
3866 3867
			ida_init(&pool->worker_ida);
		}
3868 3869
	}

3870
	/* create the initial worker */
3871
	for_each_online_gcwq_cpu(cpu) {
3872
		struct global_cwq *gcwq = get_gcwq(cpu);
3873
		struct worker_pool *pool;
3874

3875 3876
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3877 3878 3879 3880

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3881
			worker = create_worker(pool);
3882 3883 3884 3885 3886
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3887 3888
	}

3889
	system_wq = alloc_workqueue("events", 0, 0);
3890
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3891
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3892 3893
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3894 3895
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3896
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3897
	       !system_unbound_wq || !system_freezable_wq);
3898
	return 0;
L
Linus Torvalds 已提交
3899
}
3900
early_initcall(init_workqueues);