zsmalloc.c 48.7 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14 15 16 17 18
/*
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
19
 *	page->private: points to the first component (0-order) page
N
Nitin Gupta 已提交
20 21 22 23 24 25 26 27 28
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
29
 *	page->private: refers to the component page after the first page
30 31
 *		If the page is first_page for huge object, it stores handle.
 *		Look at size_class->huge.
N
Nitin Gupta 已提交
32 33 34 35 36 37 38 39
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
40
 *	page->inuse: the number of objects that are used in this zspage
N
Nitin Gupta 已提交
41 42 43 44 45 46 47
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

48 49
#include <linux/module.h>
#include <linux/kernel.h>
M
Minchan Kim 已提交
50
#include <linux/sched.h>
51 52 53 54 55 56 57 58 59
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
60
#include <linux/vmalloc.h>
61
#include <linux/preempt.h>
62 63
#include <linux/spinlock.h>
#include <linux/types.h>
64
#include <linux/debugfs.h>
M
Minchan Kim 已提交
65
#include <linux/zsmalloc.h>
66
#include <linux/zpool.h>
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

83 84
#define ZS_HANDLE_SIZE (sizeof(unsigned long))

85 86
/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
87
 * as single (unsigned long) handle value.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
M
Minchan Kim 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * Memory for allocating for handle keeps object position by
 * encoding <page, obj_idx> and the encoded value has a room
 * in least bit(ie, look at obj_to_location).
 * We use the bit to synchronize between object access by
 * user and migration.
 */
#define HANDLE_PIN_BIT	0

/*
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 * to identify the object was allocated or not.
 * It's okay to add the status bit in the least bit because
 * header keeps handle which is 4byte-aligned address so we
 * have room for two bit at least.
 */
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 129 130 131 132 133
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134
/* each chunk includes extra space to keep handle */
135
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 137

/*
138
 * On systems with 4K page size, this gives 255 size classes! There is a
139 140 141 142 143 144 145 146 147 148 149
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
150
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 152 153 154 155 156 157 158 159 160 161 162 163

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

164 165 166
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
M
Minchan Kim 已提交
167 168
	CLASS_ALMOST_FULL,
	CLASS_ALMOST_EMPTY,
169 170
};

171 172 173 174 175 176
#ifdef CONFIG_ZSMALLOC_STAT
#define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1)
#else
#define NR_ZS_STAT_TYPE	(OBJ_USED + 1)
#endif

177 178 179 180
struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

181 182
#ifdef CONFIG_ZSMALLOC_STAT
static struct dentry *zs_stat_root;
183 184
#endif

185 186 187 188 189
/*
 * number of size_classes
 */
static int zs_size_classes;

190 191 192 193 194
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
195
 * f = fullness_threshold_frac
196 197 198 199 200 201 202 203 204 205 206
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
207 208
	spinlock_t lock;
	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 210 211 212 213 214 215
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

216
	struct zs_size_stat stats;
217

218 219
	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;
220 221
	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
	bool huge;
222 223 224 225 226 227 228 229 230
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
231 232 233 234 235 236 237 238 239 240 241
	union {
		/*
		 * Position of next free chunk (encodes <PFN, obj_idx>)
		 * It's valid for non-allocated object
		 */
		void *next;
		/*
		 * Handle of allocated object.
		 */
		unsigned long handle;
	};
242 243 244
};

struct zs_pool {
245
	const char *name;
246

247
	struct size_class **size_class;
248
	struct kmem_cache *handle_cachep;
249

250
	atomic_long_t pages_allocated;
251

252
	struct zs_pool_stats stats;
253 254 255 256 257 258 259 260

	/* Compact classes */
	struct shrinker shrinker;
	/*
	 * To signify that register_shrinker() was successful
	 * and unregister_shrinker() will not Oops.
	 */
	bool shrinker_enabled;
261 262 263
#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
264
};
265 266 267 268 269 270 271 272 273 274

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

275
struct mapping_area {
276
#ifdef CONFIG_PGTABLE_MAPPING
277 278 279 280 281 282 283 284
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
};

285 286 287 288 289 290 291 292 293
static int create_handle_cache(struct zs_pool *pool)
{
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
					0, 0, NULL);
	return pool->handle_cachep ? 0 : 1;
}

static void destroy_handle_cache(struct zs_pool *pool)
{
294
	kmem_cache_destroy(pool->handle_cachep);
295 296
}

297
static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
298 299
{
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
300
			gfp & ~__GFP_HIGHMEM);
301 302 303 304 305 306 307 308 309
}

static void free_handle(struct zs_pool *pool, unsigned long handle)
{
	kmem_cache_free(pool->handle_cachep, (void *)handle);
}

static void record_obj(unsigned long handle, unsigned long obj)
{
310 311 312 313 314 315
	/*
	 * lsb of @obj represents handle lock while other bits
	 * represent object value the handle is pointing so
	 * updating shouldn't do store tearing.
	 */
	WRITE_ONCE(*(unsigned long *)handle, obj);
316 317
}

318 319 320 321
/* zpool driver */

#ifdef CONFIG_ZPOOL

322
static void *zs_zpool_create(const char *name, gfp_t gfp,
323
			     const struct zpool_ops *zpool_ops,
D
Dan Streetman 已提交
324
			     struct zpool *zpool)
325
{
326 327 328 329 330 331
	/*
	 * Ignore global gfp flags: zs_malloc() may be invoked from
	 * different contexts and its caller must provide a valid
	 * gfp mask.
	 */
	return zs_create_pool(name);
332 333 334 335 336 337 338 339 340 341
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
342
	*handle = zs_malloc(pool, size, gfp);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
383
	return zs_get_total_pages(pool) << PAGE_SHIFT;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

399
MODULE_ALIAS("zpool-zsmalloc");
400 401
#endif /* CONFIG_ZPOOL */

M
Minchan Kim 已提交
402 403 404 405 406
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

407 408 409 410 411
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
412
	return PagePrivate(page);
413 414 415 416
}

static int is_last_page(struct page *page)
{
417
	return PagePrivate2(page);
418 419
}

420 421
static void get_zspage_mapping(struct page *first_page,
				unsigned int *class_idx,
422 423 424
				enum fullness_group *fullness)
{
	unsigned long m;
M
Minchan Kim 已提交
425
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
426

427
	m = (unsigned long)first_page->mapping;
428 429 430 431
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

432 433
static void set_zspage_mapping(struct page *first_page,
				unsigned int class_idx,
434 435 436
				enum fullness_group fullness)
{
	unsigned long m;
M
Minchan Kim 已提交
437
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
438 439 440

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
441
	first_page->mapping = (struct address_space *)m;
442 443
}

N
Nitin Cupta 已提交
444 445 446 447 448 449 450
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
451 452 453 454 455 456 457 458
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

459
	return min(zs_size_classes - 1, idx);
460 461
}

M
Minchan Kim 已提交
462 463 464
static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
465 466
	if (type < NR_ZS_STAT_TYPE)
		class->stats.objs[type] += cnt;
M
Minchan Kim 已提交
467 468 469 470 471
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
472 473
	if (type < NR_ZS_STAT_TYPE)
		class->stats.objs[type] -= cnt;
M
Minchan Kim 已提交
474 475 476 477 478
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
479 480 481
	if (type < NR_ZS_STAT_TYPE)
		return class->stats.objs[type];
	return 0;
M
Minchan Kim 已提交
482 483
}

484 485
#ifdef CONFIG_ZSMALLOC_STAT

M
Minchan Kim 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

503 504
static unsigned long zs_can_compact(struct size_class *class);

M
Minchan Kim 已提交
505 506 507 508 509 510 511
static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long class_almost_full, class_almost_empty;
512
	unsigned long obj_allocated, obj_used, pages_used, freeable;
M
Minchan Kim 已提交
513 514
	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
515
	unsigned long total_freeable = 0;
M
Minchan Kim 已提交
516

517
	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
M
Minchan Kim 已提交
518 519
			"class", "size", "almost_full", "almost_empty",
			"obj_allocated", "obj_used", "pages_used",
520
			"pages_per_zspage", "freeable");
M
Minchan Kim 已提交
521 522 523 524 525 526 527 528 529 530 531 532

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
533
		freeable = zs_can_compact(class);
M
Minchan Kim 已提交
534 535 536 537 538 539 540
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

541 542
		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
				" %10lu %10lu %16d %8lu\n",
M
Minchan Kim 已提交
543 544
			i, class->size, class_almost_full, class_almost_empty,
			obj_allocated, obj_used, pages_used,
545
			class->pages_per_zspage, freeable);
M
Minchan Kim 已提交
546 547 548 549 550 551

		total_class_almost_full += class_almost_full;
		total_class_almost_empty += class_almost_empty;
		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
552
		total_freeable += freeable;
M
Minchan Kim 已提交
553 554 555
	}

	seq_puts(s, "\n");
556
	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
M
Minchan Kim 已提交
557 558
			"Total", "", total_class_almost_full,
			total_class_almost_empty, total_objs,
559
			total_used_objs, total_pages, "", total_freeable);
M
Minchan Kim 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

576
static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
M
Minchan Kim 已提交
577 578 579 580
{
	struct dentry *entry;

	if (!zs_stat_root)
581
		return;
M
Minchan Kim 已提交
582 583 584 585

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
586
		return;
M
Minchan Kim 已提交
587 588 589 590 591 592 593 594
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "classes");
595
		return;
M
Minchan Kim 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	}
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */
static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

614
static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
M
Minchan Kim 已提交
615 616 617 618 619 620 621 622
{
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}
#endif

N
Nitin Cupta 已提交
623 624 625 626 627 628 629
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
630
static enum fullness_group get_fullness_group(struct page *first_page)
631 632 633
{
	int inuse, max_objects;
	enum fullness_group fg;
M
Minchan Kim 已提交
634 635

	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
636

637 638
	inuse = first_page->inuse;
	max_objects = first_page->objects;
639 640 641 642 643

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
M
Minchan Kim 已提交
644
	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
645 646 647 648 649 650 651
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
652 653 654 655 656 657
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
658 659 660
static void insert_zspage(struct size_class *class,
				enum fullness_group fullness,
				struct page *first_page)
661 662 663
{
	struct page **head;

M
Minchan Kim 已提交
664
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
665 666 667 668

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

M
Minchan Kim 已提交
669 670
	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
671 672 673

	head = &class->fullness_list[fullness];
	if (!*head) {
674
		*head = first_page;
675 676 677 678 679 680 681
		return;
	}

	/*
	 * We want to see more ZS_FULL pages and less almost
	 * empty/full. Put pages with higher ->inuse first.
	 */
682 683 684
	list_add_tail(&first_page->lru, &(*head)->lru);
	if (first_page->inuse >= (*head)->inuse)
		*head = first_page;
685 686
}

N
Nitin Cupta 已提交
687 688 689 690
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
691 692 693
static void remove_zspage(struct size_class *class,
				enum fullness_group fullness,
				struct page *first_page)
694 695 696
{
	struct page **head;

M
Minchan Kim 已提交
697
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
698 699 700 701 702

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
M
Minchan Kim 已提交
703
	VM_BUG_ON_PAGE(!*head, first_page);
704 705
	if (list_empty(&(*head)->lru))
		*head = NULL;
706
	else if (*head == first_page)
707 708 709
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

710
	list_del_init(&first_page->lru);
M
Minchan Kim 已提交
711 712
	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
713 714
}

N
Nitin Cupta 已提交
715 716 717 718 719 720 721 722 723
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
724
static enum fullness_group fix_fullness_group(struct size_class *class,
725
						struct page *first_page)
726 727 728 729
{
	int class_idx;
	enum fullness_group currfg, newfg;

730 731
	get_zspage_mapping(first_page, &class_idx, &currfg);
	newfg = get_fullness_group(first_page);
732 733 734
	if (newfg == currfg)
		goto out;

735 736
	remove_zspage(class, currfg, first_page);
	insert_zspage(class, newfg, first_page);
737
	set_zspage_mapping(first_page, class_idx, newfg);
738 739 740 741 742 743 744 745 746 747

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
748 749
 *     wastage = Zp % class_size
 *     usage = Zp - wastage
750 751 752 753 754 755
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
756
static int get_pages_per_zspage(int class_size)
757 758 759 760 761
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

762
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
789
		return (struct page *)page_private(page);
790 791 792 793 794 795 796 797 798
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
799
		next = (struct page *)page_private(page);
800 801 802 803 804 805
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

806 807
/*
 * Encode <page, obj_idx> as a single handle value.
M
Minchan Kim 已提交
808
 * We use the least bit of handle for tagging.
809
 */
M
Minchan Kim 已提交
810
static void *location_to_obj(struct page *page, unsigned long obj_idx)
811
{
M
Minchan Kim 已提交
812
	unsigned long obj;
813 814

	if (!page) {
M
Minchan Kim 已提交
815
		VM_BUG_ON(obj_idx);
816 817 818
		return NULL;
	}

M
Minchan Kim 已提交
819 820 821
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
	obj |= ((obj_idx) & OBJ_INDEX_MASK);
	obj <<= OBJ_TAG_BITS;
822

M
Minchan Kim 已提交
823
	return (void *)obj;
824 825
}

826 827 828
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
M
Minchan Kim 已提交
829
 * location_to_obj().
830
 */
M
Minchan Kim 已提交
831
static void obj_to_location(unsigned long obj, struct page **page,
832 833
				unsigned long *obj_idx)
{
M
Minchan Kim 已提交
834 835 836
	obj >>= OBJ_TAG_BITS;
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
	*obj_idx = (obj & OBJ_INDEX_MASK);
837 838
}

839 840 841 842 843
static unsigned long handle_to_obj(unsigned long handle)
{
	return *(unsigned long *)handle;
}

844 845
static unsigned long obj_to_head(struct size_class *class, struct page *page,
			void *obj)
M
Minchan Kim 已提交
846
{
847
	if (class->huge) {
M
Minchan Kim 已提交
848
		VM_BUG_ON_PAGE(!is_first_page(page), page);
849
		return page_private(page);
850 851
	} else
		return *(unsigned long *)obj;
M
Minchan Kim 已提交
852 853
}

854 855 856 857 858 859 860 861 862 863 864
static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

M
Minchan Kim 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
static inline int trypin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
}

static void pin_tag(unsigned long handle)
{
	while (!trypin_tag(handle));
}

static void unpin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
}

N
Nitin Gupta 已提交
884 885 886 887 888 889 890
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
891
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
892 893
}

894 895
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
896
	struct page *nextp, *tmp, *head_extra;
897

M
Minchan Kim 已提交
898 899
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
	VM_BUG_ON_PAGE(first_page->inuse, first_page);
900

N
Nitin Gupta 已提交
901
	head_extra = (struct page *)page_private(first_page);
902

N
Nitin Gupta 已提交
903
	reset_page(first_page);
904 905 906
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
907
	if (!head_extra)
908 909
		return;

N
Nitin Gupta 已提交
910
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
911
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
912
		reset_page(nextp);
913 914
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
915 916
	reset_page(head_extra);
	__free_page(head_extra);
917 918 919
}

/* Initialize a newly allocated zspage */
920
static void init_zspage(struct size_class *class, struct page *first_page)
921 922 923 924
{
	unsigned long off = 0;
	struct page *page = first_page;

M
Minchan Kim 已提交
925 926
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);

927 928 929
	while (page) {
		struct page *next_page;
		struct link_free *link;
930
		unsigned int i = 1;
931
		void *vaddr;
932 933 934 935 936 937 938 939 940 941

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

942 943
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
944 945

		while ((off += class->size) < PAGE_SIZE) {
M
Minchan Kim 已提交
946
			link->next = location_to_obj(page, i++);
947
			link += class->size / sizeof(*link);
948 949 950 951 952 953 954 955
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
M
Minchan Kim 已提交
956
		link->next = location_to_obj(next_page, 0);
957
		kunmap_atomic(vaddr);
958
		page = next_page;
959
		off %= PAGE_SIZE;
960 961 962 963 964 965 966 967 968
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
969
	struct page *first_page = NULL, *uninitialized_var(prev_page);
970 971 972 973 974

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
975
	 * 3. each sub-page is linked to the first page using page->private
976 977 978 979 980 981 982
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
983
	for (i = 0; i < class->pages_per_zspage; i++) {
984
		struct page *page;
985 986 987 988 989 990 991

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
992
			SetPagePrivate(page);
993 994 995 996 997
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
998
			set_page_private(first_page, (unsigned long)page);
999
		if (i >= 1)
1000
			set_page_private(page, (unsigned long)first_page);
1001 1002
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
1003
		if (i == class->pages_per_zspage - 1)	/* last page */
1004
			SetPagePrivate2(page);
1005 1006 1007
		prev_page = page;
	}

1008
	init_zspage(class, first_page);
1009

M
Minchan Kim 已提交
1010
	first_page->freelist = location_to_obj(first_page, 0);
1011
	/* Maximum number of objects we can store in this zspage */
1012
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

1039
#ifdef CONFIG_PGTABLE_MAPPING
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
1064
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1065 1066 1067 1068 1069 1070 1071 1072 1073
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

1074
	unmap_kernel_range(addr, PAGE_SIZE * 2);
1075 1076
}

1077
#else /* CONFIG_PGTABLE_MAPPING */
1078 1079 1080 1081 1082 1083 1084 1085 1086

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
1087
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1088 1089 1090 1091 1092 1093 1094
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
1095
	kfree(area->vm_buf);
1096 1097 1098 1099 1100
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1101 1102 1103
{
	int sizes[2];
	void *addr;
1104
	char *buf = area->vm_buf;
1105

1106 1107 1108 1109 1110 1111
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
1123 1124
out:
	return area->vm_buf;
1125 1126
}

1127 1128
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1129 1130 1131
{
	int sizes[2];
	void *addr;
1132
	char *buf;
1133

1134 1135 1136
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
1137

1138
	buf = area->vm_buf;
1139 1140 1141
	buf = buf + ZS_HANDLE_SIZE;
	size -= ZS_HANDLE_SIZE;
	off += ZS_HANDLE_SIZE;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
1153 1154 1155 1156

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
1157
}
1158

1159
#endif /* CONFIG_PGTABLE_MAPPING */
1160

1161 1162 1163
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
1164
	int ret, cpu = (long)pcpu;
1165 1166 1167 1168 1169
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
1170 1171 1172
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
1173 1174 1175 1176
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
1177
		__zs_cpu_down(area);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

1188
static int zs_register_cpu_notifier(void)
1189
{
1190
	int cpu, uninitialized_var(ret);
1191

1192 1193 1194
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
1195 1196
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1197 1198
		if (notifier_to_errno(ret))
			break;
1199
	}
1200 1201

	cpu_notifier_register_done();
1202 1203
	return notifier_to_errno(ret);
}
1204

1205
static void zs_unregister_cpu_notifier(void)
1206
{
1207
	int cpu;
1208

1209
	cpu_notifier_register_begin();
1210

1211 1212 1213
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
1214

1215
	cpu_notifier_register_done();
1216 1217
}

1218
static void init_zs_size_classes(void)
1219
{
1220
	int nr;
1221

1222 1223 1224
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
1225

1226
	zs_size_classes = nr;
1227 1228
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

1241
static bool zspage_full(struct page *first_page)
M
Minchan Kim 已提交
1242
{
M
Minchan Kim 已提交
1243
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
M
Minchan Kim 已提交
1244

1245
	return first_page->inuse == first_page->objects;
M
Minchan Kim 已提交
1246 1247
}

1248 1249 1250 1251 1252 1253
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1254
/**
1255 1256 1257
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1258
 *
1259 1260 1261
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1262
 *
1263 1264 1265 1266
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1267
 */
1268 1269
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1270
{
1271
	struct page *page;
1272
	unsigned long obj, obj_idx, off;
1273

1274 1275 1276 1277 1278
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1279
	void *ret;
1280

1281
	/*
1282 1283 1284
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1285
	 */
M
Minchan Kim 已提交
1286
	WARN_ON_ONCE(in_interrupt());
1287

M
Minchan Kim 已提交
1288 1289 1290
	/* From now on, migration cannot move the object */
	pin_tag(handle);

1291 1292
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1293 1294 1295
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1296

1297 1298 1299 1300 1301
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1302 1303
		ret = area->vm_addr + off;
		goto out;
1304 1305
	}

1306 1307 1308 1309
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1310

1311 1312
	ret = __zs_map_object(area, pages, off, class->size);
out:
1313 1314 1315 1316
	if (!class->huge)
		ret += ZS_HANDLE_SIZE;

	return ret;
1317
}
1318
EXPORT_SYMBOL_GPL(zs_map_object);
1319

1320
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1321
{
1322
	struct page *page;
1323
	unsigned long obj, obj_idx, off;
1324

1325 1326 1327 1328
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1329

1330 1331
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1332 1333 1334
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1335

1336 1337 1338 1339 1340
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1341

1342 1343 1344 1345 1346 1347 1348
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
M
Minchan Kim 已提交
1349
	unpin_tag(handle);
1350
}
1351
EXPORT_SYMBOL_GPL(zs_unmap_object);
1352

1353 1354
static unsigned long obj_malloc(struct size_class *class,
				struct page *first_page, unsigned long handle)
1355 1356 1357 1358 1359 1360 1361 1362
{
	unsigned long obj;
	struct link_free *link;

	struct page *m_page;
	unsigned long m_objidx, m_offset;
	void *vaddr;

M
Minchan Kim 已提交
1363
	handle |= OBJ_ALLOCATED_TAG;
1364 1365 1366 1367 1368 1369 1370
	obj = (unsigned long)first_page->freelist;
	obj_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
	first_page->freelist = link->next;
1371 1372 1373 1374 1375 1376
	if (!class->huge)
		/* record handle in the header of allocated chunk */
		link->handle = handle;
	else
		/* record handle in first_page->private */
		set_page_private(first_page, handle);
1377 1378 1379 1380 1381 1382 1383 1384
	kunmap_atomic(vaddr);
	first_page->inuse++;
	zs_stat_inc(class, OBJ_USED, 1);

	return obj;
}


1385 1386 1387 1388 1389
/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1390
 * On success, handle to the allocated object is returned,
1391
 * otherwise 0.
1392 1393
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1394
unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1395
{
1396
	unsigned long handle, obj;
1397
	struct size_class *class;
1398
	struct page *first_page;
1399

1400
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 1402
		return 0;

1403
	handle = alloc_handle(pool, gfp);
1404
	if (!handle)
1405
		return 0;
1406

1407 1408
	/* extra space in chunk to keep the handle */
	size += ZS_HANDLE_SIZE;
1409
	class = pool->size_class[get_size_class_index(size)];
1410 1411 1412 1413 1414 1415

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
1416
		first_page = alloc_zspage(class, gfp);
1417 1418
		if (unlikely(!first_page)) {
			free_handle(pool, handle);
1419
			return 0;
1420
		}
1421 1422

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423 1424
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1425

1426
		spin_lock(&class->lock);
1427 1428
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1429 1430
	}

1431
	obj = obj_malloc(class, first_page, handle);
1432
	/* Now move the zspage to another fullness group, if required */
1433
	fix_fullness_group(class, first_page);
1434
	record_obj(handle, obj);
1435 1436
	spin_unlock(&class->lock);

1437
	return handle;
1438 1439 1440
}
EXPORT_SYMBOL_GPL(zs_malloc);

1441
static void obj_free(struct size_class *class, unsigned long obj)
1442 1443 1444
{
	struct link_free *link;
	struct page *first_page, *f_page;
1445
	unsigned long f_objidx, f_offset;
1446
	void *vaddr;
1447

M
Minchan Kim 已提交
1448
	obj &= ~OBJ_ALLOCATED_TAG;
1449
	obj_to_location(obj, &f_page, &f_objidx);
1450 1451 1452 1453
	first_page = get_first_page(f_page);

	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

1454
	vaddr = kmap_atomic(f_page);
1455 1456

	/* Insert this object in containing zspage's freelist */
1457
	link = (struct link_free *)(vaddr + f_offset);
1458
	link->next = first_page->freelist;
1459 1460
	if (class->huge)
		set_page_private(first_page, 0);
1461
	kunmap_atomic(vaddr);
1462
	first_page->freelist = (void *)obj;
1463
	first_page->inuse--;
1464
	zs_stat_dec(class, OBJ_USED, 1);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
}

void zs_free(struct zs_pool *pool, unsigned long handle)
{
	struct page *first_page, *f_page;
	unsigned long obj, f_objidx;
	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!handle))
		return;

M
Minchan Kim 已提交
1478
	pin_tag(handle);
1479 1480 1481 1482 1483 1484 1485 1486
	obj = handle_to_obj(handle);
	obj_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = pool->size_class[class_idx];

	spin_lock(&class->lock);
1487
	obj_free(class, obj);
1488
	fullness = fix_fullness_group(class, first_page);
M
Minchan Kim 已提交
1489
	if (fullness == ZS_EMPTY) {
1490 1491
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
M
Minchan Kim 已提交
1492 1493 1494 1495
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
		free_zspage(first_page);
	}
1496
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1497
	unpin_tag(handle);
1498

M
Minchan Kim 已提交
1499 1500 1501 1502
	free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);

1503 1504
static void zs_object_copy(struct size_class *class, unsigned long dst,
				unsigned long src)
M
Minchan Kim 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
{
	struct page *s_page, *d_page;
	unsigned long s_objidx, d_objidx;
	unsigned long s_off, d_off;
	void *s_addr, *d_addr;
	int s_size, d_size, size;
	int written = 0;

	s_size = d_size = class->size;

	obj_to_location(src, &s_page, &s_objidx);
	obj_to_location(dst, &d_page, &d_objidx);

	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);

	if (s_off + class->size > PAGE_SIZE)
		s_size = PAGE_SIZE - s_off;

	if (d_off + class->size > PAGE_SIZE)
		d_size = PAGE_SIZE - d_off;

	s_addr = kmap_atomic(s_page);
	d_addr = kmap_atomic(d_page);

	while (1) {
		size = min(s_size, d_size);
		memcpy(d_addr + d_off, s_addr + s_off, size);
		written += size;

		if (written == class->size)
			break;

1538 1539 1540 1541 1542 1543
		s_off += size;
		s_size -= size;
		d_off += size;
		d_size -= size;

		if (s_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
			kunmap_atomic(d_addr);
			kunmap_atomic(s_addr);
			s_page = get_next_page(s_page);
			s_addr = kmap_atomic(s_page);
			d_addr = kmap_atomic(d_page);
			s_size = class->size - written;
			s_off = 0;
		}

1553
		if (d_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
			kunmap_atomic(d_addr);
			d_page = get_next_page(d_page);
			d_addr = kmap_atomic(d_page);
			d_size = class->size - written;
			d_off = 0;
		}
	}

	kunmap_atomic(d_addr);
	kunmap_atomic(s_addr);
}

/*
 * Find alloced object in zspage from index object and
 * return handle.
 */
1570 1571
static unsigned long find_alloced_obj(struct size_class *class,
					struct page *page, int index)
M
Minchan Kim 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
{
	unsigned long head;
	int offset = 0;
	unsigned long handle = 0;
	void *addr = kmap_atomic(page);

	if (!is_first_page(page))
		offset = page->index;
	offset += class->size * index;

	while (offset < PAGE_SIZE) {
1583
		head = obj_to_head(class, page, addr + offset);
M
Minchan Kim 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		if (head & OBJ_ALLOCATED_TAG) {
			handle = head & ~OBJ_ALLOCATED_TAG;
			if (trypin_tag(handle))
				break;
			handle = 0;
		}

		offset += class->size;
		index++;
	}

	kunmap_atomic(addr);
	return handle;
}

struct zs_compact_control {
	/* Source page for migration which could be a subpage of zspage. */
	struct page *s_page;
	/* Destination page for migration which should be a first page
	 * of zspage. */
	struct page *d_page;
	 /* Starting object index within @s_page which used for live object
	  * in the subpage. */
	int index;
};

static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
				struct zs_compact_control *cc)
{
	unsigned long used_obj, free_obj;
	unsigned long handle;
	struct page *s_page = cc->s_page;
	struct page *d_page = cc->d_page;
	unsigned long index = cc->index;
	int ret = 0;

	while (1) {
1621
		handle = find_alloced_obj(class, s_page, index);
M
Minchan Kim 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		if (!handle) {
			s_page = get_next_page(s_page);
			if (!s_page)
				break;
			index = 0;
			continue;
		}

		/* Stop if there is no more space */
		if (zspage_full(d_page)) {
			unpin_tag(handle);
			ret = -ENOMEM;
			break;
		}

		used_obj = handle_to_obj(handle);
1638 1639
		free_obj = obj_malloc(class, d_page, handle);
		zs_object_copy(class, free_obj, used_obj);
M
Minchan Kim 已提交
1640
		index++;
1641 1642 1643 1644 1645 1646 1647
		/*
		 * record_obj updates handle's value to free_obj and it will
		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
		 * breaks synchronization using pin_tag(e,g, zs_free) so
		 * let's keep the lock bit.
		 */
		free_obj |= BIT(HANDLE_PIN_BIT);
M
Minchan Kim 已提交
1648 1649
		record_obj(handle, free_obj);
		unpin_tag(handle);
1650
		obj_free(class, used_obj);
M
Minchan Kim 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659
	}

	/* Remember last position in this iteration */
	cc->s_page = s_page;
	cc->index = index;

	return ret;
}

1660
static struct page *isolate_target_page(struct size_class *class)
M
Minchan Kim 已提交
1661 1662 1663 1664 1665 1666 1667
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page) {
1668
			remove_zspage(class, i, page);
M
Minchan Kim 已提交
1669 1670 1671 1672 1673 1674 1675
			break;
		}
	}

	return page;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/*
 * putback_zspage - add @first_page into right class's fullness list
 * @pool: target pool
 * @class: destination class
 * @first_page: target page
 *
 * Return @fist_page's fullness_group
 */
static enum fullness_group putback_zspage(struct zs_pool *pool,
			struct size_class *class,
			struct page *first_page)
M
Minchan Kim 已提交
1687 1688 1689
{
	enum fullness_group fullness;

1690
	fullness = get_fullness_group(first_page);
1691
	insert_zspage(class, fullness, first_page);
1692 1693
	set_zspage_mapping(first_page, class->index, fullness);

1694
	if (fullness == ZS_EMPTY) {
M
Minchan Kim 已提交
1695 1696
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
			class->size, class->pages_per_zspage));
1697 1698
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
M
Minchan Kim 已提交
1699

1700
		free_zspage(first_page);
1701
	}
1702 1703

	return fullness;
1704
}
M
Minchan Kim 已提交
1705 1706 1707

static struct page *isolate_source_page(struct size_class *class)
{
1708 1709 1710 1711 1712 1713 1714
	int i;
	struct page *page = NULL;

	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
		page = class->fullness_list[i];
		if (!page)
			continue;
M
Minchan Kim 已提交
1715

1716
		remove_zspage(class, i, page);
1717 1718
		break;
	}
M
Minchan Kim 已提交
1719 1720 1721 1722

	return page;
}

1723 1724 1725 1726 1727 1728 1729 1730
/*
 *
 * Based on the number of unused allocated objects calculate
 * and return the number of pages that we can free.
 */
static unsigned long zs_can_compact(struct size_class *class)
{
	unsigned long obj_wasted;
1731 1732
	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1733

1734 1735
	if (obj_allocated <= obj_used)
		return 0;
1736

1737
	obj_wasted = obj_allocated - obj_used;
1738 1739 1740
	obj_wasted /= get_maxobj_per_zspage(class->size,
			class->pages_per_zspage);

1741
	return obj_wasted * class->pages_per_zspage;
1742 1743
}

1744
static void __zs_compact(struct zs_pool *pool, struct size_class *class)
M
Minchan Kim 已提交
1745 1746 1747 1748 1749 1750 1751 1752
{
	struct zs_compact_control cc;
	struct page *src_page;
	struct page *dst_page = NULL;

	spin_lock(&class->lock);
	while ((src_page = isolate_source_page(class))) {

1753 1754 1755
		if (!zs_can_compact(class))
			break;

M
Minchan Kim 已提交
1756 1757 1758
		cc.index = 0;
		cc.s_page = src_page;

1759
		while ((dst_page = isolate_target_page(class))) {
M
Minchan Kim 已提交
1760 1761
			cc.d_page = dst_page;
			/*
1762 1763
			 * If there is no more space in dst_page, resched
			 * and see if anyone had allocated another zspage.
M
Minchan Kim 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
			 */
			if (!migrate_zspage(pool, class, &cc))
				break;

			putback_zspage(pool, class, dst_page);
		}

		/* Stop if we couldn't find slot */
		if (dst_page == NULL)
			break;

		putback_zspage(pool, class, dst_page);
1776
		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1777
			pool->stats.pages_compacted += class->pages_per_zspage;
M
Minchan Kim 已提交
1778 1779 1780 1781 1782 1783 1784 1785
		spin_unlock(&class->lock);
		cond_resched();
		spin_lock(&class->lock);
	}

	if (src_page)
		putback_zspage(pool, class, src_page);

1786
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
}

unsigned long zs_compact(struct zs_pool *pool)
{
	int i;
	struct size_class *class;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;
1800
		__zs_compact(pool, class);
M
Minchan Kim 已提交
1801 1802
	}

1803
	return pool->stats.pages_compacted;
M
Minchan Kim 已提交
1804 1805
}
EXPORT_SYMBOL_GPL(zs_compact);
1806

1807 1808 1809 1810 1811 1812
void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
{
	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
}
EXPORT_SYMBOL_GPL(zs_pool_stats);

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
		struct shrink_control *sc)
{
	unsigned long pages_freed;
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
			shrinker);

	pages_freed = pool->stats.pages_compacted;
	/*
	 * Compact classes and calculate compaction delta.
	 * Can run concurrently with a manually triggered
	 * (by user) compaction.
	 */
	pages_freed = zs_compact(pool) - pages_freed;

	return pages_freed ? pages_freed : SHRINK_STOP;
}

static unsigned long zs_shrinker_count(struct shrinker *shrinker,
		struct shrink_control *sc)
{
	int i;
	struct size_class *class;
	unsigned long pages_to_free = 0;
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
			shrinker);

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;

		pages_to_free += zs_can_compact(class);
	}

	return pages_to_free;
}

static void zs_unregister_shrinker(struct zs_pool *pool)
{
	if (pool->shrinker_enabled) {
		unregister_shrinker(&pool->shrinker);
		pool->shrinker_enabled = false;
	}
}

static int zs_register_shrinker(struct zs_pool *pool)
{
	pool->shrinker.scan_objects = zs_shrinker_scan;
	pool->shrinker.count_objects = zs_shrinker_count;
	pool->shrinker.batch = 0;
	pool->shrinker.seeks = DEFAULT_SEEKS;

	return register_shrinker(&pool->shrinker);
}

1871
/**
1872 1873
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1874
 *
1875 1876
 * This function must be called before anything when using
 * the zsmalloc allocator.
1877
 *
1878 1879
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1880
 */
1881
struct zs_pool *zs_create_pool(const char *name)
1882
{
1883 1884 1885
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1886

1887 1888 1889
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1890

1891 1892 1893 1894 1895 1896
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
1897

1898 1899 1900 1901 1902 1903 1904
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name)
		goto err;

	if (create_handle_cache(pool))
		goto err;

1905
	/*
1906 1907
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1908
	 */
1909 1910 1911 1912
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1913

1914 1915 1916 1917
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
1942 1943 1944
		if (pages_per_zspage == 1 &&
			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
			class->huge = true;
1945 1946 1947 1948
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1949 1950
	}

1951 1952
	/* debug only, don't abort if it fails */
	zs_pool_stat_create(pool, name);
1953

1954 1955 1956 1957 1958 1959
	/*
	 * Not critical, we still can use the pool
	 * and user can trigger compaction manually.
	 */
	if (zs_register_shrinker(pool) == 0)
		pool->shrinker_enabled = true;
1960 1961 1962 1963 1964
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1965
}
1966
EXPORT_SYMBOL_GPL(zs_create_pool);
1967

1968
void zs_destroy_pool(struct zs_pool *pool)
1969
{
1970
	int i;
1971

1972
	zs_unregister_shrinker(pool);
1973 1974
	zs_pool_stat_destroy(pool);

1975 1976 1977
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1978

1979 1980
		if (!class)
			continue;
1981

1982 1983
		if (class->index != i)
			continue;
1984

1985 1986 1987 1988 1989 1990 1991 1992
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
1993

1994
	destroy_handle_cache(pool);
1995
	kfree(pool->size_class);
1996
	kfree(pool->name);
1997 1998 1999
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
2000

2001 2002 2003 2004
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

2005 2006
	if (ret)
		goto notifier_fail;
2007 2008 2009 2010 2011 2012

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
2013 2014 2015 2016 2017 2018

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
2019
	return 0;
2020 2021 2022 2023 2024 2025 2026 2027 2028

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
2029 2030
}

2031
static void __exit zs_exit(void)
2032
{
2033 2034 2035 2036
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
2037 2038

	zs_stat_exit();
2039
}
2040 2041 2042 2043 2044 2045

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");