zsmalloc.c 36.5 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14
/*
N
Nitin Cupta 已提交
15 16 17 18 19 20 21
 * This allocator is designed for use with zram. Thus, the allocator is
 * supposed to work well under low memory conditions. In particular, it
 * never attempts higher order page allocation which is very likely to
 * fail under memory pressure. On the other hand, if we just use single
 * (0-order) pages, it would suffer from very high fragmentation --
 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
 * This was one of the major issues with its predecessor (xvmalloc).
N
Nitin Gupta 已提交
22 23 24 25 26 27 28
 *
 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
 * and links them together using various 'struct page' fields. These linked
 * pages act as a single higher-order page i.e. an object can span 0-order
 * page boundaries. The code refers to these linked pages as a single entity
 * called zspage.
 *
N
Nitin Cupta 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
 * since this satisfies the requirements of all its current users (in the
 * worst case, page is incompressible and is thus stored "as-is" i.e. in
 * uncompressed form). For allocation requests larger than this size, failure
 * is returned (see zs_malloc).
 *
 * Additionally, zs_malloc() does not return a dereferenceable pointer.
 * Instead, it returns an opaque handle (unsigned long) which encodes actual
 * location of the allocated object. The reason for this indirection is that
 * zsmalloc does not keep zspages permanently mapped since that would cause
 * issues on 32-bit systems where the VA region for kernel space mappings
 * is very small. So, before using the allocating memory, the object has to
 * be mapped using zs_map_object() to get a usable pointer and subsequently
 * unmapped using zs_unmap_object().
 *
N
Nitin Gupta 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#ifdef CONFIG_ZSMALLOC_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
90
#include <linux/vmalloc.h>
91
#include <linux/hardirq.h>
92 93
#include <linux/spinlock.h>
#include <linux/types.h>
94
#include <linux/debugfs.h>
M
Minchan Kim 已提交
95
#include <linux/zsmalloc.h>
96
#include <linux/zpool.h>
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
115
 * as single (unsigned long) handle value.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE

/*
146
 * On systems with 4K page size, this gives 255 size classes! There is a
147 148 149 150 151 152 153 154 155 156 157
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
158
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
159 160 161 162 163 164 165 166 167 168 169 170 171

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
	NR_ZS_STAT_TYPE,
};

#ifdef CONFIG_ZSMALLOC_STAT

static struct dentry *zs_stat_root;

struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

#endif

188 189 190 191 192
/*
 * number of size_classes
 */
static int zs_size_classes;

193 194 195 196 197
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
198
 * f = fullness_threshold_frac
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;

220 221 222 223
#ifdef CONFIG_ZSMALLOC_STAT
	struct zs_size_stat stats;
#endif

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	spinlock_t lock;

	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
	void *next;
};

struct zs_pool {
241 242
	char *name;

243
	struct size_class **size_class;
244 245

	gfp_t flags;	/* allocation flags used when growing pool */
246
	atomic_long_t pages_allocated;
247 248 249 250

#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
251
};
252 253 254 255 256 257 258 259 260 261

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

262
struct mapping_area {
263
#ifdef CONFIG_PGTABLE_MAPPING
264 265 266 267 268 269 270 271
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
};

272 273 274 275
/* zpool driver */

#ifdef CONFIG_ZPOOL

276
static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
277
{
278
	return zs_create_pool(name, gfp);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
330
	return zs_get_total_pages(pool) << PAGE_SHIFT;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

346
MODULE_ALIAS("zpool-zsmalloc");
347 348
#endif /* CONFIG_ZPOOL */

349 350 351 352 353
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
354
	return PagePrivate(page);
355 356 357 358
}

static int is_last_page(struct page *page)
{
359
	return PagePrivate2(page);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
384 385 386 387 388 389 390
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
391 392 393 394 395 396 397 398 399 400 401
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

	return idx;
}

N
Nitin Cupta 已提交
402 403 404 405 406 407 408
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
	else if (inuse <= max_objects / fullness_threshold_frac)
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
430 431 432 433 434 435
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
}

N
Nitin Cupta 已提交
453 454 455 456
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
}

N
Nitin Cupta 已提交
478 479 480 481 482 483 484 485 486
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
487 488 489 490 491 492 493 494 495 496 497 498 499 500
static enum fullness_group fix_fullness_group(struct zs_pool *pool,
						struct page *page)
{
	int class_idx;
	struct size_class *class;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

501
	class = pool->size_class[class_idx];
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
 *	wastage = Zp - Zp % size_class
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
522
static int get_pages_per_zspage(int class_size)
523 524 525 526 527
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

528
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
565
		next = (struct page *)page_private(page);
566 567 568 569 570 571
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

572 573 574 575 576 577
/*
 * Encode <page, obj_idx> as a single handle value.
 * On hardware platforms with physical memory starting at 0x0 the pfn
 * could be 0 so we ensure that the handle will never be 0 by adjusting the
 * encoded obj_idx value before encoding.
 */
578 579 580 581 582 583 584 585 586 587
static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
{
	unsigned long handle;

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
588
	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
589 590 591 592

	return (void *)handle;
}

593 594 595 596 597
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
 * obj_location_to_handle().
 */
598
static void obj_handle_to_location(unsigned long handle, struct page **page,
599 600
				unsigned long *obj_idx)
{
601
	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
602
	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
603 604 605 606 607 608 609 610 611 612 613 614 615
}

static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

N
Nitin Gupta 已提交
616 617 618 619 620 621 622
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
623
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
624 625
}

626 627
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
628
	struct page *nextp, *tmp, *head_extra;
629 630 631 632

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
633
	head_extra = (struct page *)page_private(first_page);
634

N
Nitin Gupta 已提交
635
	reset_page(first_page);
636 637 638
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
639
	if (!head_extra)
640 641
		return;

N
Nitin Gupta 已提交
642
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
643
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
644
		reset_page(nextp);
645 646
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
647 648
	reset_page(head_extra);
	__free_page(head_extra);
649 650 651 652 653 654 655 656 657 658 659 660
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
661
		unsigned int i = 1;
662
		void *vaddr;
663 664 665 666 667 668 669 670 671 672

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

673 674
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
675 676 677 678

		while ((off += class->size) < PAGE_SIZE) {
			link->next = obj_location_to_handle(page, i++);
			link += class->size / sizeof(*link);
679 680 681 682 683 684 685 686 687
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
		link->next = obj_location_to_handle(next_page, 0);
688
		kunmap_atomic(vaddr);
689
		page = next_page;
690
		off %= PAGE_SIZE;
691 692 693 694 695 696 697 698 699
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
700
	struct page *first_page = NULL, *uninitialized_var(prev_page);
701 702 703 704 705 706 707 708 709 710 711 712 713

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
714
	for (i = 0; i < class->pages_per_zspage; i++) {
715
		struct page *page;
716 717 718 719 720 721 722

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
723
			SetPagePrivate(page);
724 725 726 727 728
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
729
			set_page_private(first_page, (unsigned long)page);
730 731 732 733
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
734
		if (i == class->pages_per_zspage - 1)	/* last page */
735
			SetPagePrivate2(page);
736 737 738 739 740 741 742
		prev_page = page;
	}

	init_zspage(first_page, class);

	first_page->freelist = obj_location_to_handle(first_page, 0);
	/* Maximum number of objects we can store in this zspage */
743
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

770
#ifdef CONFIG_PGTABLE_MAPPING
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
795
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
796 797 798 799 800 801 802 803 804
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

805
	unmap_kernel_range(addr, PAGE_SIZE * 2);
806 807
}

808
#else /* CONFIG_PGTABLE_MAPPING */
809 810 811 812 813 814 815 816 817

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
818
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
819 820 821 822 823 824 825
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
826
	kfree(area->vm_buf);
827 828 829 830 831
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
832 833 834
{
	int sizes[2];
	void *addr;
835
	char *buf = area->vm_buf;
836

837 838 839 840 841 842
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
843 844 845 846 847 848 849 850 851 852 853

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
854 855
out:
	return area->vm_buf;
856 857
}

858 859
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
860 861 862
{
	int sizes[2];
	void *addr;
863
	char *buf = area->vm_buf;
864

865 866 867
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
868 869 870 871 872 873 874 875 876 877 878

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
879 880 881 882

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
883
}
884

885
#endif /* CONFIG_PGTABLE_MAPPING */
886

887 888 889
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
890
	int ret, cpu = (long)pcpu;
891 892 893 894 895
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
896 897 898
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
899 900 901 902
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
903
		__zs_cpu_down(area);
904 905 906 907 908 909 910 911 912 913
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

914
static int zs_register_cpu_notifier(void)
915
{
916
	int cpu, uninitialized_var(ret);
917

918 919 920
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
921 922
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
923 924
		if (notifier_to_errno(ret))
			break;
925
	}
926 927

	cpu_notifier_register_done();
928 929
	return notifier_to_errno(ret);
}
930

931
static void zs_unregister_cpu_notifier(void)
932
{
933
	int cpu;
934

935
	cpu_notifier_register_begin();
936

937 938 939
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
940

941
	cpu_notifier_register_done();
942 943
}

944
static void init_zs_size_classes(void)
945
{
946
	int nr;
947

948 949 950
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
951

952
	zs_size_classes = nr;
953 954
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
#ifdef CONFIG_ZSMALLOC_STAT

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] += cnt;
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] -= cnt;
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return class->stats.objs[type];
}

static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long obj_allocated, obj_used, pages_used;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;

	seq_printf(s, " %5s %5s %13s %10s %10s\n", "class", "size",
				"obj_allocated", "obj_used", "pages_used");

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

		seq_printf(s, " %5u %5u    %10lu %10lu %10lu\n", i,
			class->size, obj_allocated, obj_used, pages_used);

		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
	}

	seq_puts(s, "\n");
	seq_printf(s, " %5s %5s    %10lu %10lu %10lu\n", "Total", "",
			total_objs, total_used_objs, total_pages);

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	struct dentry *entry;

	if (!zs_stat_root)
		return -ENODEV;

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
		return -ENOMEM;
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("obj_in_classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "obj_in_classes");
		return -ENOMEM;
	}

	return 0;
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return 0;
}

static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	return 0;
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}

#endif

1132 1133 1134 1135 1136 1137
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1138
/**
1139 1140 1141
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1142
 *
1143 1144 1145
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1146
 *
1147 1148 1149 1150
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1151
 */
1152 1153
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1154
{
1155 1156
	struct page *page;
	unsigned long obj_idx, off;
1157

1158 1159 1160 1161 1162
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1163

1164
	BUG_ON(!handle);
1165

1166
	/*
1167 1168 1169
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1170
	 */
1171
	BUG_ON(in_interrupt());
1172

1173 1174 1175 1176
	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1177

1178 1179 1180 1181 1182 1183
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
		return area->vm_addr + off;
1184 1185
	}

1186 1187 1188 1189
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1190

1191
	return __zs_map_object(area, pages, off, class->size);
1192
}
1193
EXPORT_SYMBOL_GPL(zs_map_object);
1194

1195
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1196
{
1197 1198
	struct page *page;
	unsigned long obj_idx, off;
1199

1200 1201 1202 1203
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1204

1205
	BUG_ON(!handle);
1206

1207 1208 1209 1210
	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1211

1212 1213 1214 1215 1216
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1217

1218 1219 1220 1221 1222 1223 1224
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
1225
}
1226
EXPORT_SYMBOL_GPL(zs_unmap_object);
1227 1228 1229 1230 1231 1232

/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1233
 * On success, handle to the allocated object is returned,
1234
 * otherwise 0.
1235 1236
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1237
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1238
{
1239
	unsigned long obj;
1240 1241
	struct link_free *link;
	struct size_class *class;
1242
	void *vaddr;
1243 1244 1245 1246 1247

	struct page *first_page, *m_page;
	unsigned long m_objidx, m_offset;

	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1248
		return 0;
1249

1250
	class = pool->size_class[get_size_class_index(size)];
1251 1252 1253 1254 1255 1256 1257 1258

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
		if (unlikely(!first_page))
1259
			return 0;
1260 1261

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1262 1263
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1264

1265
		spin_lock(&class->lock);
1266 1267
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1268 1269
	}

1270
	obj = (unsigned long)first_page->freelist;
1271 1272 1273
	obj_handle_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

1274 1275
	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1276 1277
	first_page->freelist = link->next;
	memset(link, POISON_INUSE, sizeof(*link));
1278
	kunmap_atomic(vaddr);
1279 1280

	first_page->inuse++;
1281
	zs_stat_inc(class, OBJ_USED, 1);
1282 1283 1284 1285 1286 1287 1288 1289
	/* Now move the zspage to another fullness group, if required */
	fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

	return obj;
}
EXPORT_SYMBOL_GPL(zs_malloc);

1290
void zs_free(struct zs_pool *pool, unsigned long obj)
1291 1292 1293 1294
{
	struct link_free *link;
	struct page *first_page, *f_page;
	unsigned long f_objidx, f_offset;
1295
	void *vaddr;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!obj))
		return;

	obj_handle_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
1308
	class = pool->size_class[class_idx];
1309 1310 1311 1312 1313
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

	spin_lock(&class->lock);

	/* Insert this object in containing zspage's freelist */
1314 1315
	vaddr = kmap_atomic(f_page);
	link = (struct link_free *)(vaddr + f_offset);
1316
	link->next = first_page->freelist;
1317
	kunmap_atomic(vaddr);
1318
	first_page->freelist = (void *)obj;
1319 1320 1321

	first_page->inuse--;
	fullness = fix_fullness_group(pool, first_page);
1322 1323 1324 1325 1326 1327

	zs_stat_dec(class, OBJ_USED, 1);
	if (fullness == ZS_EMPTY)
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));

1328 1329
	spin_unlock(&class->lock);

1330 1331 1332
	if (fullness == ZS_EMPTY) {
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
1333
		free_zspage(first_page);
1334
	}
1335 1336 1337
}
EXPORT_SYMBOL_GPL(zs_free);

1338
/**
1339 1340
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1341
 *
1342 1343
 * This function must be called before anything when using
 * the zsmalloc allocator.
1344
 *
1345 1346
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1347
 */
1348
struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1349
{
1350 1351 1352
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1353

1354 1355 1356
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1357

1358 1359 1360 1361 1362 1363
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name) {
		kfree(pool);
		return NULL;
	}

1364 1365 1366
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
1367
		kfree(pool->name);
1368 1369 1370
		kfree(pool);
		return NULL;
	}
1371

1372
	/*
1373 1374
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1375
	 */
1376 1377 1378 1379
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1380

1381 1382 1383 1384
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1413 1414
	}

1415
	pool->flags = flags;
1416

1417 1418 1419
	if (zs_pool_stat_create(name, pool))
		goto err;

1420 1421 1422 1423 1424
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1425
}
1426
EXPORT_SYMBOL_GPL(zs_create_pool);
1427

1428
void zs_destroy_pool(struct zs_pool *pool)
1429
{
1430
	int i;
1431

1432 1433
	zs_pool_stat_destroy(pool);

1434 1435 1436
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1437

1438 1439
		if (!class)
			continue;
1440

1441 1442
		if (class->index != i)
			continue;
1443

1444 1445 1446 1447 1448 1449 1450 1451
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
1452

1453
	kfree(pool->size_class);
1454
	kfree(pool->name);
1455 1456 1457
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
1458

1459 1460 1461 1462
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

1463 1464
	if (ret)
		goto notifier_fail;
1465 1466 1467 1468 1469 1470

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
1471 1472 1473 1474 1475 1476

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
1477
	return 0;
1478 1479 1480 1481 1482 1483 1484 1485 1486

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
1487 1488
}

1489
static void __exit zs_exit(void)
1490
{
1491 1492 1493 1494
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
1495 1496

	zs_stat_exit();
1497
}
1498 1499 1500 1501 1502 1503

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");