zsmalloc.c 48.7 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14 15 16 17 18
/*
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
19
 *	page->private: points to the first component (0-order) page
N
Nitin Gupta 已提交
20 21 22 23 24 25 26 27 28
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
29
 *	page->private: refers to the component page after the first page
30 31
 *		If the page is first_page for huge object, it stores handle.
 *		Look at size_class->huge.
N
Nitin Gupta 已提交
32 33 34 35 36 37 38 39
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
40
 *	page->inuse: the number of objects that are used in this zspage
N
Nitin Gupta 已提交
41 42 43 44 45 46 47
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

48 49
#include <linux/module.h>
#include <linux/kernel.h>
M
Minchan Kim 已提交
50
#include <linux/sched.h>
51 52 53 54 55 56 57 58 59
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
60
#include <linux/vmalloc.h>
61
#include <linux/preempt.h>
62 63
#include <linux/spinlock.h>
#include <linux/types.h>
64
#include <linux/debugfs.h>
M
Minchan Kim 已提交
65
#include <linux/zsmalloc.h>
66
#include <linux/zpool.h>
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

83 84
#define ZS_HANDLE_SIZE (sizeof(unsigned long))

85 86
/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
87
 * as single (unsigned long) handle value.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
M
Minchan Kim 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * Memory for allocating for handle keeps object position by
 * encoding <page, obj_idx> and the encoded value has a room
 * in least bit(ie, look at obj_to_location).
 * We use the bit to synchronize between object access by
 * user and migration.
 */
#define HANDLE_PIN_BIT	0

/*
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 * to identify the object was allocated or not.
 * It's okay to add the status bit in the least bit because
 * header keeps handle which is 4byte-aligned address so we
 * have room for two bit at least.
 */
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 129 130 131 132 133
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134
/* each chunk includes extra space to keep handle */
135
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 137

/*
138
 * On systems with 4K page size, this gives 255 size classes! There is a
139 140 141 142 143 144 145 146 147 148 149
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
150
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 152 153 154 155 156 157 158 159 160 161 162 163

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

164 165 166
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
M
Minchan Kim 已提交
167 168
	CLASS_ALMOST_FULL,
	CLASS_ALMOST_EMPTY,
169 170
};

171 172 173 174 175 176
#ifdef CONFIG_ZSMALLOC_STAT
#define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1)
#else
#define NR_ZS_STAT_TYPE	(OBJ_USED + 1)
#endif

177 178 179 180
struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

181 182
#ifdef CONFIG_ZSMALLOC_STAT
static struct dentry *zs_stat_root;
183 184
#endif

185 186 187 188 189
/*
 * number of size_classes
 */
static int zs_size_classes;

190 191 192 193 194
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
195
 * f = fullness_threshold_frac
196 197 198 199 200 201 202 203 204 205 206
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
207 208
	spinlock_t lock;
	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 210 211 212 213 214 215
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

216
	struct zs_size_stat stats;
217

218 219
	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;
220 221
	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
	bool huge;
222 223 224 225 226 227 228 229 230
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
231 232 233 234 235 236 237 238 239 240 241
	union {
		/*
		 * Position of next free chunk (encodes <PFN, obj_idx>)
		 * It's valid for non-allocated object
		 */
		void *next;
		/*
		 * Handle of allocated object.
		 */
		unsigned long handle;
	};
242 243 244
};

struct zs_pool {
245
	const char *name;
246

247
	struct size_class **size_class;
248
	struct kmem_cache *handle_cachep;
249 250

	gfp_t flags;	/* allocation flags used when growing pool */
251
	atomic_long_t pages_allocated;
252

253
	struct zs_pool_stats stats;
254 255 256 257 258 259 260 261

	/* Compact classes */
	struct shrinker shrinker;
	/*
	 * To signify that register_shrinker() was successful
	 * and unregister_shrinker() will not Oops.
	 */
	bool shrinker_enabled;
262 263 264
#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
265
};
266 267 268 269 270 271 272 273 274 275

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

276
struct mapping_area {
277
#ifdef CONFIG_PGTABLE_MAPPING
278 279 280 281 282 283 284 285
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
};

286 287 288 289 290 291 292 293 294
static int create_handle_cache(struct zs_pool *pool)
{
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
					0, 0, NULL);
	return pool->handle_cachep ? 0 : 1;
}

static void destroy_handle_cache(struct zs_pool *pool)
{
295
	kmem_cache_destroy(pool->handle_cachep);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static unsigned long alloc_handle(struct zs_pool *pool)
{
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
		pool->flags & ~__GFP_HIGHMEM);
}

static void free_handle(struct zs_pool *pool, unsigned long handle)
{
	kmem_cache_free(pool->handle_cachep, (void *)handle);
}

static void record_obj(unsigned long handle, unsigned long obj)
{
311 312 313 314 315 316
	/*
	 * lsb of @obj represents handle lock while other bits
	 * represent object value the handle is pointing so
	 * updating shouldn't do store tearing.
	 */
	WRITE_ONCE(*(unsigned long *)handle, obj);
317 318
}

319 320 321 322
/* zpool driver */

#ifdef CONFIG_ZPOOL

323
static void *zs_zpool_create(const char *name, gfp_t gfp,
324
			     const struct zpool_ops *zpool_ops,
D
Dan Streetman 已提交
325
			     struct zpool *zpool)
326
{
327
	return zs_create_pool(name, gfp);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
379
	return zs_get_total_pages(pool) << PAGE_SHIFT;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

395
MODULE_ALIAS("zpool-zsmalloc");
396 397
#endif /* CONFIG_ZPOOL */

M
Minchan Kim 已提交
398 399 400 401 402
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

403 404 405 406 407
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
408
	return PagePrivate(page);
409 410 411 412
}

static int is_last_page(struct page *page)
{
413
	return PagePrivate2(page);
414 415
}

416 417
static void get_zspage_mapping(struct page *first_page,
				unsigned int *class_idx,
418 419 420
				enum fullness_group *fullness)
{
	unsigned long m;
421
	BUG_ON(!is_first_page(first_page));
422

423
	m = (unsigned long)first_page->mapping;
424 425 426 427
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

428 429
static void set_zspage_mapping(struct page *first_page,
				unsigned int class_idx,
430 431 432
				enum fullness_group fullness)
{
	unsigned long m;
433
	BUG_ON(!is_first_page(first_page));
434 435 436

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
437
	first_page->mapping = (struct address_space *)m;
438 439
}

N
Nitin Cupta 已提交
440 441 442 443 444 445 446
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
447 448 449 450 451 452 453 454
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

455
	return min(zs_size_classes - 1, idx);
456 457
}

M
Minchan Kim 已提交
458 459 460
static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
461 462
	if (type < NR_ZS_STAT_TYPE)
		class->stats.objs[type] += cnt;
M
Minchan Kim 已提交
463 464 465 466 467
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
468 469
	if (type < NR_ZS_STAT_TYPE)
		class->stats.objs[type] -= cnt;
M
Minchan Kim 已提交
470 471 472 473 474
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
475 476 477
	if (type < NR_ZS_STAT_TYPE)
		return class->stats.objs[type];
	return 0;
M
Minchan Kim 已提交
478 479
}

480 481
#ifdef CONFIG_ZSMALLOC_STAT

M
Minchan Kim 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

499 500
static unsigned long zs_can_compact(struct size_class *class);

M
Minchan Kim 已提交
501 502 503 504 505 506 507
static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long class_almost_full, class_almost_empty;
508
	unsigned long obj_allocated, obj_used, pages_used, freeable;
M
Minchan Kim 已提交
509 510
	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
511
	unsigned long total_freeable = 0;
M
Minchan Kim 已提交
512

513
	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
M
Minchan Kim 已提交
514 515
			"class", "size", "almost_full", "almost_empty",
			"obj_allocated", "obj_used", "pages_used",
516
			"pages_per_zspage", "freeable");
M
Minchan Kim 已提交
517 518 519 520 521 522 523 524 525 526 527 528

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
529
		freeable = zs_can_compact(class);
M
Minchan Kim 已提交
530 531 532 533 534 535 536
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

537 538
		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
				" %10lu %10lu %16d %8lu\n",
M
Minchan Kim 已提交
539 540
			i, class->size, class_almost_full, class_almost_empty,
			obj_allocated, obj_used, pages_used,
541
			class->pages_per_zspage, freeable);
M
Minchan Kim 已提交
542 543 544 545 546 547

		total_class_almost_full += class_almost_full;
		total_class_almost_empty += class_almost_empty;
		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
548
		total_freeable += freeable;
M
Minchan Kim 已提交
549 550 551
	}

	seq_puts(s, "\n");
552
	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
M
Minchan Kim 已提交
553 554
			"Total", "", total_class_almost_full,
			total_class_almost_empty, total_objs,
555
			total_used_objs, total_pages, "", total_freeable);
M
Minchan Kim 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

572
static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
M
Minchan Kim 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
{
	struct dentry *entry;

	if (!zs_stat_root)
		return -ENODEV;

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
		return -ENOMEM;
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "classes");
		return -ENOMEM;
	}

	return 0;
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */
static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

612
static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
M
Minchan Kim 已提交
613 614 615 616 617 618 619 620 621 622
{
	return 0;
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}
#endif


N
Nitin Cupta 已提交
623 624 625 626 627 628 629
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
630
static enum fullness_group get_fullness_group(struct page *first_page)
631 632 633
{
	int inuse, max_objects;
	enum fullness_group fg;
634
	BUG_ON(!is_first_page(first_page));
635

636 637
	inuse = first_page->inuse;
	max_objects = first_page->objects;
638 639 640 641 642

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
M
Minchan Kim 已提交
643
	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
644 645 646 647 648 649 650
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
651 652 653 654 655 656
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
657
static void insert_zspage(struct page *first_page, struct size_class *class,
658 659 660 661
				enum fullness_group fullness)
{
	struct page **head;

662
	BUG_ON(!is_first_page(first_page));
663 664 665 666

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

M
Minchan Kim 已提交
667 668
	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
669 670 671

	head = &class->fullness_list[fullness];
	if (!*head) {
672
		*head = first_page;
673 674 675 676 677 678 679
		return;
	}

	/*
	 * We want to see more ZS_FULL pages and less almost
	 * empty/full. Put pages with higher ->inuse first.
	 */
680 681 682
	list_add_tail(&first_page->lru, &(*head)->lru);
	if (first_page->inuse >= (*head)->inuse)
		*head = first_page;
683 684
}

N
Nitin Cupta 已提交
685 686 687 688
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
689
static void remove_zspage(struct page *first_page, struct size_class *class,
690 691 692 693
				enum fullness_group fullness)
{
	struct page **head;

694
	BUG_ON(!is_first_page(first_page));
695 696 697 698 699 700 701 702

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
703
	else if (*head == first_page)
704 705 706
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

707
	list_del_init(&first_page->lru);
M
Minchan Kim 已提交
708 709
	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
710 711
}

N
Nitin Cupta 已提交
712 713 714 715 716 717 718 719 720
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
721
static enum fullness_group fix_fullness_group(struct size_class *class,
722
						struct page *first_page)
723 724 725 726
{
	int class_idx;
	enum fullness_group currfg, newfg;

727
	BUG_ON(!is_first_page(first_page));
728

729 730
	get_zspage_mapping(first_page, &class_idx, &currfg);
	newfg = get_fullness_group(first_page);
731 732 733
	if (newfg == currfg)
		goto out;

734 735 736
	remove_zspage(first_page, class, currfg);
	insert_zspage(first_page, class, newfg);
	set_zspage_mapping(first_page, class_idx, newfg);
737 738 739 740 741 742 743 744 745 746

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
747 748
 *     wastage = Zp % class_size
 *     usage = Zp - wastage
749 750 751 752 753 754
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
755
static int get_pages_per_zspage(int class_size)
756 757 758 759 760
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

761
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
788
		return (struct page *)page_private(page);
789 790 791 792 793 794 795 796 797
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
798
		next = (struct page *)page_private(page);
799 800 801 802 803 804
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

805 806
/*
 * Encode <page, obj_idx> as a single handle value.
M
Minchan Kim 已提交
807
 * We use the least bit of handle for tagging.
808
 */
M
Minchan Kim 已提交
809
static void *location_to_obj(struct page *page, unsigned long obj_idx)
810
{
M
Minchan Kim 已提交
811
	unsigned long obj;
812 813 814 815 816 817

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

M
Minchan Kim 已提交
818 819 820
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
	obj |= ((obj_idx) & OBJ_INDEX_MASK);
	obj <<= OBJ_TAG_BITS;
821

M
Minchan Kim 已提交
822
	return (void *)obj;
823 824
}

825 826 827
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
M
Minchan Kim 已提交
828
 * location_to_obj().
829
 */
M
Minchan Kim 已提交
830
static void obj_to_location(unsigned long obj, struct page **page,
831 832
				unsigned long *obj_idx)
{
M
Minchan Kim 已提交
833 834 835
	obj >>= OBJ_TAG_BITS;
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
	*obj_idx = (obj & OBJ_INDEX_MASK);
836 837
}

838 839 840 841 842
static unsigned long handle_to_obj(unsigned long handle)
{
	return *(unsigned long *)handle;
}

843 844
static unsigned long obj_to_head(struct size_class *class, struct page *page,
			void *obj)
M
Minchan Kim 已提交
845
{
846 847
	if (class->huge) {
		VM_BUG_ON(!is_first_page(page));
848
		return page_private(page);
849 850
	} else
		return *(unsigned long *)obj;
M
Minchan Kim 已提交
851 852
}

853 854 855 856 857 858 859 860 861 862 863
static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

M
Minchan Kim 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static inline int trypin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
}

static void pin_tag(unsigned long handle)
{
	while (!trypin_tag(handle));
}

static void unpin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
}

N
Nitin Gupta 已提交
883 884 885 886 887 888 889
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
890
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
891 892
}

893 894
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
895
	struct page *nextp, *tmp, *head_extra;
896 897 898 899

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
900
	head_extra = (struct page *)page_private(first_page);
901

N
Nitin Gupta 已提交
902
	reset_page(first_page);
903 904 905
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
906
	if (!head_extra)
907 908
		return;

N
Nitin Gupta 已提交
909
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
910
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
911
		reset_page(nextp);
912 913
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
914 915
	reset_page(head_extra);
	__free_page(head_extra);
916 917 918 919 920 921 922 923 924 925 926 927
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
928
		unsigned int i = 1;
929
		void *vaddr;
930 931 932 933 934 935 936 937 938 939

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

940 941
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
942 943

		while ((off += class->size) < PAGE_SIZE) {
M
Minchan Kim 已提交
944
			link->next = location_to_obj(page, i++);
945
			link += class->size / sizeof(*link);
946 947 948 949 950 951 952 953
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
M
Minchan Kim 已提交
954
		link->next = location_to_obj(next_page, 0);
955
		kunmap_atomic(vaddr);
956
		page = next_page;
957
		off %= PAGE_SIZE;
958 959 960 961 962 963 964 965 966
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
967
	struct page *first_page = NULL, *uninitialized_var(prev_page);
968 969 970 971 972

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
973
	 * 3. each sub-page is linked to the first page using page->private
974 975 976 977 978 979 980
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
981
	for (i = 0; i < class->pages_per_zspage; i++) {
982
		struct page *page;
983 984 985 986 987 988 989

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
990
			SetPagePrivate(page);
991 992 993 994 995
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
996
			set_page_private(first_page, (unsigned long)page);
997
		if (i >= 1)
998
			set_page_private(page, (unsigned long)first_page);
999 1000
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
1001
		if (i == class->pages_per_zspage - 1)	/* last page */
1002
			SetPagePrivate2(page);
1003 1004 1005 1006 1007
		prev_page = page;
	}

	init_zspage(first_page, class);

M
Minchan Kim 已提交
1008
	first_page->freelist = location_to_obj(first_page, 0);
1009
	/* Maximum number of objects we can store in this zspage */
1010
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

1037
#ifdef CONFIG_PGTABLE_MAPPING
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
1062
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1063 1064 1065 1066 1067 1068 1069 1070 1071
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

1072
	unmap_kernel_range(addr, PAGE_SIZE * 2);
1073 1074
}

1075
#else /* CONFIG_PGTABLE_MAPPING */
1076 1077 1078 1079 1080 1081 1082 1083 1084

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
1085
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1086 1087 1088 1089 1090 1091 1092
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
1093
	kfree(area->vm_buf);
1094 1095 1096 1097 1098
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1099 1100 1101
{
	int sizes[2];
	void *addr;
1102
	char *buf = area->vm_buf;
1103

1104 1105 1106 1107 1108 1109
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
1121 1122
out:
	return area->vm_buf;
1123 1124
}

1125 1126
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1127 1128 1129
{
	int sizes[2];
	void *addr;
1130
	char *buf;
1131

1132 1133 1134
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
1135

1136
	buf = area->vm_buf;
1137 1138 1139
	buf = buf + ZS_HANDLE_SIZE;
	size -= ZS_HANDLE_SIZE;
	off += ZS_HANDLE_SIZE;
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
1151 1152 1153 1154

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
1155
}
1156

1157
#endif /* CONFIG_PGTABLE_MAPPING */
1158

1159 1160 1161
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
1162
	int ret, cpu = (long)pcpu;
1163 1164 1165 1166 1167
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
1168 1169 1170
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
1171 1172 1173 1174
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
1175
		__zs_cpu_down(area);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

1186
static int zs_register_cpu_notifier(void)
1187
{
1188
	int cpu, uninitialized_var(ret);
1189

1190 1191 1192
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
1193 1194
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1195 1196
		if (notifier_to_errno(ret))
			break;
1197
	}
1198 1199

	cpu_notifier_register_done();
1200 1201
	return notifier_to_errno(ret);
}
1202

1203
static void zs_unregister_cpu_notifier(void)
1204
{
1205
	int cpu;
1206

1207
	cpu_notifier_register_begin();
1208

1209 1210 1211
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
1212

1213
	cpu_notifier_register_done();
1214 1215
}

1216
static void init_zs_size_classes(void)
1217
{
1218
	int nr;
1219

1220 1221 1222
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
1223

1224
	zs_size_classes = nr;
1225 1226
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

1239
static bool zspage_full(struct page *first_page)
M
Minchan Kim 已提交
1240
{
1241
	BUG_ON(!is_first_page(first_page));
M
Minchan Kim 已提交
1242

1243
	return first_page->inuse == first_page->objects;
M
Minchan Kim 已提交
1244 1245
}

1246 1247 1248 1249 1250 1251
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1252
/**
1253 1254 1255
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1256
 *
1257 1258 1259
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1260
 *
1261 1262 1263 1264
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1265
 */
1266 1267
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1268
{
1269
	struct page *page;
1270
	unsigned long obj, obj_idx, off;
1271

1272 1273 1274 1275 1276
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1277
	void *ret;
1278

1279
	BUG_ON(!handle);
1280

1281
	/*
1282 1283 1284
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1285
	 */
1286
	BUG_ON(in_interrupt());
1287

M
Minchan Kim 已提交
1288 1289 1290
	/* From now on, migration cannot move the object */
	pin_tag(handle);

1291 1292
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1293 1294 1295
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1296

1297 1298 1299 1300 1301
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1302 1303
		ret = area->vm_addr + off;
		goto out;
1304 1305
	}

1306 1307 1308 1309
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1310

1311 1312
	ret = __zs_map_object(area, pages, off, class->size);
out:
1313 1314 1315 1316
	if (!class->huge)
		ret += ZS_HANDLE_SIZE;

	return ret;
1317
}
1318
EXPORT_SYMBOL_GPL(zs_map_object);
1319

1320
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1321
{
1322
	struct page *page;
1323
	unsigned long obj, obj_idx, off;
1324

1325 1326 1327 1328
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1329

1330
	BUG_ON(!handle);
1331

1332 1333
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1334 1335 1336
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1337

1338 1339 1340 1341 1342
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1343

1344 1345 1346 1347 1348 1349 1350
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
M
Minchan Kim 已提交
1351
	unpin_tag(handle);
1352
}
1353
EXPORT_SYMBOL_GPL(zs_unmap_object);
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static unsigned long obj_malloc(struct page *first_page,
		struct size_class *class, unsigned long handle)
{
	unsigned long obj;
	struct link_free *link;

	struct page *m_page;
	unsigned long m_objidx, m_offset;
	void *vaddr;

M
Minchan Kim 已提交
1365
	handle |= OBJ_ALLOCATED_TAG;
1366 1367 1368 1369 1370 1371 1372
	obj = (unsigned long)first_page->freelist;
	obj_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
	first_page->freelist = link->next;
1373 1374 1375 1376 1377 1378
	if (!class->huge)
		/* record handle in the header of allocated chunk */
		link->handle = handle;
	else
		/* record handle in first_page->private */
		set_page_private(first_page, handle);
1379 1380 1381 1382 1383 1384 1385 1386
	kunmap_atomic(vaddr);
	first_page->inuse++;
	zs_stat_inc(class, OBJ_USED, 1);

	return obj;
}


1387 1388 1389 1390 1391
/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1392
 * On success, handle to the allocated object is returned,
1393
 * otherwise 0.
1394 1395
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1396
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1397
{
1398
	unsigned long handle, obj;
1399
	struct size_class *class;
1400
	struct page *first_page;
1401

1402
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1403 1404 1405 1406
		return 0;

	handle = alloc_handle(pool);
	if (!handle)
1407
		return 0;
1408

1409 1410
	/* extra space in chunk to keep the handle */
	size += ZS_HANDLE_SIZE;
1411
	class = pool->size_class[get_size_class_index(size)];
1412 1413 1414 1415 1416 1417 1418

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
1419 1420
		if (unlikely(!first_page)) {
			free_handle(pool, handle);
1421
			return 0;
1422
		}
1423 1424

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1425 1426
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1427

1428
		spin_lock(&class->lock);
1429 1430
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1431 1432
	}

1433
	obj = obj_malloc(first_page, class, handle);
1434
	/* Now move the zspage to another fullness group, if required */
1435
	fix_fullness_group(class, first_page);
1436
	record_obj(handle, obj);
1437 1438
	spin_unlock(&class->lock);

1439
	return handle;
1440 1441 1442
}
EXPORT_SYMBOL_GPL(zs_malloc);

1443 1444
static void obj_free(struct zs_pool *pool, struct size_class *class,
			unsigned long obj)
1445 1446 1447
{
	struct link_free *link;
	struct page *first_page, *f_page;
1448
	unsigned long f_objidx, f_offset;
1449
	void *vaddr;
1450

1451
	BUG_ON(!obj);
1452

M
Minchan Kim 已提交
1453
	obj &= ~OBJ_ALLOCATED_TAG;
1454
	obj_to_location(obj, &f_page, &f_objidx);
1455 1456 1457 1458
	first_page = get_first_page(f_page);

	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

1459
	vaddr = kmap_atomic(f_page);
1460 1461

	/* Insert this object in containing zspage's freelist */
1462
	link = (struct link_free *)(vaddr + f_offset);
1463
	link->next = first_page->freelist;
1464 1465
	if (class->huge)
		set_page_private(first_page, 0);
1466
	kunmap_atomic(vaddr);
1467
	first_page->freelist = (void *)obj;
1468
	first_page->inuse--;
1469
	zs_stat_dec(class, OBJ_USED, 1);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
}

void zs_free(struct zs_pool *pool, unsigned long handle)
{
	struct page *first_page, *f_page;
	unsigned long obj, f_objidx;
	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!handle))
		return;

M
Minchan Kim 已提交
1483
	pin_tag(handle);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	obj = handle_to_obj(handle);
	obj_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = pool->size_class[class_idx];

	spin_lock(&class->lock);
	obj_free(pool, class, obj);
	fullness = fix_fullness_group(class, first_page);
M
Minchan Kim 已提交
1494
	if (fullness == ZS_EMPTY) {
1495 1496
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
M
Minchan Kim 已提交
1497 1498 1499 1500
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
		free_zspage(first_page);
	}
1501
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1502
	unpin_tag(handle);
1503

M
Minchan Kim 已提交
1504 1505 1506 1507
	free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);

1508
static void zs_object_copy(unsigned long dst, unsigned long src,
M
Minchan Kim 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
				struct size_class *class)
{
	struct page *s_page, *d_page;
	unsigned long s_objidx, d_objidx;
	unsigned long s_off, d_off;
	void *s_addr, *d_addr;
	int s_size, d_size, size;
	int written = 0;

	s_size = d_size = class->size;

	obj_to_location(src, &s_page, &s_objidx);
	obj_to_location(dst, &d_page, &d_objidx);

	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);

	if (s_off + class->size > PAGE_SIZE)
		s_size = PAGE_SIZE - s_off;

	if (d_off + class->size > PAGE_SIZE)
		d_size = PAGE_SIZE - d_off;

	s_addr = kmap_atomic(s_page);
	d_addr = kmap_atomic(d_page);

	while (1) {
		size = min(s_size, d_size);
		memcpy(d_addr + d_off, s_addr + s_off, size);
		written += size;

		if (written == class->size)
			break;

1543 1544 1545 1546 1547 1548
		s_off += size;
		s_size -= size;
		d_off += size;
		d_size -= size;

		if (s_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
			kunmap_atomic(d_addr);
			kunmap_atomic(s_addr);
			s_page = get_next_page(s_page);
			BUG_ON(!s_page);
			s_addr = kmap_atomic(s_page);
			d_addr = kmap_atomic(d_page);
			s_size = class->size - written;
			s_off = 0;
		}

1559
		if (d_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
			kunmap_atomic(d_addr);
			d_page = get_next_page(d_page);
			BUG_ON(!d_page);
			d_addr = kmap_atomic(d_page);
			d_size = class->size - written;
			d_off = 0;
		}
	}

	kunmap_atomic(d_addr);
	kunmap_atomic(s_addr);
}

/*
 * Find alloced object in zspage from index object and
 * return handle.
 */
static unsigned long find_alloced_obj(struct page *page, int index,
					struct size_class *class)
{
	unsigned long head;
	int offset = 0;
	unsigned long handle = 0;
	void *addr = kmap_atomic(page);

	if (!is_first_page(page))
		offset = page->index;
	offset += class->size * index;

	while (offset < PAGE_SIZE) {
1590
		head = obj_to_head(class, page, addr + offset);
M
Minchan Kim 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		if (head & OBJ_ALLOCATED_TAG) {
			handle = head & ~OBJ_ALLOCATED_TAG;
			if (trypin_tag(handle))
				break;
			handle = 0;
		}

		offset += class->size;
		index++;
	}

	kunmap_atomic(addr);
	return handle;
}

struct zs_compact_control {
	/* Source page for migration which could be a subpage of zspage. */
	struct page *s_page;
	/* Destination page for migration which should be a first page
	 * of zspage. */
	struct page *d_page;
	 /* Starting object index within @s_page which used for live object
	  * in the subpage. */
	int index;
};

static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
				struct zs_compact_control *cc)
{
	unsigned long used_obj, free_obj;
	unsigned long handle;
	struct page *s_page = cc->s_page;
	struct page *d_page = cc->d_page;
	unsigned long index = cc->index;
	int ret = 0;

	while (1) {
		handle = find_alloced_obj(s_page, index, class);
		if (!handle) {
			s_page = get_next_page(s_page);
			if (!s_page)
				break;
			index = 0;
			continue;
		}

		/* Stop if there is no more space */
		if (zspage_full(d_page)) {
			unpin_tag(handle);
			ret = -ENOMEM;
			break;
		}

		used_obj = handle_to_obj(handle);
		free_obj = obj_malloc(d_page, class, handle);
1646
		zs_object_copy(free_obj, used_obj, class);
M
Minchan Kim 已提交
1647
		index++;
1648 1649 1650 1651 1652 1653 1654
		/*
		 * record_obj updates handle's value to free_obj and it will
		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
		 * breaks synchronization using pin_tag(e,g, zs_free) so
		 * let's keep the lock bit.
		 */
		free_obj |= BIT(HANDLE_PIN_BIT);
M
Minchan Kim 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		record_obj(handle, free_obj);
		unpin_tag(handle);
		obj_free(pool, class, used_obj);
	}

	/* Remember last position in this iteration */
	cc->s_page = s_page;
	cc->index = index;

	return ret;
}

1667
static struct page *isolate_target_page(struct size_class *class)
M
Minchan Kim 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page) {
			remove_zspage(page, class, i);
			break;
		}
	}

	return page;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/*
 * putback_zspage - add @first_page into right class's fullness list
 * @pool: target pool
 * @class: destination class
 * @first_page: target page
 *
 * Return @fist_page's fullness_group
 */
static enum fullness_group putback_zspage(struct zs_pool *pool,
			struct size_class *class,
			struct page *first_page)
M
Minchan Kim 已提交
1694 1695 1696 1697 1698
{
	enum fullness_group fullness;

	BUG_ON(!is_first_page(first_page));

1699
	fullness = get_fullness_group(first_page);
M
Minchan Kim 已提交
1700
	insert_zspage(first_page, class, fullness);
1701 1702
	set_zspage_mapping(first_page, class->index, fullness);

1703
	if (fullness == ZS_EMPTY) {
M
Minchan Kim 已提交
1704 1705
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
			class->size, class->pages_per_zspage));
1706 1707
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
M
Minchan Kim 已提交
1708

1709
		free_zspage(first_page);
1710
	}
1711 1712

	return fullness;
1713
}
M
Minchan Kim 已提交
1714 1715 1716

static struct page *isolate_source_page(struct size_class *class)
{
1717 1718 1719 1720 1721 1722 1723
	int i;
	struct page *page = NULL;

	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
		page = class->fullness_list[i];
		if (!page)
			continue;
M
Minchan Kim 已提交
1724

1725 1726 1727
		remove_zspage(page, class, i);
		break;
	}
M
Minchan Kim 已提交
1728 1729 1730 1731

	return page;
}

1732 1733 1734 1735 1736 1737 1738 1739
/*
 *
 * Based on the number of unused allocated objects calculate
 * and return the number of pages that we can free.
 */
static unsigned long zs_can_compact(struct size_class *class)
{
	unsigned long obj_wasted;
1740 1741
	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1742

1743 1744
	if (obj_allocated <= obj_used)
		return 0;
1745

1746
	obj_wasted = obj_allocated - obj_used;
1747 1748 1749
	obj_wasted /= get_maxobj_per_zspage(class->size,
			class->pages_per_zspage);

1750
	return obj_wasted * class->pages_per_zspage;
1751 1752
}

1753
static void __zs_compact(struct zs_pool *pool, struct size_class *class)
M
Minchan Kim 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
{
	struct zs_compact_control cc;
	struct page *src_page;
	struct page *dst_page = NULL;

	spin_lock(&class->lock);
	while ((src_page = isolate_source_page(class))) {

		BUG_ON(!is_first_page(src_page));

1764 1765 1766
		if (!zs_can_compact(class))
			break;

M
Minchan Kim 已提交
1767 1768 1769
		cc.index = 0;
		cc.s_page = src_page;

1770
		while ((dst_page = isolate_target_page(class))) {
M
Minchan Kim 已提交
1771 1772
			cc.d_page = dst_page;
			/*
1773 1774
			 * If there is no more space in dst_page, resched
			 * and see if anyone had allocated another zspage.
M
Minchan Kim 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
			 */
			if (!migrate_zspage(pool, class, &cc))
				break;

			putback_zspage(pool, class, dst_page);
		}

		/* Stop if we couldn't find slot */
		if (dst_page == NULL)
			break;

		putback_zspage(pool, class, dst_page);
1787
		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1788
			pool->stats.pages_compacted += class->pages_per_zspage;
M
Minchan Kim 已提交
1789 1790 1791 1792 1793 1794 1795 1796
		spin_unlock(&class->lock);
		cond_resched();
		spin_lock(&class->lock);
	}

	if (src_page)
		putback_zspage(pool, class, src_page);

1797
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
}

unsigned long zs_compact(struct zs_pool *pool)
{
	int i;
	struct size_class *class;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;
1811
		__zs_compact(pool, class);
M
Minchan Kim 已提交
1812 1813
	}

1814
	return pool->stats.pages_compacted;
M
Minchan Kim 已提交
1815 1816
}
EXPORT_SYMBOL_GPL(zs_compact);
1817

1818 1819 1820 1821 1822 1823
void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
{
	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
}
EXPORT_SYMBOL_GPL(zs_pool_stats);

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
		struct shrink_control *sc)
{
	unsigned long pages_freed;
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
			shrinker);

	pages_freed = pool->stats.pages_compacted;
	/*
	 * Compact classes and calculate compaction delta.
	 * Can run concurrently with a manually triggered
	 * (by user) compaction.
	 */
	pages_freed = zs_compact(pool) - pages_freed;

	return pages_freed ? pages_freed : SHRINK_STOP;
}

static unsigned long zs_shrinker_count(struct shrinker *shrinker,
		struct shrink_control *sc)
{
	int i;
	struct size_class *class;
	unsigned long pages_to_free = 0;
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
			shrinker);

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;

		pages_to_free += zs_can_compact(class);
	}

	return pages_to_free;
}

static void zs_unregister_shrinker(struct zs_pool *pool)
{
	if (pool->shrinker_enabled) {
		unregister_shrinker(&pool->shrinker);
		pool->shrinker_enabled = false;
	}
}

static int zs_register_shrinker(struct zs_pool *pool)
{
	pool->shrinker.scan_objects = zs_shrinker_scan;
	pool->shrinker.count_objects = zs_shrinker_count;
	pool->shrinker.batch = 0;
	pool->shrinker.seeks = DEFAULT_SEEKS;

	return register_shrinker(&pool->shrinker);
}

1882
/**
1883 1884
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1885
 *
1886 1887
 * This function must be called before anything when using
 * the zsmalloc allocator.
1888
 *
1889 1890
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1891
 */
1892
struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1893
{
1894 1895 1896
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1897

1898 1899 1900
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1901

1902 1903 1904 1905 1906 1907
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
1908

1909 1910 1911 1912 1913 1914 1915
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name)
		goto err;

	if (create_handle_cache(pool))
		goto err;

1916
	/*
1917 1918
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1919
	 */
1920 1921 1922 1923
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1924

1925 1926 1927 1928
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
1953 1954 1955
		if (pages_per_zspage == 1 &&
			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
			class->huge = true;
1956 1957 1958 1959
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1960 1961
	}

1962
	pool->flags = flags;
1963

1964 1965 1966
	if (zs_pool_stat_create(name, pool))
		goto err;

1967 1968 1969 1970 1971 1972
	/*
	 * Not critical, we still can use the pool
	 * and user can trigger compaction manually.
	 */
	if (zs_register_shrinker(pool) == 0)
		pool->shrinker_enabled = true;
1973 1974 1975 1976 1977
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1978
}
1979
EXPORT_SYMBOL_GPL(zs_create_pool);
1980

1981
void zs_destroy_pool(struct zs_pool *pool)
1982
{
1983
	int i;
1984

1985
	zs_unregister_shrinker(pool);
1986 1987
	zs_pool_stat_destroy(pool);

1988 1989 1990
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1991

1992 1993
		if (!class)
			continue;
1994

1995 1996
		if (class->index != i)
			continue;
1997

1998 1999 2000 2001 2002 2003 2004 2005
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
2006

2007
	destroy_handle_cache(pool);
2008
	kfree(pool->size_class);
2009
	kfree(pool->name);
2010 2011 2012
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
2013

2014 2015 2016 2017
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

2018 2019
	if (ret)
		goto notifier_fail;
2020 2021 2022 2023 2024 2025

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
2026 2027 2028 2029 2030 2031

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
2032
	return 0;
2033 2034 2035 2036 2037 2038 2039 2040 2041

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
2042 2043
}

2044
static void __exit zs_exit(void)
2045
{
2046 2047 2048 2049
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
2050 2051

	zs_stat_exit();
2052
}
2053 2054 2055 2056 2057 2058

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");