zsmalloc.c 47.6 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
31 32
 *		If the page is first_page for huge object, it stores handle.
 *		Look at size_class->huge.
N
Nitin Gupta 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

48 49
#include <linux/module.h>
#include <linux/kernel.h>
M
Minchan Kim 已提交
50
#include <linux/sched.h>
51 52 53 54 55 56 57 58 59
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
60
#include <linux/vmalloc.h>
61
#include <linux/hardirq.h>
62 63
#include <linux/spinlock.h>
#include <linux/types.h>
64
#include <linux/debugfs.h>
M
Minchan Kim 已提交
65
#include <linux/zsmalloc.h>
66
#include <linux/zpool.h>
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

83 84
#define ZS_HANDLE_SIZE (sizeof(unsigned long))

85 86
/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
87
 * as single (unsigned long) handle value.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
M
Minchan Kim 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * Memory for allocating for handle keeps object position by
 * encoding <page, obj_idx> and the encoded value has a room
 * in least bit(ie, look at obj_to_location).
 * We use the bit to synchronize between object access by
 * user and migration.
 */
#define HANDLE_PIN_BIT	0

/*
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 * to identify the object was allocated or not.
 * It's okay to add the status bit in the least bit because
 * header keeps handle which is 4byte-aligned address so we
 * have room for two bit at least.
 */
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 129 130 131 132 133
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134
/* each chunk includes extra space to keep handle */
135
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 137

/*
138
 * On systems with 4K page size, this gives 255 size classes! There is a
139 140 141 142 143 144 145 146 147 148 149
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
150
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 152 153 154 155 156 157 158 159 160 161 162 163

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

164 165 166
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
M
Minchan Kim 已提交
167 168
	CLASS_ALMOST_FULL,
	CLASS_ALMOST_EMPTY,
169 170 171 172 173 174 175
	NR_ZS_STAT_TYPE,
};

struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

176 177
#ifdef CONFIG_ZSMALLOC_STAT
static struct dentry *zs_stat_root;
178 179
#endif

180 181 182 183 184
/*
 * number of size_classes
 */
static int zs_size_classes;

185 186 187 188 189
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
190
 * f = fullness_threshold_frac
191 192 193 194 195 196 197 198 199 200 201
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
202 203
	spinlock_t lock;
	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
204 205 206 207 208 209 210 211 212
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;
213
	struct zs_size_stat stats;
214

215 216
	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
	bool huge;
217 218 219 220 221 222 223 224 225
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
226 227 228 229 230 231 232 233 234 235 236
	union {
		/*
		 * Position of next free chunk (encodes <PFN, obj_idx>)
		 * It's valid for non-allocated object
		 */
		void *next;
		/*
		 * Handle of allocated object.
		 */
		unsigned long handle;
	};
237 238 239
};

struct zs_pool {
240
	const char *name;
241

242
	struct size_class **size_class;
243
	struct kmem_cache *handle_cachep;
244 245

	gfp_t flags;	/* allocation flags used when growing pool */
246
	atomic_long_t pages_allocated;
247

248
	struct zs_pool_stats stats;
249 250 251 252 253 254 255 256

	/* Compact classes */
	struct shrinker shrinker;
	/*
	 * To signify that register_shrinker() was successful
	 * and unregister_shrinker() will not Oops.
	 */
	bool shrinker_enabled;
257 258 259
#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
260
};
261 262 263 264 265 266 267 268 269 270

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

271
struct mapping_area {
272
#ifdef CONFIG_PGTABLE_MAPPING
273 274 275 276 277 278
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
279
	bool huge;
280 281
};

282 283 284 285 286 287 288 289 290
static int create_handle_cache(struct zs_pool *pool)
{
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
					0, 0, NULL);
	return pool->handle_cachep ? 0 : 1;
}

static void destroy_handle_cache(struct zs_pool *pool)
{
291
	kmem_cache_destroy(pool->handle_cachep);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
}

static unsigned long alloc_handle(struct zs_pool *pool)
{
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
		pool->flags & ~__GFP_HIGHMEM);
}

static void free_handle(struct zs_pool *pool, unsigned long handle)
{
	kmem_cache_free(pool->handle_cachep, (void *)handle);
}

static void record_obj(unsigned long handle, unsigned long obj)
{
	*(unsigned long *)handle = obj;
}

310 311 312 313
/* zpool driver */

#ifdef CONFIG_ZPOOL

314
static void *zs_zpool_create(const char *name, gfp_t gfp,
315
			     const struct zpool_ops *zpool_ops,
D
Dan Streetman 已提交
316
			     struct zpool *zpool)
317
{
318
	return zs_create_pool(name, gfp);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
370
	return zs_get_total_pages(pool) << PAGE_SHIFT;
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

386
MODULE_ALIAS("zpool-zsmalloc");
387 388
#endif /* CONFIG_ZPOOL */

M
Minchan Kim 已提交
389 390 391 392 393
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

394 395 396 397 398
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
399
	return PagePrivate(page);
400 401 402 403
}

static int is_last_page(struct page *page)
{
404
	return PagePrivate2(page);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
429 430 431 432 433 434 435
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
436 437 438 439 440 441 442 443
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

444
	return min(zs_size_classes - 1, idx);
445 446
}

M
Minchan Kim 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] += cnt;
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] -= cnt;
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return class->stats.objs[type];
}

465 466
#ifdef CONFIG_ZSMALLOC_STAT

M
Minchan Kim 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long class_almost_full, class_almost_empty;
	unsigned long obj_allocated, obj_used, pages_used;
	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;

	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
			"class", "size", "almost_full", "almost_empty",
			"obj_allocated", "obj_used", "pages_used",
			"pages_per_zspage");

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
			i, class->size, class_almost_full, class_almost_empty,
			obj_allocated, obj_used, pages_used,
			class->pages_per_zspage);

		total_class_almost_full += class_almost_full;
		total_class_almost_empty += class_almost_empty;
		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
	}

	seq_puts(s, "\n");
	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
			"Total", "", total_class_almost_full,
			total_class_almost_empty, total_objs,
			total_used_objs, total_pages);

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

551
static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
M
Minchan Kim 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
{
	struct dentry *entry;

	if (!zs_stat_root)
		return -ENODEV;

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
		return -ENOMEM;
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "classes");
		return -ENOMEM;
	}

	return 0;
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */
static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

591
static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
M
Minchan Kim 已提交
592 593 594 595 596 597 598 599 600 601
{
	return 0;
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}
#endif


N
Nitin Cupta 已提交
602 603 604 605 606 607 608
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
609 610 611 612 613 614 615 616 617 618 619 620 621
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
M
Minchan Kim 已提交
622
	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
623 624 625 626 627 628 629
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
630 631 632 633 634 635
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
636 637 638 639 640 641 642 643 644 645
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

M
Minchan Kim 已提交
646 647
	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
648 649 650 651 652 653 654 655 656 657 658 659 660 661

	head = &class->fullness_list[fullness];
	if (!*head) {
		*head = page;
		return;
	}

	/*
	 * We want to see more ZS_FULL pages and less almost
	 * empty/full. Put pages with higher ->inuse first.
	 */
	list_add_tail(&page->lru, &(*head)->lru);
	if (page->inuse >= (*head)->inuse)
		*head = page;
662 663
}

N
Nitin Cupta 已提交
664 665 666 667
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
M
Minchan Kim 已提交
687 688
	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
689 690
}

N
Nitin Cupta 已提交
691 692 693 694 695 696 697 698 699
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
700
static enum fullness_group fix_fullness_group(struct size_class *class,
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
						struct page *page)
{
	int class_idx;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
726 727
 *     wastage = Zp % class_size
 *     usage = Zp - wastage
728 729 730 731 732 733
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
734
static int get_pages_per_zspage(int class_size)
735 736 737 738 739
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

740
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
777
		next = (struct page *)page_private(page);
778 779 780 781 782 783
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

784 785
/*
 * Encode <page, obj_idx> as a single handle value.
M
Minchan Kim 已提交
786
 * We use the least bit of handle for tagging.
787
 */
M
Minchan Kim 已提交
788
static void *location_to_obj(struct page *page, unsigned long obj_idx)
789
{
M
Minchan Kim 已提交
790
	unsigned long obj;
791 792 793 794 795 796

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

M
Minchan Kim 已提交
797 798 799
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
	obj |= ((obj_idx) & OBJ_INDEX_MASK);
	obj <<= OBJ_TAG_BITS;
800

M
Minchan Kim 已提交
801
	return (void *)obj;
802 803
}

804 805 806
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
M
Minchan Kim 已提交
807
 * location_to_obj().
808
 */
M
Minchan Kim 已提交
809
static void obj_to_location(unsigned long obj, struct page **page,
810 811
				unsigned long *obj_idx)
{
M
Minchan Kim 已提交
812 813 814
	obj >>= OBJ_TAG_BITS;
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
	*obj_idx = (obj & OBJ_INDEX_MASK);
815 816
}

817 818 819 820 821
static unsigned long handle_to_obj(unsigned long handle)
{
	return *(unsigned long *)handle;
}

822 823
static unsigned long obj_to_head(struct size_class *class, struct page *page,
			void *obj)
M
Minchan Kim 已提交
824
{
825 826 827 828 829
	if (class->huge) {
		VM_BUG_ON(!is_first_page(page));
		return *(unsigned long *)page_private(page);
	} else
		return *(unsigned long *)obj;
M
Minchan Kim 已提交
830 831
}

832 833 834 835 836 837 838 839 840 841 842
static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

M
Minchan Kim 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
static inline int trypin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
}

static void pin_tag(unsigned long handle)
{
	while (!trypin_tag(handle));
}

static void unpin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
}

N
Nitin Gupta 已提交
862 863 864 865 866 867 868
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
869
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
870 871
}

872 873
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
874
	struct page *nextp, *tmp, *head_extra;
875 876 877 878

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
879
	head_extra = (struct page *)page_private(first_page);
880

N
Nitin Gupta 已提交
881
	reset_page(first_page);
882 883 884
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
885
	if (!head_extra)
886 887
		return;

N
Nitin Gupta 已提交
888
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
889
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
890
		reset_page(nextp);
891 892
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
893 894
	reset_page(head_extra);
	__free_page(head_extra);
895 896 897 898 899 900 901 902 903 904 905 906
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
907
		unsigned int i = 1;
908
		void *vaddr;
909 910 911 912 913 914 915 916 917 918

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

919 920
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
921 922

		while ((off += class->size) < PAGE_SIZE) {
M
Minchan Kim 已提交
923
			link->next = location_to_obj(page, i++);
924
			link += class->size / sizeof(*link);
925 926 927 928 929 930 931 932
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
M
Minchan Kim 已提交
933
		link->next = location_to_obj(next_page, 0);
934
		kunmap_atomic(vaddr);
935
		page = next_page;
936
		off %= PAGE_SIZE;
937 938 939 940 941 942 943 944 945
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
946
	struct page *first_page = NULL, *uninitialized_var(prev_page);
947 948 949 950 951 952 953 954 955 956 957 958 959

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
960
	for (i = 0; i < class->pages_per_zspage; i++) {
961
		struct page *page;
962 963 964 965 966 967 968

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
969
			SetPagePrivate(page);
970 971 972 973 974
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
975
			set_page_private(first_page, (unsigned long)page);
976 977 978 979
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
980
		if (i == class->pages_per_zspage - 1)	/* last page */
981
			SetPagePrivate2(page);
982 983 984 985 986
		prev_page = page;
	}

	init_zspage(first_page, class);

M
Minchan Kim 已提交
987
	first_page->freelist = location_to_obj(first_page, 0);
988
	/* Maximum number of objects we can store in this zspage */
989
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

1016
#ifdef CONFIG_PGTABLE_MAPPING
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
1041
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1042 1043 1044 1045 1046 1047 1048 1049 1050
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

1051
	unmap_kernel_range(addr, PAGE_SIZE * 2);
1052 1053
}

1054
#else /* CONFIG_PGTABLE_MAPPING */
1055 1056 1057 1058 1059 1060 1061 1062 1063

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
1064
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1065 1066 1067 1068 1069 1070 1071
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
1072
	kfree(area->vm_buf);
1073 1074 1075 1076 1077
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1078 1079 1080
{
	int sizes[2];
	void *addr;
1081
	char *buf = area->vm_buf;
1082

1083 1084 1085 1086 1087 1088
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
1100 1101
out:
	return area->vm_buf;
1102 1103
}

1104 1105
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1106 1107 1108
{
	int sizes[2];
	void *addr;
1109
	char *buf;
1110

1111 1112 1113
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
1114

1115 1116 1117 1118 1119 1120
	buf = area->vm_buf;
	if (!area->huge) {
		buf = buf + ZS_HANDLE_SIZE;
		size -= ZS_HANDLE_SIZE;
		off += ZS_HANDLE_SIZE;
	}
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
1132 1133 1134 1135

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
1136
}
1137

1138
#endif /* CONFIG_PGTABLE_MAPPING */
1139

1140 1141 1142
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
1143
	int ret, cpu = (long)pcpu;
1144 1145 1146 1147 1148
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
1149 1150 1151
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
1152 1153 1154 1155
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
1156
		__zs_cpu_down(area);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

1167
static int zs_register_cpu_notifier(void)
1168
{
1169
	int cpu, uninitialized_var(ret);
1170

1171 1172 1173
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
1174 1175
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1176 1177
		if (notifier_to_errno(ret))
			break;
1178
	}
1179 1180

	cpu_notifier_register_done();
1181 1182
	return notifier_to_errno(ret);
}
1183

1184
static void zs_unregister_cpu_notifier(void)
1185
{
1186
	int cpu;
1187

1188
	cpu_notifier_register_begin();
1189

1190 1191 1192
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
1193

1194
	cpu_notifier_register_done();
1195 1196
}

1197
static void init_zs_size_classes(void)
1198
{
1199
	int nr;
1200

1201 1202 1203
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
1204

1205
	zs_size_classes = nr;
1206 1207
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

M
Minchan Kim 已提交
1220 1221 1222 1223 1224 1225 1226
static bool zspage_full(struct page *page)
{
	BUG_ON(!is_first_page(page));

	return page->inuse == page->objects;
}

1227 1228 1229 1230 1231 1232
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1233
/**
1234 1235 1236
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1237
 *
1238 1239 1240
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1241
 *
1242 1243 1244 1245
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1246
 */
1247 1248
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1249
{
1250
	struct page *page;
1251
	unsigned long obj, obj_idx, off;
1252

1253 1254 1255 1256 1257
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1258
	void *ret;
1259

1260
	BUG_ON(!handle);
1261

1262
	/*
1263 1264 1265
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1266
	 */
1267
	BUG_ON(in_interrupt());
1268

M
Minchan Kim 已提交
1269 1270 1271
	/* From now on, migration cannot move the object */
	pin_tag(handle);

1272 1273
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1274 1275 1276
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1277

1278 1279 1280 1281 1282
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1283 1284
		ret = area->vm_addr + off;
		goto out;
1285 1286
	}

1287 1288 1289 1290
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1291

1292 1293
	ret = __zs_map_object(area, pages, off, class->size);
out:
1294 1295 1296 1297
	if (!class->huge)
		ret += ZS_HANDLE_SIZE;

	return ret;
1298
}
1299
EXPORT_SYMBOL_GPL(zs_map_object);
1300

1301
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1302
{
1303
	struct page *page;
1304
	unsigned long obj, obj_idx, off;
1305

1306 1307 1308 1309
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1310

1311
	BUG_ON(!handle);
1312

1313 1314
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1315 1316 1317
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1318

1319 1320 1321 1322 1323
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1324

1325 1326 1327 1328 1329 1330 1331
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
M
Minchan Kim 已提交
1332
	unpin_tag(handle);
1333
}
1334
EXPORT_SYMBOL_GPL(zs_unmap_object);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static unsigned long obj_malloc(struct page *first_page,
		struct size_class *class, unsigned long handle)
{
	unsigned long obj;
	struct link_free *link;

	struct page *m_page;
	unsigned long m_objidx, m_offset;
	void *vaddr;

M
Minchan Kim 已提交
1346
	handle |= OBJ_ALLOCATED_TAG;
1347 1348 1349 1350 1351 1352 1353
	obj = (unsigned long)first_page->freelist;
	obj_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
	first_page->freelist = link->next;
1354 1355 1356 1357 1358 1359
	if (!class->huge)
		/* record handle in the header of allocated chunk */
		link->handle = handle;
	else
		/* record handle in first_page->private */
		set_page_private(first_page, handle);
1360 1361 1362 1363 1364 1365 1366 1367
	kunmap_atomic(vaddr);
	first_page->inuse++;
	zs_stat_inc(class, OBJ_USED, 1);

	return obj;
}


1368 1369 1370 1371 1372
/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1373
 * On success, handle to the allocated object is returned,
1374
 * otherwise 0.
1375 1376
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1377
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1378
{
1379
	unsigned long handle, obj;
1380
	struct size_class *class;
1381
	struct page *first_page;
1382

1383
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1384 1385 1386 1387
		return 0;

	handle = alloc_handle(pool);
	if (!handle)
1388
		return 0;
1389

1390 1391
	/* extra space in chunk to keep the handle */
	size += ZS_HANDLE_SIZE;
1392
	class = pool->size_class[get_size_class_index(size)];
1393 1394 1395 1396 1397 1398 1399

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
1400 1401
		if (unlikely(!first_page)) {
			free_handle(pool, handle);
1402
			return 0;
1403
		}
1404 1405

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1406 1407
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1408

1409
		spin_lock(&class->lock);
1410 1411
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1412 1413
	}

1414
	obj = obj_malloc(first_page, class, handle);
1415
	/* Now move the zspage to another fullness group, if required */
1416
	fix_fullness_group(class, first_page);
1417
	record_obj(handle, obj);
1418 1419
	spin_unlock(&class->lock);

1420
	return handle;
1421 1422 1423
}
EXPORT_SYMBOL_GPL(zs_malloc);

1424 1425
static void obj_free(struct zs_pool *pool, struct size_class *class,
			unsigned long obj)
1426 1427 1428
{
	struct link_free *link;
	struct page *first_page, *f_page;
1429
	unsigned long f_objidx, f_offset;
1430
	void *vaddr;
1431 1432 1433
	int class_idx;
	enum fullness_group fullness;

1434
	BUG_ON(!obj);
1435

M
Minchan Kim 已提交
1436
	obj &= ~OBJ_ALLOCATED_TAG;
1437
	obj_to_location(obj, &f_page, &f_objidx);
1438 1439 1440 1441 1442
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

1443
	vaddr = kmap_atomic(f_page);
1444 1445

	/* Insert this object in containing zspage's freelist */
1446
	link = (struct link_free *)(vaddr + f_offset);
1447
	link->next = first_page->freelist;
1448 1449
	if (class->huge)
		set_page_private(first_page, 0);
1450
	kunmap_atomic(vaddr);
1451
	first_page->freelist = (void *)obj;
1452
	first_page->inuse--;
1453
	zs_stat_dec(class, OBJ_USED, 1);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
}

void zs_free(struct zs_pool *pool, unsigned long handle)
{
	struct page *first_page, *f_page;
	unsigned long obj, f_objidx;
	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!handle))
		return;

M
Minchan Kim 已提交
1467
	pin_tag(handle);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	obj = handle_to_obj(handle);
	obj_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = pool->size_class[class_idx];

	spin_lock(&class->lock);
	obj_free(pool, class, obj);
	fullness = fix_fullness_group(class, first_page);
M
Minchan Kim 已提交
1478
	if (fullness == ZS_EMPTY) {
1479 1480
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
M
Minchan Kim 已提交
1481 1482 1483 1484
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
		free_zspage(first_page);
	}
1485
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1486
	unpin_tag(handle);
1487

M
Minchan Kim 已提交
1488 1489 1490 1491
	free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);

1492
static void zs_object_copy(unsigned long dst, unsigned long src,
M
Minchan Kim 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
				struct size_class *class)
{
	struct page *s_page, *d_page;
	unsigned long s_objidx, d_objidx;
	unsigned long s_off, d_off;
	void *s_addr, *d_addr;
	int s_size, d_size, size;
	int written = 0;

	s_size = d_size = class->size;

	obj_to_location(src, &s_page, &s_objidx);
	obj_to_location(dst, &d_page, &d_objidx);

	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);

	if (s_off + class->size > PAGE_SIZE)
		s_size = PAGE_SIZE - s_off;

	if (d_off + class->size > PAGE_SIZE)
		d_size = PAGE_SIZE - d_off;

	s_addr = kmap_atomic(s_page);
	d_addr = kmap_atomic(d_page);

	while (1) {
		size = min(s_size, d_size);
		memcpy(d_addr + d_off, s_addr + s_off, size);
		written += size;

		if (written == class->size)
			break;

1527 1528 1529 1530 1531 1532
		s_off += size;
		s_size -= size;
		d_off += size;
		d_size -= size;

		if (s_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
			kunmap_atomic(d_addr);
			kunmap_atomic(s_addr);
			s_page = get_next_page(s_page);
			BUG_ON(!s_page);
			s_addr = kmap_atomic(s_page);
			d_addr = kmap_atomic(d_page);
			s_size = class->size - written;
			s_off = 0;
		}

1543
		if (d_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			kunmap_atomic(d_addr);
			d_page = get_next_page(d_page);
			BUG_ON(!d_page);
			d_addr = kmap_atomic(d_page);
			d_size = class->size - written;
			d_off = 0;
		}
	}

	kunmap_atomic(d_addr);
	kunmap_atomic(s_addr);
}

/*
 * Find alloced object in zspage from index object and
 * return handle.
 */
static unsigned long find_alloced_obj(struct page *page, int index,
					struct size_class *class)
{
	unsigned long head;
	int offset = 0;
	unsigned long handle = 0;
	void *addr = kmap_atomic(page);

	if (!is_first_page(page))
		offset = page->index;
	offset += class->size * index;

	while (offset < PAGE_SIZE) {
1574
		head = obj_to_head(class, page, addr + offset);
M
Minchan Kim 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		if (head & OBJ_ALLOCATED_TAG) {
			handle = head & ~OBJ_ALLOCATED_TAG;
			if (trypin_tag(handle))
				break;
			handle = 0;
		}

		offset += class->size;
		index++;
	}

	kunmap_atomic(addr);
	return handle;
}

struct zs_compact_control {
	/* Source page for migration which could be a subpage of zspage. */
	struct page *s_page;
	/* Destination page for migration which should be a first page
	 * of zspage. */
	struct page *d_page;
	 /* Starting object index within @s_page which used for live object
	  * in the subpage. */
	int index;
};

static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
				struct zs_compact_control *cc)
{
	unsigned long used_obj, free_obj;
	unsigned long handle;
	struct page *s_page = cc->s_page;
	struct page *d_page = cc->d_page;
	unsigned long index = cc->index;
	int ret = 0;

	while (1) {
		handle = find_alloced_obj(s_page, index, class);
		if (!handle) {
			s_page = get_next_page(s_page);
			if (!s_page)
				break;
			index = 0;
			continue;
		}

		/* Stop if there is no more space */
		if (zspage_full(d_page)) {
			unpin_tag(handle);
			ret = -ENOMEM;
			break;
		}

		used_obj = handle_to_obj(handle);
		free_obj = obj_malloc(d_page, class, handle);
1630
		zs_object_copy(free_obj, used_obj, class);
M
Minchan Kim 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		index++;
		record_obj(handle, free_obj);
		unpin_tag(handle);
		obj_free(pool, class, used_obj);
	}

	/* Remember last position in this iteration */
	cc->s_page = s_page;
	cc->index = index;

	return ret;
}

1644
static struct page *isolate_target_page(struct size_class *class)
M
Minchan Kim 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page) {
			remove_zspage(page, class, i);
			break;
		}
	}

	return page;
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/*
 * putback_zspage - add @first_page into right class's fullness list
 * @pool: target pool
 * @class: destination class
 * @first_page: target page
 *
 * Return @fist_page's fullness_group
 */
static enum fullness_group putback_zspage(struct zs_pool *pool,
			struct size_class *class,
			struct page *first_page)
M
Minchan Kim 已提交
1671 1672 1673 1674 1675
{
	enum fullness_group fullness;

	BUG_ON(!is_first_page(first_page));

1676
	fullness = get_fullness_group(first_page);
M
Minchan Kim 已提交
1677
	insert_zspage(first_page, class, fullness);
1678 1679
	set_zspage_mapping(first_page, class->index, fullness);

1680
	if (fullness == ZS_EMPTY) {
M
Minchan Kim 已提交
1681 1682
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
			class->size, class->pages_per_zspage));
1683 1684
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
M
Minchan Kim 已提交
1685

1686
		free_zspage(first_page);
1687
	}
1688 1689

	return fullness;
1690
}
M
Minchan Kim 已提交
1691 1692 1693

static struct page *isolate_source_page(struct size_class *class)
{
1694 1695 1696 1697 1698 1699 1700
	int i;
	struct page *page = NULL;

	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
		page = class->fullness_list[i];
		if (!page)
			continue;
M
Minchan Kim 已提交
1701

1702 1703 1704
		remove_zspage(page, class, i);
		break;
	}
M
Minchan Kim 已提交
1705 1706 1707 1708

	return page;
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
/*
 *
 * Based on the number of unused allocated objects calculate
 * and return the number of pages that we can free.
 */
static unsigned long zs_can_compact(struct size_class *class)
{
	unsigned long obj_wasted;

	obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
		zs_stat_get(class, OBJ_USED);

	obj_wasted /= get_maxobj_per_zspage(class->size,
			class->pages_per_zspage);

1724
	return obj_wasted * class->pages_per_zspage;
1725 1726
}

1727
static void __zs_compact(struct zs_pool *pool, struct size_class *class)
M
Minchan Kim 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
{
	struct zs_compact_control cc;
	struct page *src_page;
	struct page *dst_page = NULL;

	spin_lock(&class->lock);
	while ((src_page = isolate_source_page(class))) {

		BUG_ON(!is_first_page(src_page));

1738 1739 1740
		if (!zs_can_compact(class))
			break;

M
Minchan Kim 已提交
1741 1742 1743
		cc.index = 0;
		cc.s_page = src_page;

1744
		while ((dst_page = isolate_target_page(class))) {
M
Minchan Kim 已提交
1745 1746
			cc.d_page = dst_page;
			/*
1747 1748
			 * If there is no more space in dst_page, resched
			 * and see if anyone had allocated another zspage.
M
Minchan Kim 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
			 */
			if (!migrate_zspage(pool, class, &cc))
				break;

			putback_zspage(pool, class, dst_page);
		}

		/* Stop if we couldn't find slot */
		if (dst_page == NULL)
			break;

		putback_zspage(pool, class, dst_page);
1761
		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1762
			pool->stats.pages_compacted += class->pages_per_zspage;
M
Minchan Kim 已提交
1763 1764 1765 1766 1767 1768 1769 1770
		spin_unlock(&class->lock);
		cond_resched();
		spin_lock(&class->lock);
	}

	if (src_page)
		putback_zspage(pool, class, src_page);

1771
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
}

unsigned long zs_compact(struct zs_pool *pool)
{
	int i;
	struct size_class *class;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;
1785
		__zs_compact(pool, class);
M
Minchan Kim 已提交
1786 1787
	}

1788
	return pool->stats.pages_compacted;
M
Minchan Kim 已提交
1789 1790
}
EXPORT_SYMBOL_GPL(zs_compact);
1791

1792 1793 1794 1795 1796 1797
void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
{
	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
}
EXPORT_SYMBOL_GPL(zs_pool_stats);

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
		struct shrink_control *sc)
{
	unsigned long pages_freed;
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
			shrinker);

	pages_freed = pool->stats.pages_compacted;
	/*
	 * Compact classes and calculate compaction delta.
	 * Can run concurrently with a manually triggered
	 * (by user) compaction.
	 */
	pages_freed = zs_compact(pool) - pages_freed;

	return pages_freed ? pages_freed : SHRINK_STOP;
}

static unsigned long zs_shrinker_count(struct shrinker *shrinker,
		struct shrink_control *sc)
{
	int i;
	struct size_class *class;
	unsigned long pages_to_free = 0;
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
			shrinker);

	if (!pool->shrinker_enabled)
		return 0;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;

		pages_to_free += zs_can_compact(class);
	}

	return pages_to_free;
}

static void zs_unregister_shrinker(struct zs_pool *pool)
{
	if (pool->shrinker_enabled) {
		unregister_shrinker(&pool->shrinker);
		pool->shrinker_enabled = false;
	}
}

static int zs_register_shrinker(struct zs_pool *pool)
{
	pool->shrinker.scan_objects = zs_shrinker_scan;
	pool->shrinker.count_objects = zs_shrinker_count;
	pool->shrinker.batch = 0;
	pool->shrinker.seeks = DEFAULT_SEEKS;

	return register_shrinker(&pool->shrinker);
}

1859
/**
1860 1861
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1862
 *
1863 1864
 * This function must be called before anything when using
 * the zsmalloc allocator.
1865
 *
1866 1867
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1868
 */
1869
struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1870
{
1871 1872 1873
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1874

1875 1876 1877
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1878

1879 1880 1881 1882 1883 1884
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
1885

1886 1887 1888 1889 1890 1891 1892
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name)
		goto err;

	if (create_handle_cache(pool))
		goto err;

1893
	/*
1894 1895
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1896
	 */
1897 1898 1899 1900
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1901

1902 1903 1904 1905
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
1930 1931 1932
		if (pages_per_zspage == 1 &&
			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
			class->huge = true;
1933 1934 1935 1936
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1937 1938
	}

1939
	pool->flags = flags;
1940

1941 1942 1943
	if (zs_pool_stat_create(name, pool))
		goto err;

1944 1945 1946 1947 1948 1949
	/*
	 * Not critical, we still can use the pool
	 * and user can trigger compaction manually.
	 */
	if (zs_register_shrinker(pool) == 0)
		pool->shrinker_enabled = true;
1950 1951 1952 1953 1954
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1955
}
1956
EXPORT_SYMBOL_GPL(zs_create_pool);
1957

1958
void zs_destroy_pool(struct zs_pool *pool)
1959
{
1960
	int i;
1961

1962
	zs_unregister_shrinker(pool);
1963 1964
	zs_pool_stat_destroy(pool);

1965 1966 1967
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1968

1969 1970
		if (!class)
			continue;
1971

1972 1973
		if (class->index != i)
			continue;
1974

1975 1976 1977 1978 1979 1980 1981 1982
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
1983

1984
	destroy_handle_cache(pool);
1985
	kfree(pool->size_class);
1986
	kfree(pool->name);
1987 1988 1989
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
1990

1991 1992 1993 1994
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

1995 1996
	if (ret)
		goto notifier_fail;
1997 1998 1999 2000 2001 2002

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
2003 2004 2005 2006 2007 2008

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
2009
	return 0;
2010 2011 2012 2013 2014 2015 2016 2017 2018

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
2019 2020
}

2021
static void __exit zs_exit(void)
2022
{
2023 2024 2025 2026
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
2027 2028

	zs_stat_exit();
2029
}
2030 2031 2032 2033 2034 2035

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");