zsmalloc.c 45.5 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
31 32
 *		If the page is first_page for huge object, it stores handle.
 *		Look at size_class->huge.
N
Nitin Gupta 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

48 49
#include <linux/module.h>
#include <linux/kernel.h>
M
Minchan Kim 已提交
50
#include <linux/sched.h>
51 52 53 54 55 56 57 58 59
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
60
#include <linux/vmalloc.h>
61
#include <linux/hardirq.h>
62 63
#include <linux/spinlock.h>
#include <linux/types.h>
64
#include <linux/debugfs.h>
M
Minchan Kim 已提交
65
#include <linux/zsmalloc.h>
66
#include <linux/zpool.h>
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

83 84
#define ZS_HANDLE_SIZE (sizeof(unsigned long))

85 86
/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
87
 * as single (unsigned long) handle value.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
M
Minchan Kim 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * Memory for allocating for handle keeps object position by
 * encoding <page, obj_idx> and the encoded value has a room
 * in least bit(ie, look at obj_to_location).
 * We use the bit to synchronize between object access by
 * user and migration.
 */
#define HANDLE_PIN_BIT	0

/*
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 * to identify the object was allocated or not.
 * It's okay to add the status bit in the least bit because
 * header keeps handle which is 4byte-aligned address so we
 * have room for two bit at least.
 */
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 129 130 131 132 133
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134
/* each chunk includes extra space to keep handle */
135
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 137

/*
138
 * On systems with 4K page size, this gives 255 size classes! There is a
139 140 141 142 143 144 145 146 147 148 149
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
150
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 152 153 154 155 156 157 158 159 160 161 162 163

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

164 165 166
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
M
Minchan Kim 已提交
167 168
	CLASS_ALMOST_FULL,
	CLASS_ALMOST_EMPTY,
169 170 171 172 173 174 175
	NR_ZS_STAT_TYPE,
};

struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

176 177
#ifdef CONFIG_ZSMALLOC_STAT
static struct dentry *zs_stat_root;
178 179
#endif

180 181 182 183 184
/*
 * number of size_classes
 */
static int zs_size_classes;

185 186 187 188 189
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
190
 * f = fullness_threshold_frac
191 192 193 194 195 196 197 198 199 200 201
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
202 203
	spinlock_t lock;
	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
204 205 206 207 208 209 210 211 212
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;
213
	struct zs_size_stat stats;
214

215 216
	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
	bool huge;
217 218 219 220 221 222 223 224 225
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
226 227 228 229 230 231 232 233 234 235 236
	union {
		/*
		 * Position of next free chunk (encodes <PFN, obj_idx>)
		 * It's valid for non-allocated object
		 */
		void *next;
		/*
		 * Handle of allocated object.
		 */
		unsigned long handle;
	};
237 238 239
};

struct zs_pool {
240 241
	char *name;

242
	struct size_class **size_class;
243
	struct kmem_cache *handle_cachep;
244 245

	gfp_t flags;	/* allocation flags used when growing pool */
246
	atomic_long_t pages_allocated;
247

248
	struct zs_pool_stats stats;
249 250 251
#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
252
};
253 254 255 256 257 258 259 260 261 262

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

263
struct mapping_area {
264
#ifdef CONFIG_PGTABLE_MAPPING
265 266 267 268 269 270
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
271
	bool huge;
272 273
};

274 275 276 277 278 279 280 281 282
static int create_handle_cache(struct zs_pool *pool)
{
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
					0, 0, NULL);
	return pool->handle_cachep ? 0 : 1;
}

static void destroy_handle_cache(struct zs_pool *pool)
{
283 284
	if (pool->handle_cachep)
		kmem_cache_destroy(pool->handle_cachep);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
}

static unsigned long alloc_handle(struct zs_pool *pool)
{
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
		pool->flags & ~__GFP_HIGHMEM);
}

static void free_handle(struct zs_pool *pool, unsigned long handle)
{
	kmem_cache_free(pool->handle_cachep, (void *)handle);
}

static void record_obj(unsigned long handle, unsigned long obj)
{
	*(unsigned long *)handle = obj;
}

303 304 305 306
/* zpool driver */

#ifdef CONFIG_ZPOOL

D
Dan Streetman 已提交
307 308
static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
			     struct zpool *zpool)
309
{
310
	return zs_create_pool(name, gfp);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
362
	return zs_get_total_pages(pool) << PAGE_SHIFT;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

378
MODULE_ALIAS("zpool-zsmalloc");
379 380
#endif /* CONFIG_ZPOOL */

M
Minchan Kim 已提交
381 382 383 384 385
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

386 387 388 389 390
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
391
	return PagePrivate(page);
392 393 394 395
}

static int is_last_page(struct page *page)
{
396
	return PagePrivate2(page);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
421 422 423 424 425 426 427
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
428 429 430 431 432 433 434 435
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

436
	return min(zs_size_classes - 1, idx);
437 438
}

M
Minchan Kim 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] += cnt;
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] -= cnt;
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return class->stats.objs[type];
}

457 458
#ifdef CONFIG_ZSMALLOC_STAT

M
Minchan Kim 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long class_almost_full, class_almost_empty;
	unsigned long obj_allocated, obj_used, pages_used;
	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;

	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
			"class", "size", "almost_full", "almost_empty",
			"obj_allocated", "obj_used", "pages_used",
			"pages_per_zspage");

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
			i, class->size, class_almost_full, class_almost_empty,
			obj_allocated, obj_used, pages_used,
			class->pages_per_zspage);

		total_class_almost_full += class_almost_full;
		total_class_almost_empty += class_almost_empty;
		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
	}

	seq_puts(s, "\n");
	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
			"Total", "", total_class_almost_full,
			total_class_almost_empty, total_objs,
			total_used_objs, total_pages);

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	struct dentry *entry;

	if (!zs_stat_root)
		return -ENODEV;

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
		return -ENOMEM;
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "classes");
		return -ENOMEM;
	}

	return 0;
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */
static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	return 0;
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}
#endif


N
Nitin Cupta 已提交
594 595 596 597 598 599 600
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
601 602 603 604 605 606 607 608 609 610 611 612 613
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
M
Minchan Kim 已提交
614
	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
615 616 617 618 619 620 621
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
622 623 624 625 626 627
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
M
Minchan Kim 已提交
643 644
	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
645 646
}

N
Nitin Cupta 已提交
647 648 649 650
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
M
Minchan Kim 已提交
670 671
	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
672 673
}

N
Nitin Cupta 已提交
674 675 676 677 678 679 680 681 682
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
683
static enum fullness_group fix_fullness_group(struct size_class *class,
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
						struct page *page)
{
	int class_idx;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
709 710
 *     wastage = Zp % class_size
 *     usage = Zp - wastage
711 712 713 714 715 716
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
717
static int get_pages_per_zspage(int class_size)
718 719 720 721 722
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

723
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
760
		next = (struct page *)page_private(page);
761 762 763 764 765 766
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

767 768
/*
 * Encode <page, obj_idx> as a single handle value.
M
Minchan Kim 已提交
769
 * We use the least bit of handle for tagging.
770
 */
M
Minchan Kim 已提交
771
static void *location_to_obj(struct page *page, unsigned long obj_idx)
772
{
M
Minchan Kim 已提交
773
	unsigned long obj;
774 775 776 777 778 779

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

M
Minchan Kim 已提交
780 781 782
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
	obj |= ((obj_idx) & OBJ_INDEX_MASK);
	obj <<= OBJ_TAG_BITS;
783

M
Minchan Kim 已提交
784
	return (void *)obj;
785 786
}

787 788 789
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
M
Minchan Kim 已提交
790
 * location_to_obj().
791
 */
M
Minchan Kim 已提交
792
static void obj_to_location(unsigned long obj, struct page **page,
793 794
				unsigned long *obj_idx)
{
M
Minchan Kim 已提交
795 796 797
	obj >>= OBJ_TAG_BITS;
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
	*obj_idx = (obj & OBJ_INDEX_MASK);
798 799
}

800 801 802 803 804
static unsigned long handle_to_obj(unsigned long handle)
{
	return *(unsigned long *)handle;
}

805 806
static unsigned long obj_to_head(struct size_class *class, struct page *page,
			void *obj)
M
Minchan Kim 已提交
807
{
808 809 810 811 812
	if (class->huge) {
		VM_BUG_ON(!is_first_page(page));
		return *(unsigned long *)page_private(page);
	} else
		return *(unsigned long *)obj;
M
Minchan Kim 已提交
813 814
}

815 816 817 818 819 820 821 822 823 824 825
static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

M
Minchan Kim 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static inline int trypin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
}

static void pin_tag(unsigned long handle)
{
	while (!trypin_tag(handle));
}

static void unpin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
}

N
Nitin Gupta 已提交
845 846 847 848 849 850 851
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
852
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
853 854
}

855 856
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
857
	struct page *nextp, *tmp, *head_extra;
858 859 860 861

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
862
	head_extra = (struct page *)page_private(first_page);
863

N
Nitin Gupta 已提交
864
	reset_page(first_page);
865 866 867
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
868
	if (!head_extra)
869 870
		return;

N
Nitin Gupta 已提交
871
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
872
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
873
		reset_page(nextp);
874 875
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
876 877
	reset_page(head_extra);
	__free_page(head_extra);
878 879 880 881 882 883 884 885 886 887 888 889
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
890
		unsigned int i = 1;
891
		void *vaddr;
892 893 894 895 896 897 898 899 900 901

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

902 903
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
904 905

		while ((off += class->size) < PAGE_SIZE) {
M
Minchan Kim 已提交
906
			link->next = location_to_obj(page, i++);
907
			link += class->size / sizeof(*link);
908 909 910 911 912 913 914 915
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
M
Minchan Kim 已提交
916
		link->next = location_to_obj(next_page, 0);
917
		kunmap_atomic(vaddr);
918
		page = next_page;
919
		off %= PAGE_SIZE;
920 921 922 923 924 925 926 927 928
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
929
	struct page *first_page = NULL, *uninitialized_var(prev_page);
930 931 932 933 934 935 936 937 938 939 940 941 942

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
943
	for (i = 0; i < class->pages_per_zspage; i++) {
944
		struct page *page;
945 946 947 948 949 950 951

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
952
			SetPagePrivate(page);
953 954 955 956 957
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
958
			set_page_private(first_page, (unsigned long)page);
959 960 961 962
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
963
		if (i == class->pages_per_zspage - 1)	/* last page */
964
			SetPagePrivate2(page);
965 966 967 968 969
		prev_page = page;
	}

	init_zspage(first_page, class);

M
Minchan Kim 已提交
970
	first_page->freelist = location_to_obj(first_page, 0);
971
	/* Maximum number of objects we can store in this zspage */
972
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

999
#ifdef CONFIG_PGTABLE_MAPPING
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
1024
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1025 1026 1027 1028 1029 1030 1031 1032 1033
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

1034
	unmap_kernel_range(addr, PAGE_SIZE * 2);
1035 1036
}

1037
#else /* CONFIG_PGTABLE_MAPPING */
1038 1039 1040 1041 1042 1043 1044 1045 1046

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
1047
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1048 1049 1050 1051 1052 1053 1054
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
1055
	kfree(area->vm_buf);
1056 1057 1058 1059 1060
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1061 1062 1063
{
	int sizes[2];
	void *addr;
1064
	char *buf = area->vm_buf;
1065

1066 1067 1068 1069 1070 1071
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
1083 1084
out:
	return area->vm_buf;
1085 1086
}

1087 1088
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1089 1090 1091
{
	int sizes[2];
	void *addr;
1092
	char *buf;
1093

1094 1095 1096
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
1097

1098 1099 1100 1101 1102 1103
	buf = area->vm_buf;
	if (!area->huge) {
		buf = buf + ZS_HANDLE_SIZE;
		size -= ZS_HANDLE_SIZE;
		off += ZS_HANDLE_SIZE;
	}
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
1115 1116 1117 1118

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
1119
}
1120

1121
#endif /* CONFIG_PGTABLE_MAPPING */
1122

1123 1124 1125
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
1126
	int ret, cpu = (long)pcpu;
1127 1128 1129 1130 1131
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
1132 1133 1134
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
1135 1136 1137 1138
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
1139
		__zs_cpu_down(area);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

1150
static int zs_register_cpu_notifier(void)
1151
{
1152
	int cpu, uninitialized_var(ret);
1153

1154 1155 1156
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
1157 1158
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1159 1160
		if (notifier_to_errno(ret))
			break;
1161
	}
1162 1163

	cpu_notifier_register_done();
1164 1165
	return notifier_to_errno(ret);
}
1166

1167
static void zs_unregister_cpu_notifier(void)
1168
{
1169
	int cpu;
1170

1171
	cpu_notifier_register_begin();
1172

1173 1174 1175
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
1176

1177
	cpu_notifier_register_done();
1178 1179
}

1180
static void init_zs_size_classes(void)
1181
{
1182
	int nr;
1183

1184 1185 1186
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
1187

1188
	zs_size_classes = nr;
1189 1190
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

M
Minchan Kim 已提交
1203 1204 1205 1206 1207 1208 1209
static bool zspage_full(struct page *page)
{
	BUG_ON(!is_first_page(page));

	return page->inuse == page->objects;
}

1210 1211 1212 1213 1214 1215
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1216
/**
1217 1218 1219
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1220
 *
1221 1222 1223
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1224
 *
1225 1226 1227 1228
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1229
 */
1230 1231
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1232
{
1233
	struct page *page;
1234
	unsigned long obj, obj_idx, off;
1235

1236 1237 1238 1239 1240
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1241
	void *ret;
1242

1243
	BUG_ON(!handle);
1244

1245
	/*
1246 1247 1248
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1249
	 */
1250
	BUG_ON(in_interrupt());
1251

M
Minchan Kim 已提交
1252 1253 1254
	/* From now on, migration cannot move the object */
	pin_tag(handle);

1255 1256
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1257 1258 1259
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1260

1261 1262 1263 1264 1265
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1266 1267
		ret = area->vm_addr + off;
		goto out;
1268 1269
	}

1270 1271 1272 1273
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1274

1275 1276
	ret = __zs_map_object(area, pages, off, class->size);
out:
1277 1278 1279 1280
	if (!class->huge)
		ret += ZS_HANDLE_SIZE;

	return ret;
1281
}
1282
EXPORT_SYMBOL_GPL(zs_map_object);
1283

1284
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1285
{
1286
	struct page *page;
1287
	unsigned long obj, obj_idx, off;
1288

1289 1290 1291 1292
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1293

1294
	BUG_ON(!handle);
1295

1296 1297
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1298 1299 1300
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1301

1302 1303 1304 1305 1306
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1307

1308 1309 1310 1311 1312 1313 1314
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
M
Minchan Kim 已提交
1315
	unpin_tag(handle);
1316
}
1317
EXPORT_SYMBOL_GPL(zs_unmap_object);
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
static unsigned long obj_malloc(struct page *first_page,
		struct size_class *class, unsigned long handle)
{
	unsigned long obj;
	struct link_free *link;

	struct page *m_page;
	unsigned long m_objidx, m_offset;
	void *vaddr;

M
Minchan Kim 已提交
1329
	handle |= OBJ_ALLOCATED_TAG;
1330 1331 1332 1333 1334 1335 1336
	obj = (unsigned long)first_page->freelist;
	obj_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
	first_page->freelist = link->next;
1337 1338 1339 1340 1341 1342
	if (!class->huge)
		/* record handle in the header of allocated chunk */
		link->handle = handle;
	else
		/* record handle in first_page->private */
		set_page_private(first_page, handle);
1343 1344 1345 1346 1347 1348 1349 1350
	kunmap_atomic(vaddr);
	first_page->inuse++;
	zs_stat_inc(class, OBJ_USED, 1);

	return obj;
}


1351 1352 1353 1354 1355
/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1356
 * On success, handle to the allocated object is returned,
1357
 * otherwise 0.
1358 1359
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1360
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1361
{
1362
	unsigned long handle, obj;
1363
	struct size_class *class;
1364
	struct page *first_page;
1365

1366
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1367 1368 1369 1370
		return 0;

	handle = alloc_handle(pool);
	if (!handle)
1371
		return 0;
1372

1373 1374
	/* extra space in chunk to keep the handle */
	size += ZS_HANDLE_SIZE;
1375
	class = pool->size_class[get_size_class_index(size)];
1376 1377 1378 1379 1380 1381 1382

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
1383 1384
		if (unlikely(!first_page)) {
			free_handle(pool, handle);
1385
			return 0;
1386
		}
1387 1388

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1389 1390
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1391

1392
		spin_lock(&class->lock);
1393 1394
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1395 1396
	}

1397
	obj = obj_malloc(first_page, class, handle);
1398
	/* Now move the zspage to another fullness group, if required */
1399
	fix_fullness_group(class, first_page);
1400
	record_obj(handle, obj);
1401 1402
	spin_unlock(&class->lock);

1403
	return handle;
1404 1405 1406
}
EXPORT_SYMBOL_GPL(zs_malloc);

1407 1408
static void obj_free(struct zs_pool *pool, struct size_class *class,
			unsigned long obj)
1409 1410 1411
{
	struct link_free *link;
	struct page *first_page, *f_page;
1412
	unsigned long f_objidx, f_offset;
1413
	void *vaddr;
1414 1415 1416
	int class_idx;
	enum fullness_group fullness;

1417
	BUG_ON(!obj);
1418

M
Minchan Kim 已提交
1419
	obj &= ~OBJ_ALLOCATED_TAG;
1420
	obj_to_location(obj, &f_page, &f_objidx);
1421 1422 1423 1424 1425
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

1426
	vaddr = kmap_atomic(f_page);
1427 1428

	/* Insert this object in containing zspage's freelist */
1429
	link = (struct link_free *)(vaddr + f_offset);
1430
	link->next = first_page->freelist;
1431 1432
	if (class->huge)
		set_page_private(first_page, 0);
1433
	kunmap_atomic(vaddr);
1434
	first_page->freelist = (void *)obj;
1435
	first_page->inuse--;
1436
	zs_stat_dec(class, OBJ_USED, 1);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
}

void zs_free(struct zs_pool *pool, unsigned long handle)
{
	struct page *first_page, *f_page;
	unsigned long obj, f_objidx;
	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!handle))
		return;

M
Minchan Kim 已提交
1450
	pin_tag(handle);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	obj = handle_to_obj(handle);
	obj_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = pool->size_class[class_idx];

	spin_lock(&class->lock);
	obj_free(pool, class, obj);
	fullness = fix_fullness_group(class, first_page);
M
Minchan Kim 已提交
1461
	if (fullness == ZS_EMPTY) {
1462 1463
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
M
Minchan Kim 已提交
1464 1465 1466 1467
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
		free_zspage(first_page);
	}
1468
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1469
	unpin_tag(handle);
1470

M
Minchan Kim 已提交
1471 1472 1473 1474
	free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);

1475
static void zs_object_copy(unsigned long dst, unsigned long src,
M
Minchan Kim 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
				struct size_class *class)
{
	struct page *s_page, *d_page;
	unsigned long s_objidx, d_objidx;
	unsigned long s_off, d_off;
	void *s_addr, *d_addr;
	int s_size, d_size, size;
	int written = 0;

	s_size = d_size = class->size;

	obj_to_location(src, &s_page, &s_objidx);
	obj_to_location(dst, &d_page, &d_objidx);

	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);

	if (s_off + class->size > PAGE_SIZE)
		s_size = PAGE_SIZE - s_off;

	if (d_off + class->size > PAGE_SIZE)
		d_size = PAGE_SIZE - d_off;

	s_addr = kmap_atomic(s_page);
	d_addr = kmap_atomic(d_page);

	while (1) {
		size = min(s_size, d_size);
		memcpy(d_addr + d_off, s_addr + s_off, size);
		written += size;

		if (written == class->size)
			break;

1510 1511 1512 1513 1514 1515
		s_off += size;
		s_size -= size;
		d_off += size;
		d_size -= size;

		if (s_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
			kunmap_atomic(d_addr);
			kunmap_atomic(s_addr);
			s_page = get_next_page(s_page);
			BUG_ON(!s_page);
			s_addr = kmap_atomic(s_page);
			d_addr = kmap_atomic(d_page);
			s_size = class->size - written;
			s_off = 0;
		}

1526
		if (d_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
			kunmap_atomic(d_addr);
			d_page = get_next_page(d_page);
			BUG_ON(!d_page);
			d_addr = kmap_atomic(d_page);
			d_size = class->size - written;
			d_off = 0;
		}
	}

	kunmap_atomic(d_addr);
	kunmap_atomic(s_addr);
}

/*
 * Find alloced object in zspage from index object and
 * return handle.
 */
static unsigned long find_alloced_obj(struct page *page, int index,
					struct size_class *class)
{
	unsigned long head;
	int offset = 0;
	unsigned long handle = 0;
	void *addr = kmap_atomic(page);

	if (!is_first_page(page))
		offset = page->index;
	offset += class->size * index;

	while (offset < PAGE_SIZE) {
1557
		head = obj_to_head(class, page, addr + offset);
M
Minchan Kim 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		if (head & OBJ_ALLOCATED_TAG) {
			handle = head & ~OBJ_ALLOCATED_TAG;
			if (trypin_tag(handle))
				break;
			handle = 0;
		}

		offset += class->size;
		index++;
	}

	kunmap_atomic(addr);
	return handle;
}

struct zs_compact_control {
	/* Source page for migration which could be a subpage of zspage. */
	struct page *s_page;
	/* Destination page for migration which should be a first page
	 * of zspage. */
	struct page *d_page;
	 /* Starting object index within @s_page which used for live object
	  * in the subpage. */
	int index;
1582
	/* How many of objects were migrated */
M
Minchan Kim 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	int nr_migrated;
};

static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
				struct zs_compact_control *cc)
{
	unsigned long used_obj, free_obj;
	unsigned long handle;
	struct page *s_page = cc->s_page;
	struct page *d_page = cc->d_page;
	unsigned long index = cc->index;
	int ret = 0;

	while (1) {
		handle = find_alloced_obj(s_page, index, class);
		if (!handle) {
			s_page = get_next_page(s_page);
			if (!s_page)
				break;
			index = 0;
			continue;
		}

		/* Stop if there is no more space */
		if (zspage_full(d_page)) {
			unpin_tag(handle);
			ret = -ENOMEM;
			break;
		}

		used_obj = handle_to_obj(handle);
		free_obj = obj_malloc(d_page, class, handle);
1615
		zs_object_copy(free_obj, used_obj, class);
M
Minchan Kim 已提交
1616 1617 1618 1619
		index++;
		record_obj(handle, free_obj);
		unpin_tag(handle);
		obj_free(pool, class, used_obj);
1620
		cc->nr_migrated++;
M
Minchan Kim 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629
	}

	/* Remember last position in this iteration */
	cc->s_page = s_page;
	cc->index = index;

	return ret;
}

1630
static struct page *isolate_target_page(struct size_class *class)
M
Minchan Kim 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page) {
			remove_zspage(page, class, i);
			break;
		}
	}

	return page;
}

static void putback_zspage(struct zs_pool *pool, struct size_class *class,
				struct page *first_page)
{
	enum fullness_group fullness;

	BUG_ON(!is_first_page(first_page));

1653
	fullness = get_fullness_group(first_page);
M
Minchan Kim 已提交
1654
	insert_zspage(first_page, class, fullness);
1655 1656
	set_zspage_mapping(first_page, class->index, fullness);

1657
	if (fullness == ZS_EMPTY) {
M
Minchan Kim 已提交
1658 1659
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
			class->size, class->pages_per_zspage));
1660 1661
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
M
Minchan Kim 已提交
1662

1663
		free_zspage(first_page);
1664
	}
1665
}
M
Minchan Kim 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

static struct page *isolate_source_page(struct size_class *class)
{
	struct page *page;

	page = class->fullness_list[ZS_ALMOST_EMPTY];
	if (page)
		remove_zspage(page, class, ZS_ALMOST_EMPTY);

	return page;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 *
 * Based on the number of unused allocated objects calculate
 * and return the number of pages that we can free.
 *
 * Should be called under class->lock.
 */
static unsigned long zs_can_compact(struct size_class *class)
{
	unsigned long obj_wasted;

	if (!zs_stat_get(class, CLASS_ALMOST_EMPTY))
		return 0;

	obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
		zs_stat_get(class, OBJ_USED);

	obj_wasted /= get_maxobj_per_zspage(class->size,
			class->pages_per_zspage);

	return obj_wasted * get_pages_per_zspage(class->size);
}

1701
static void __zs_compact(struct zs_pool *pool, struct size_class *class)
M
Minchan Kim 已提交
1702 1703 1704 1705 1706
{
	struct zs_compact_control cc;
	struct page *src_page;
	struct page *dst_page = NULL;

1707
	cc.nr_migrated = 0;
M
Minchan Kim 已提交
1708 1709 1710 1711 1712
	spin_lock(&class->lock);
	while ((src_page = isolate_source_page(class))) {

		BUG_ON(!is_first_page(src_page));

1713 1714 1715
		if (!zs_can_compact(class))
			break;

M
Minchan Kim 已提交
1716 1717 1718
		cc.index = 0;
		cc.s_page = src_page;

1719
		while ((dst_page = isolate_target_page(class))) {
M
Minchan Kim 已提交
1720 1721
			cc.d_page = dst_page;
			/*
1722 1723
			 * If there is no more space in dst_page, resched
			 * and see if anyone had allocated another zspage.
M
Minchan Kim 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
			 */
			if (!migrate_zspage(pool, class, &cc))
				break;

			putback_zspage(pool, class, dst_page);
		}

		/* Stop if we couldn't find slot */
		if (dst_page == NULL)
			break;

		putback_zspage(pool, class, dst_page);
		putback_zspage(pool, class, src_page);
		spin_unlock(&class->lock);
		cond_resched();
		spin_lock(&class->lock);
	}

	if (src_page)
		putback_zspage(pool, class, src_page);

1745
	pool->stats.num_migrated += cc.nr_migrated;
M
Minchan Kim 已提交
1746

1747
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
}

unsigned long zs_compact(struct zs_pool *pool)
{
	int i;
	struct size_class *class;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;
1761
		__zs_compact(pool, class);
M
Minchan Kim 已提交
1762 1763
	}

1764
	return pool->stats.num_migrated;
M
Minchan Kim 已提交
1765 1766
}
EXPORT_SYMBOL_GPL(zs_compact);
1767

1768 1769 1770 1771 1772 1773
void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
{
	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
}
EXPORT_SYMBOL_GPL(zs_pool_stats);

1774
/**
1775 1776
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1777
 *
1778 1779
 * This function must be called before anything when using
 * the zsmalloc allocator.
1780
 *
1781 1782
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1783
 */
1784
struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1785
{
1786 1787 1788
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1789

1790 1791 1792
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1793

1794 1795 1796 1797 1798 1799
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
1800

1801 1802 1803 1804 1805 1806 1807
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name)
		goto err;

	if (create_handle_cache(pool))
		goto err;

1808
	/*
1809 1810
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1811
	 */
1812 1813 1814 1815
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1816

1817 1818 1819 1820
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
1845 1846 1847
		if (pages_per_zspage == 1 &&
			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
			class->huge = true;
1848 1849 1850 1851
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1852 1853
	}

1854
	pool->flags = flags;
1855

1856 1857 1858
	if (zs_pool_stat_create(name, pool))
		goto err;

1859 1860 1861 1862 1863
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1864
}
1865
EXPORT_SYMBOL_GPL(zs_create_pool);
1866

1867
void zs_destroy_pool(struct zs_pool *pool)
1868
{
1869
	int i;
1870

1871 1872
	zs_pool_stat_destroy(pool);

1873 1874 1875
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1876

1877 1878
		if (!class)
			continue;
1879

1880 1881
		if (class->index != i)
			continue;
1882

1883 1884 1885 1886 1887 1888 1889 1890
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
1891

1892
	destroy_handle_cache(pool);
1893
	kfree(pool->size_class);
1894
	kfree(pool->name);
1895 1896 1897
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
1898

1899 1900 1901 1902
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

1903 1904
	if (ret)
		goto notifier_fail;
1905 1906 1907 1908 1909 1910

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
1911 1912 1913 1914 1915 1916

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
1917
	return 0;
1918 1919 1920 1921 1922 1923 1924 1925 1926

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
1927 1928
}

1929
static void __exit zs_exit(void)
1930
{
1931 1932 1933 1934
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
1935 1936

	zs_stat_exit();
1937
}
1938 1939 1940 1941 1942 1943

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");