slub.c 142.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
22
#include <linux/notifier.h>
C
Christoph Lameter 已提交
23
#include <linux/seq_file.h>
24
#include <linux/kasan.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
37
#include <linux/random.h>
C
Christoph Lameter 已提交
38

39 40
#include <trace/events/kmem.h>

41 42
#include "internal.h"

C
Christoph Lameter 已提交
43 44
/*
 * Lock order:
45
 *   1. slab_mutex (Global Mutex)
46 47
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
48
 *
49
 *   slab_mutex
50
 *
51
 *   The role of the slab_mutex is to protect the list of all the slabs
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95 96 97
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
98 99 100 101 102 103 104 105 106 107 108 109
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
110
 * 			freelist that allows lockless access to
111 112
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
113 114 115
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
116
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
117 118
 */

119 120
static inline int kmem_cache_debug(struct kmem_cache *s)
{
121
#ifdef CONFIG_SLUB_DEBUG
122
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123
#else
124
	return 0;
125
#endif
126
}
127

128
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
129 130 131 132 133 134 135
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

136 137 138 139 140 141 142 143 144
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
145 146 147 148 149 150 151 152 153 154 155
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

156 157 158
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

159 160 161 162
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
163
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
164

165 166 167
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
168
 * sort the partial list by the number of objects in use.
169 170 171
 */
#define MAX_PARTIAL 10

172
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
173
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
174

175 176 177 178 179 180 181 182
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


183
/*
184 185 186
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
187
 */
188
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189

190 191
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
192
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193

C
Christoph Lameter 已提交
194
/* Internal SLUB flags */
195
/* Poison object */
196
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197
/* Use cmpxchg_double */
198
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
199

200 201 202
/*
 * Tracking user of a slab.
 */
203
#define TRACK_ADDRS_COUNT 16
204
struct track {
205
	unsigned long addr;	/* Called from address */
206 207 208
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
209 210 211 212 213 214 215
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

216
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
217 218
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
219
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
221
#else
222 223 224
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
225
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
227 228
#endif

229
static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 231
{
#ifdef CONFIG_SLUB_STATS
232 233 234 235 236
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
237 238 239
#endif
}

C
Christoph Lameter 已提交
240 241 242 243
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

267 268
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
269
	return freelist_dereference(s, object + s->offset);
270 271
}

272 273
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
274 275
	if (object)
		prefetch(freelist_dereference(s, object + s->offset));
276 277
}

278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
280
	unsigned long freepointer_addr;
281 282
	void *p;

283 284 285
	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

286 287 288
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
289 290
}

291 292
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
293 294
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

295 296 297 298
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

299
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 301 302
}

/* Loop over all objects in a slab */
303
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
304 305 306
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
307

308
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
309 310 311
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)
312

313 314 315 316 317 318
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

319 320 321 322 323
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

324
static inline struct kmem_cache_order_objects oo_make(int order,
325
		unsigned long size, int reserved)
326 327
{
	struct kmem_cache_order_objects x = {
328
		(order << OO_SHIFT) + order_objects(order, size, reserved)
329 330 331 332 333 334 335
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
336
	return x.x >> OO_SHIFT;
337 338 339 340
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
341
	return x.x & OO_MASK;
342 343
}

344 345 346 347 348
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
349
	VM_BUG_ON_PAGE(PageTail(page), page);
350 351 352 353 354
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
355
	VM_BUG_ON_PAGE(PageTail(page), page);
356 357 358
	__bit_spin_unlock(PG_locked, &page->flags);
}

359 360 361 362 363 364
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
365 366
	 * as page->_refcount.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_refcount, so
367 368 369 370 371 372 373
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

374 375 376 377 378 379 380
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
381 382
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383
	if (s->flags & __CMPXCHG_DOUBLE) {
384
		if (cmpxchg_double(&page->freelist, &page->counters,
385 386
				   freelist_old, counters_old,
				   freelist_new, counters_new))
387
			return true;
388 389 390 391
	} else
#endif
	{
		slab_lock(page);
392 393
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
394
			page->freelist = freelist_new;
395
			set_page_slub_counters(page, counters_new);
396
			slab_unlock(page);
397
			return true;
398 399 400 401 402 403 404 405
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
406
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 408
#endif

409
	return false;
410 411
}

412 413 414 415 416
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
417 418
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419
	if (s->flags & __CMPXCHG_DOUBLE) {
420
		if (cmpxchg_double(&page->freelist, &page->counters,
421 422
				   freelist_old, counters_old,
				   freelist_new, counters_new))
423
			return true;
424 425 426
	} else
#endif
	{
427 428 429
		unsigned long flags;

		local_irq_save(flags);
430
		slab_lock(page);
431 432
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
433
			page->freelist = freelist_new;
434
			set_page_slub_counters(page, counters_new);
435
			slab_unlock(page);
436
			local_irq_restore(flags);
437
			return true;
438
		}
439
		slab_unlock(page);
440
		local_irq_restore(flags);
441 442 443 444 445 446
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
447
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 449
#endif

450
	return false;
451 452
}

C
Christoph Lameter 已提交
453
#ifdef CONFIG_SLUB_DEBUG
454 455 456
/*
 * Determine a map of object in use on a page.
 *
457
 * Node listlock must be held to guarantee that the page does
458 459 460 461 462 463 464 465 466 467 468
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

J
Joonsoo Kim 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static inline int size_from_object(struct kmem_cache *s)
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
485 486 487
/*
 * Debug settings:
 */
488
#if defined(CONFIG_SLUB_DEBUG_ON)
489
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490
#else
491
static slab_flags_t slub_debug;
492
#endif
C
Christoph Lameter 已提交
493 494

static char *slub_debug_slabs;
495
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
513 514 515
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

536 537
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
538
{
539
	metadata_access_enable();
540
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541
			length, 1);
542
	metadata_access_disable();
C
Christoph Lameter 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
559
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
560
{
A
Akinobu Mita 已提交
561
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
562 563

	if (addr) {
564 565 566 567 568 569 570 571
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
572
		metadata_access_enable();
573
		save_stack_trace(&trace);
574
		metadata_access_disable();
575 576 577 578 579 580 581 582 583

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
584 585
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
586
		p->pid = current->pid;
C
Christoph Lameter 已提交
587 588 589 590 591 592 593
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
594 595 596
	if (!(s->flags & SLAB_STORE_USER))
		return;

597 598
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
599 600 601 602 603 604 605
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

606 607
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
608 609 610 611 612
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
613
				pr_err("\t%pS\n", (void *)t->addrs[i]);
614 615 616 617
			else
				break;
	}
#endif
618 619 620 621 622 623 624 625 626 627 628 629 630
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
631
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632
	       page, page->objects, page->inuse, page->freelist, page->flags);
633 634 635 636 637

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
638
	struct va_format vaf;
639 640 641
	va_list args;

	va_start(args, fmt);
642 643
	vaf.fmt = fmt;
	vaf.va = &args;
644
	pr_err("=============================================================================\n");
645
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646
	pr_err("-----------------------------------------------------------------------------\n\n");
647

648
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649
	va_end(args);
C
Christoph Lameter 已提交
650 651
}

652 653
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
654
	struct va_format vaf;
655 656 657
	va_list args;

	va_start(args, fmt);
658 659 660
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
661 662 663 664
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
665 666
{
	unsigned int off;	/* Offset of last byte */
667
	u8 *addr = page_address(page);
668 669 670 671 672

	print_tracking(s, p);

	print_page_info(page);

673 674
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
675

J
Joonsoo Kim 已提交
676
	if (s->flags & SLAB_RED_ZONE)
677 678
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
679
	else if (p > addr + 16)
680
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
681

682 683
	print_section(KERN_ERR, "Object ", p,
		      min_t(unsigned long, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
684
	if (s->flags & SLAB_RED_ZONE)
685
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
686
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
687 688 689 690 691 692

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

693
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
694 695
		off += 2 * sizeof(struct track);

696 697
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
698
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
699
		/* Beginning of the filler is the free pointer */
700 701
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
702 703

	dump_stack();
C
Christoph Lameter 已提交
704 705
}

706
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
707 708
			u8 *object, char *reason)
{
709
	slab_bug(s, "%s", reason);
710
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
711 712
}

713 714
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
715 716 717 718
{
	va_list args;
	char buf[100];

719 720
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
721
	va_end(args);
722
	slab_bug(s, "%s", buf);
723
	print_page_info(page);
C
Christoph Lameter 已提交
724 725 726
	dump_stack();
}

727
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
728 729 730
{
	u8 *p = object;

J
Joonsoo Kim 已提交
731 732 733
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
734
	if (s->flags & __OBJECT_POISON) {
735 736
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
737 738 739
	}

	if (s->flags & SLAB_RED_ZONE)
740
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
741 742
}

743 744 745 746 747 748 749 750 751
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
752
			u8 *start, unsigned int value, unsigned int bytes)
753 754 755 756
{
	u8 *fault;
	u8 *end;

757
	metadata_access_enable();
758
	fault = memchr_inv(start, value, bytes);
759
	metadata_access_disable();
760 761 762 763 764 765 766 767
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
768
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 770 771 772 773
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
774 775 776 777 778 779 780 781 782
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
783
 *
C
Christoph Lameter 已提交
784 785 786
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
787
 * object + s->object_size
C
Christoph Lameter 已提交
788
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
789
 * 	Padding is extended by another word if Redzoning is enabled and
790
 * 	object_size == inuse.
C
Christoph Lameter 已提交
791
 *
C
Christoph Lameter 已提交
792 793 794 795
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
796 797
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
798 799
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
800
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
801
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
802 803 804
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
805 806
 *
 * object + s->size
C
Christoph Lameter 已提交
807
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
808
 *
809
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
810
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

826 827
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
828
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
829 830
		return 1;

831
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
832
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
833 834
}

835
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
836 837
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
838 839 840 841 842
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
843 844 845 846

	if (!(s->flags & SLAB_POISON))
		return 1;

847
	start = page_address(page);
848
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
849 850
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
851 852 853
	if (!remainder)
		return 1;

854
	metadata_access_enable();
855
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
856
	metadata_access_disable();
857 858 859 860 861 862
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
863
	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
864

E
Eric Dumazet 已提交
865
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
866
	return 0;
C
Christoph Lameter 已提交
867 868 869
}

static int check_object(struct kmem_cache *s, struct page *page,
870
					void *object, u8 val)
C
Christoph Lameter 已提交
871 872
{
	u8 *p = object;
873
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
874 875

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
876 877 878 879
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

880
		if (!check_bytes_and_report(s, page, object, "Redzone",
881
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
882 883
			return 0;
	} else {
884
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
885
			check_bytes_and_report(s, page, p, "Alignment padding",
886 887
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
888
		}
C
Christoph Lameter 已提交
889 890 891
	}

	if (s->flags & SLAB_POISON) {
892
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
893
			(!check_bytes_and_report(s, page, p, "Poison", p,
894
					POISON_FREE, s->object_size - 1) ||
895
			 !check_bytes_and_report(s, page, p, "Poison",
896
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
897 898 899 900 901 902 903
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

904
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
905 906 907 908 909 910 911 912 913 914
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
915
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
916
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
917
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
918
		 */
919
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
920 921 922 923 924 925 926
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
927 928
	int maxobj;

C
Christoph Lameter 已提交
929 930 931
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
932
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
933 934
		return 0;
	}
935

936
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
937 938
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
939
			page->objects, maxobj);
940 941 942
		return 0;
	}
	if (page->inuse > page->objects) {
943
		slab_err(s, page, "inuse %u > max %u",
944
			page->inuse, page->objects);
C
Christoph Lameter 已提交
945 946 947 948 949 950 951 952
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
953 954
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
955 956 957 958
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
959
	void *fp;
C
Christoph Lameter 已提交
960
	void *object = NULL;
961
	int max_objects;
C
Christoph Lameter 已提交
962

963
	fp = page->freelist;
964
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
965 966 967 968 969 970
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
971
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
972
			} else {
973
				slab_err(s, page, "Freepointer corrupt");
974
				page->freelist = NULL;
975
				page->inuse = page->objects;
976
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
977 978 979 980 981 982 983 984 985
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

986
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
987 988
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
989 990

	if (page->objects != max_objects) {
J
Joe Perches 已提交
991 992
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
993 994 995
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
996
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
997 998
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
999
		page->inuse = page->objects - nr;
1000
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
1001 1002 1003 1004
	}
	return search == NULL;
}

1005 1006
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1007 1008
{
	if (s->flags & SLAB_TRACE) {
1009
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1010 1011 1012 1013 1014 1015
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1016
			print_section(KERN_INFO, "Object ", (void *)object,
1017
					s->object_size);
C
Christoph Lameter 已提交
1018 1019 1020 1021 1022

		dump_stack();
	}
}

1023
/*
C
Christoph Lameter 已提交
1024
 * Tracking of fully allocated slabs for debugging purposes.
1025
 */
1026 1027
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1028
{
1029 1030 1031
	if (!(s->flags & SLAB_STORE_USER))
		return;

1032
	lockdep_assert_held(&n->list_lock);
1033 1034 1035
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1036
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1037 1038 1039 1040
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1041
	lockdep_assert_held(&n->list_lock);
1042 1043 1044
	list_del(&page->lru);
}

1045 1046 1047 1048 1049 1050 1051 1052
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1053 1054 1055 1056 1057
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1058
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1059 1060 1061 1062 1063 1064 1065 1066 1067
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1068
	if (likely(n)) {
1069
		atomic_long_inc(&n->nr_slabs);
1070 1071
		atomic_long_add(objects, &n->total_objects);
	}
1072
}
1073
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1074 1075 1076 1077
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1078
	atomic_long_sub(objects, &n->total_objects);
1079 1080 1081
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1082 1083 1084 1085 1086 1087
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1088
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1089 1090 1091
	init_tracking(s, object);
}

1092
static inline int alloc_consistency_checks(struct kmem_cache *s,
1093
					struct page *page,
1094
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1095 1096
{
	if (!check_slab(s, page))
1097
		return 0;
C
Christoph Lameter 已提交
1098 1099 1100

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1101
		return 0;
C
Christoph Lameter 已提交
1102 1103
	}

1104
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}
C
Christoph Lameter 已提交
1118

C
Christoph Lameter 已提交
1119 1120 1121 1122
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1123
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1124
	return 1;
C
Christoph Lameter 已提交
1125

C
Christoph Lameter 已提交
1126 1127 1128 1129 1130
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1131
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1132
		 */
1133
		slab_fix(s, "Marking all objects used");
1134
		page->inuse = page->objects;
1135
		page->freelist = NULL;
C
Christoph Lameter 已提交
1136 1137 1138 1139
	}
	return 0;
}

1140 1141
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1142 1143
{
	if (!check_valid_pointer(s, page, object)) {
1144
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1145
		return 0;
C
Christoph Lameter 已提交
1146 1147 1148
	}

	if (on_freelist(s, page, object)) {
1149
		object_err(s, page, object, "Object already free");
1150
		return 0;
C
Christoph Lameter 已提交
1151 1152
	}

1153
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1154
		return 0;
C
Christoph Lameter 已提交
1155

1156
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1157
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1158 1159
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1160
		} else if (!page->slab_cache) {
1161 1162
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1163
			dump_stack();
P
Pekka Enberg 已提交
1164
		} else
1165 1166
			object_err(s, page, object,
					"page slab pointer corrupt.");
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1198
	}
C
Christoph Lameter 已提交
1199 1200 1201 1202

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1203
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1204
	init_object(s, object, SLUB_RED_INACTIVE);
1205 1206 1207 1208 1209 1210

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1211 1212
	ret = 1;

1213
out:
1214 1215 1216 1217
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1218
	slab_unlock(page);
1219
	spin_unlock_irqrestore(&n->list_lock, flags);
1220 1221 1222
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1223 1224
}

C
Christoph Lameter 已提交
1225 1226
static int __init setup_slub_debug(char *str)
{
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1251
	for (; *str && *str != ','; str++) {
1252 1253
		switch (tolower(*str)) {
		case 'f':
1254
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1268 1269 1270
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1271 1272 1273 1274 1275 1276 1277
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1278
		default:
1279 1280
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1281
		}
C
Christoph Lameter 已提交
1282 1283
	}

1284
check_slabs:
C
Christoph Lameter 已提交
1285 1286
	if (*str == ',')
		slub_debug_slabs = str + 1;
1287
out:
C
Christoph Lameter 已提交
1288 1289 1290 1291 1292
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1293 1294
slab_flags_t kmem_cache_flags(unsigned long object_size,
	slab_flags_t flags, const char *name,
1295
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1296 1297
{
	/*
1298
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1299
	 */
1300 1301
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1302
		flags |= slub_debug;
1303 1304

	return flags;
C
Christoph Lameter 已提交
1305
}
1306
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1307 1308
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1309

C
Christoph Lameter 已提交
1310
static inline int alloc_debug_processing(struct kmem_cache *s,
1311
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1312

1313
static inline int free_debug_processing(
1314 1315
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1316
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1317 1318 1319 1320

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1321
			void *object, u8 val) { return 1; }
1322 1323
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1324 1325
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1326 1327
slab_flags_t kmem_cache_flags(unsigned long object_size,
	slab_flags_t flags, const char *name,
1328
	void (*ctor)(void *))
1329 1330 1331
{
	return flags;
}
C
Christoph Lameter 已提交
1332
#define slub_debug 0
1333

1334 1335
#define disable_higher_order_debug 0

1336 1337
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1338 1339
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1340 1341 1342 1343
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1344

1345 1346 1347 1348 1349 1350
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1351 1352 1353
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1354
	kasan_kmalloc_large(ptr, size, flags);
1355 1356 1357 1358 1359
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1360
	kasan_kfree_large(x);
1361 1362
}

1363
static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1364
{
1365 1366
	void *freeptr;

1367
	kmemleak_free_recursive(x, s->flags);
1368

1369 1370 1371 1372 1373
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1374
#ifdef CONFIG_LOCKDEP
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1385

1386 1387 1388 1389 1390
	freeptr = get_freepointer(s, x);
	/*
	 * kasan_slab_free() may put x into memory quarantine, delaying its
	 * reuse. In this case the object's freelist pointer is changed.
	 */
1391
	kasan_slab_free(s, x);
1392
	return freeptr;
1393
}
1394

1395 1396 1397 1398 1399 1400 1401
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
1402
#if defined(CONFIG_LOCKDEP)	||		\
1403 1404 1405 1406 1407 1408
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;
1409
	void *freeptr;
1410 1411

	do {
1412 1413
		freeptr = slab_free_hook(s, object);
	} while ((object != tail_obj) && (object = freeptr));
1414 1415 1416
#endif
}

1417 1418 1419 1420
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
1421
	kasan_init_slab_obj(s, object);
1422 1423 1424 1425 1426 1427 1428
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1429 1430 1431
/*
 * Slab allocation and freeing
 */
1432 1433
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1434
{
1435
	struct page *page;
1436 1437
	int order = oo_order(oo);

1438
	if (node == NUMA_NO_NODE)
1439
		page = alloc_pages(flags, order);
1440
	else
1441
		page = __alloc_pages_node(node, flags, order);
1442

1443 1444 1445 1446
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1447 1448

	return page;
1449 1450
}

T
Thomas Garnier 已提交
1451 1452 1453 1454 1455 1456 1457
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
	int err;
	unsigned long i, count = oo_objects(s->oo);

1458 1459 1460 1461
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		setup_object(s, page, cur);
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
		set_freepointer(s, cur, next);
		cur = next;
	}
	setup_object(s, page, cur);
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1558 1559
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1560
	struct page *page;
1561
	struct kmem_cache_order_objects oo = s->oo;
1562
	gfp_t alloc_gfp;
1563 1564
	void *start, *p;
	int idx, order;
T
Thomas Garnier 已提交
1565
	bool shuffle;
C
Christoph Lameter 已提交
1566

1567 1568
	flags &= gfp_allowed_mask;

1569
	if (gfpflags_allow_blocking(flags))
1570 1571
		local_irq_enable();

1572
	flags |= s->allocflags;
1573

1574 1575 1576 1577 1578
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1579
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1580
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1581

1582
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1583 1584
	if (unlikely(!page)) {
		oo = s->min;
1585
		alloc_gfp = flags;
1586 1587 1588 1589
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1590
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1591 1592 1593
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1594
	}
V
Vegard Nossum 已提交
1595

1596
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1597

G
Glauber Costa 已提交
1598
	order = compound_order(page);
1599
	page->slab_cache = s;
1600
	__SetPageSlab(page);
1601
	if (page_is_pfmemalloc(page))
1602
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1603 1604 1605 1606

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1607
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1608

1609 1610
	kasan_poison_slab(page);

T
Thomas Garnier 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
		for_each_object_idx(p, idx, s, start, page->objects) {
			setup_object(s, page, p);
			if (likely(idx < page->objects))
				set_freepointer(s, p, p + s->size);
			else
				set_freepointer(s, p, NULL);
		}
		page->freelist = fixup_red_left(s, start);
C
Christoph Lameter 已提交
1622 1623
	}

1624
	page->inuse = page->objects;
1625
	page->frozen = 1;
1626

C
Christoph Lameter 已提交
1627
out:
1628
	if (gfpflags_allow_blocking(flags))
1629 1630 1631 1632
		local_irq_disable();
	if (!page)
		return NULL;

1633
	mod_lruvec_page_state(page,
1634 1635 1636 1637 1638 1639
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1640 1641 1642
	return page;
}

1643 1644 1645
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1646
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1647 1648 1649
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1650
		dump_stack();
1651 1652 1653 1654 1655 1656
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1657 1658
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1659 1660
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1661

1662
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1663 1664 1665
		void *p;

		slab_pad_check(s, page);
1666 1667
		for_each_object(p, s, page_address(page),
						page->objects)
1668
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1669 1670
	}

1671
	mod_lruvec_page_state(page,
C
Christoph Lameter 已提交
1672 1673
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1674
		-pages);
C
Christoph Lameter 已提交
1675

1676
	__ClearPageSlabPfmemalloc(page);
1677
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1678

1679
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1680 1681
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1682 1683
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1684 1685
}

1686 1687 1688
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1689 1690 1691 1692
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1693 1694 1695 1696 1697
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1698
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1699 1700 1701 1702
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1703
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1704 1705 1706 1707 1708 1709 1710 1711 1712
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1713
			head = &page->rcu_head;
1714
		}
C
Christoph Lameter 已提交
1715 1716 1717 1718 1719 1720 1721 1722

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1723
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1724 1725 1726 1727
	free_slab(s, page);
}

/*
1728
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1729
 */
1730 1731
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1732
{
C
Christoph Lameter 已提交
1733
	n->nr_partial++;
1734
	if (tail == DEACTIVATE_TO_TAIL)
1735 1736 1737
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1738 1739
}

1740 1741
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1742
{
P
Peter Zijlstra 已提交
1743
	lockdep_assert_held(&n->list_lock);
1744 1745
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1746

1747 1748 1749 1750
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1751 1752
	list_del(&page->lru);
	n->nr_partial--;
1753 1754
}

C
Christoph Lameter 已提交
1755
/*
1756 1757
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1758
 *
1759
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1760
 */
1761
static inline void *acquire_slab(struct kmem_cache *s,
1762
		struct kmem_cache_node *n, struct page *page,
1763
		int mode, int *objects)
C
Christoph Lameter 已提交
1764
{
1765 1766 1767 1768
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1769 1770
	lockdep_assert_held(&n->list_lock);

1771 1772 1773 1774 1775
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1776 1777 1778
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1779
	*objects = new.objects - new.inuse;
1780
	if (mode) {
1781
		new.inuse = page->objects;
1782 1783 1784 1785
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1786

1787
	VM_BUG_ON(new.frozen);
1788
	new.frozen = 1;
1789

1790
	if (!__cmpxchg_double_slab(s, page,
1791
			freelist, counters,
1792
			new.freelist, new.counters,
1793 1794
			"acquire_slab"))
		return NULL;
1795 1796

	remove_partial(n, page);
1797
	WARN_ON(!freelist);
1798
	return freelist;
C
Christoph Lameter 已提交
1799 1800
}

1801
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1802
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1803

C
Christoph Lameter 已提交
1804
/*
C
Christoph Lameter 已提交
1805
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1806
 */
1807 1808
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1809
{
1810 1811
	struct page *page, *page2;
	void *object = NULL;
1812 1813
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1814 1815 1816 1817

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1818 1819
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1820 1821 1822 1823 1824
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1825
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1826
		void *t;
1827

1828 1829 1830
		if (!pfmemalloc_match(page, flags))
			continue;

1831
		t = acquire_slab(s, n, page, object == NULL, &objects);
1832 1833 1834
		if (!t)
			break;

1835
		available += objects;
1836
		if (!object) {
1837 1838 1839 1840
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1841
			put_cpu_partial(s, page, 0);
1842
			stat(s, CPU_PARTIAL_NODE);
1843
		}
1844
		if (!kmem_cache_has_cpu_partial(s)
1845
			|| available > slub_cpu_partial(s) / 2)
1846 1847
			break;

1848
	}
C
Christoph Lameter 已提交
1849
	spin_unlock(&n->list_lock);
1850
	return object;
C
Christoph Lameter 已提交
1851 1852 1853
}

/*
C
Christoph Lameter 已提交
1854
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1855
 */
1856
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1857
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1858 1859 1860
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1861
	struct zoneref *z;
1862 1863
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1864
	void *object;
1865
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1866 1867

	/*
C
Christoph Lameter 已提交
1868 1869 1870 1871
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1872
	 *
C
Christoph Lameter 已提交
1873 1874 1875 1876
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1877
	 *
1878 1879 1880 1881 1882
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1883
	 * with available objects.
C
Christoph Lameter 已提交
1884
	 */
1885 1886
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1887 1888
		return NULL;

1889
	do {
1890
		cpuset_mems_cookie = read_mems_allowed_begin();
1891
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1892 1893 1894 1895 1896
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1897
			if (n && cpuset_zone_allowed(zone, flags) &&
1898
					n->nr_partial > s->min_partial) {
1899
				object = get_partial_node(s, n, c, flags);
1900 1901
				if (object) {
					/*
1902 1903 1904 1905 1906
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1907 1908 1909
					 */
					return object;
				}
1910
			}
C
Christoph Lameter 已提交
1911
		}
1912
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1913 1914 1915 1916 1917 1918 1919
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1920
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1921
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1922
{
1923
	void *object;
1924 1925 1926 1927 1928 1929
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1930

1931
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1932 1933
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1934

1935
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1936 1937
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1979
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1980 1981 1982

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1983
		pr_warn("due to cpu change %d -> %d\n",
1984 1985 1986 1987
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1988
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1989 1990
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1991
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1992 1993
			actual_tid, tid, next_tid(tid));
#endif
1994
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1995 1996
}

1997
static void init_kmem_cache_cpus(struct kmem_cache *s)
1998 1999 2000 2001 2002 2003
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2004

C
Christoph Lameter 已提交
2005 2006 2007
/*
 * Remove the cpu slab
 */
2008
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2009
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2010
{
2011 2012 2013 2014 2015
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2016
	int tail = DEACTIVATE_TO_HEAD;
2017 2018 2019 2020
	struct page new;
	struct page old;

	if (page->freelist) {
2021
		stat(s, DEACTIVATE_REMOTE_FREES);
2022
		tail = DEACTIVATE_TO_TAIL;
2023 2024
	}

2025
	/*
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2043
			VM_BUG_ON(!new.frozen);
2044

2045
		} while (!__cmpxchg_double_slab(s, page,
2046 2047 2048 2049 2050 2051 2052
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2053
	/*
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2066
	 */
2067
redo:
2068

2069 2070
	old.freelist = page->freelist;
	old.counters = page->counters;
2071
	VM_BUG_ON(!old.frozen);
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2084
	if (!new.inuse && n->nr_partial >= s->min_partial)
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
2117

P
Peter Zijlstra 已提交
2118
			remove_full(s, n, page);
2119 2120 2121 2122

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
2123
			stat(s, tail);
2124 2125

		} else if (m == M_FULL) {
2126

2127 2128 2129 2130 2131 2132 2133
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
2134
	if (!__cmpxchg_double_slab(s, page,
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2147
	}
2148 2149 2150

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2151 2152
}

2153 2154 2155
/*
 * Unfreeze all the cpu partial slabs.
 *
2156 2157 2158
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2159
 */
2160 2161
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2162
{
2163
#ifdef CONFIG_SLUB_CPU_PARTIAL
2164
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2165
	struct page *page, *discard_page = NULL;
2166 2167 2168 2169 2170 2171

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2172 2173 2174 2175 2176 2177 2178 2179 2180

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2181 2182 2183 2184 2185

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2186
			VM_BUG_ON(!old.frozen);
2187 2188 2189 2190 2191 2192

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2193
		} while (!__cmpxchg_double_slab(s, page,
2194 2195 2196 2197
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2198
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2199 2200
			page->next = discard_page;
			discard_page = page;
2201 2202 2203
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2204 2205 2206 2207 2208
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2209 2210 2211 2212 2213 2214 2215 2216 2217

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2218
#endif
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2230
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2231
{
2232
#ifdef CONFIG_SLUB_CPU_PARTIAL
2233 2234 2235 2236
	struct page *oldpage;
	int pages;
	int pobjects;

2237
	preempt_disable();
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2253
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254
				local_irq_restore(flags);
2255
				oldpage = NULL;
2256 2257
				pobjects = 0;
				pages = 0;
2258
				stat(s, CPU_PARTIAL_DRAIN);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2269 2270
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2271 2272 2273 2274 2275 2276 2277 2278
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2279
#endif
2280 2281
}

2282
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2283
{
2284
	stat(s, CPUSLAB_FLUSH);
2285
	deactivate_slab(s, c->page, c->freelist, c);
2286 2287

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2288 2289 2290 2291
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2292
 *
C
Christoph Lameter 已提交
2293 2294
 * Called from IPI handler with interrupts disabled.
 */
2295
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2296
{
2297
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2298

2299 2300 2301 2302
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2303
		unfreeze_partials(s, c);
2304
	}
C
Christoph Lameter 已提交
2305 2306 2307 2308 2309 2310
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2311
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2312 2313
}

2314 2315 2316 2317 2318
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2319
	return c->page || slub_percpu_partial(c);
2320 2321
}

C
Christoph Lameter 已提交
2322 2323
static void flush_all(struct kmem_cache *s)
{
2324
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2325 2326
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2346 2347 2348 2349
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2350
static inline int node_match(struct page *page, int node)
2351 2352
{
#ifdef CONFIG_NUMA
2353
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2354 2355 2356 2357 2358
		return 0;
#endif
	return 1;
}

2359
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2360 2361 2362 2363 2364
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2365 2366 2367 2368 2369 2370 2371
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2385
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2386

P
Pekka Enberg 已提交
2387 2388 2389
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2390 2391 2392
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2393
	int node;
C
Christoph Lameter 已提交
2394
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2395

2396 2397 2398
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2399 2400
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2401 2402 2403
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2404

2405
	if (oo_order(s->min) > get_order(s->object_size))
2406 2407
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2408

C
Christoph Lameter 已提交
2409
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2410 2411 2412 2413
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2414 2415 2416
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2417

2418
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2419 2420
			node, nr_slabs, nr_objs, nr_free);
	}
2421
#endif
P
Pekka Enberg 已提交
2422 2423
}

2424 2425 2426
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2427
	void *freelist;
2428 2429
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2430

2431
	freelist = get_partial(s, flags, node, c);
2432

2433 2434 2435 2436
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2437
	if (page) {
2438
		c = raw_cpu_ptr(s->cpu_slab);
2439 2440 2441 2442 2443 2444 2445
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2446
		freelist = page->freelist;
2447 2448 2449 2450 2451 2452
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2453
		freelist = NULL;
2454

2455
	return freelist;
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2466
/*
2467 2468
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2469 2470 2471 2472
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2473 2474
 *
 * This function must be called with interrupt disabled.
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2485

2486
		new.counters = counters;
2487
		VM_BUG_ON(!new.frozen);
2488 2489 2490 2491

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2492
	} while (!__cmpxchg_double_slab(s, page,
2493 2494 2495 2496 2497 2498 2499
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2500
/*
2501 2502 2503 2504 2505 2506
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2507
 *
2508 2509 2510
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2511
 *
2512
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2513 2514
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2515 2516 2517
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2518
 */
2519
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2520
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2521
{
2522
	void *freelist;
2523
	struct page *page;
C
Christoph Lameter 已提交
2524

2525 2526
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2527
		goto new_slab;
2528
redo:
2529

2530
	if (unlikely(!node_match(page, node))) {
2531 2532 2533 2534 2535 2536 2537
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
2538
			deactivate_slab(s, page, c->freelist, c);
2539 2540
			goto new_slab;
		}
2541
	}
C
Christoph Lameter 已提交
2542

2543 2544 2545 2546 2547 2548
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2549
		deactivate_slab(s, page, c->freelist, c);
2550 2551 2552
		goto new_slab;
	}

2553
	/* must check again c->freelist in case of cpu migration or IRQ */
2554 2555
	freelist = c->freelist;
	if (freelist)
2556
		goto load_freelist;
2557

2558
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2559

2560
	if (!freelist) {
2561 2562
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2563
		goto new_slab;
2564
	}
C
Christoph Lameter 已提交
2565

2566
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2567

2568
load_freelist:
2569 2570 2571 2572 2573
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2574
	VM_BUG_ON(!c->page->frozen);
2575
	c->freelist = get_freepointer(s, freelist);
2576
	c->tid = next_tid(c->tid);
2577
	return freelist;
C
Christoph Lameter 已提交
2578 2579

new_slab:
2580

2581 2582 2583
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2584 2585
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2586 2587
	}

2588
	freelist = new_slab_objects(s, gfpflags, node, &c);
2589

2590
	if (unlikely(!freelist)) {
2591
		slab_out_of_memory(s, gfpflags, node);
2592
		return NULL;
C
Christoph Lameter 已提交
2593
	}
2594

2595
	page = c->page;
2596
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2597
		goto load_freelist;
2598

2599
	/* Only entered in the debug case */
2600 2601
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2602
		goto new_slab;	/* Slab failed checks. Next slab needed */
2603

2604
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2605
	return freelist;
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2643
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2644
		gfp_t gfpflags, int node, unsigned long addr)
2645
{
2646
	void *object;
2647
	struct kmem_cache_cpu *c;
2648
	struct page *page;
2649
	unsigned long tid;
2650

2651 2652
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2653
		return NULL;
2654 2655 2656 2657 2658 2659
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2660
	 *
2661 2662 2663
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2664
	 */
2665 2666 2667
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2668 2669
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2680 2681 2682 2683 2684 2685 2686 2687

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2688
	object = c->freelist;
2689
	page = c->page;
D
Dave Hansen 已提交
2690
	if (unlikely(!object || !node_match(page, node))) {
2691
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2692 2693
		stat(s, ALLOC_SLOWPATH);
	} else {
2694 2695
		void *next_object = get_freepointer_safe(s, object);

2696
		/*
L
Lucas De Marchi 已提交
2697
		 * The cmpxchg will only match if there was no additional
2698 2699
		 * operation and if we are on the right processor.
		 *
2700 2701
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2702 2703 2704 2705
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2706 2707 2708
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2709
		 */
2710
		if (unlikely(!this_cpu_cmpxchg_double(
2711 2712
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2713
				next_object, next_tid(tid)))) {
2714 2715 2716 2717

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2718
		prefetch_freepointer(s, next_object);
2719
		stat(s, ALLOC_FASTPATH);
2720
	}
2721

2722
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2723
		memset(object, 0, s->object_size);
2724

2725
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2726

2727
	return object;
C
Christoph Lameter 已提交
2728 2729
}

2730 2731 2732 2733 2734 2735
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2736 2737
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2738
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2739

2740 2741
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2742 2743

	return ret;
C
Christoph Lameter 已提交
2744 2745 2746
}
EXPORT_SYMBOL(kmem_cache_alloc);

2747
#ifdef CONFIG_TRACING
2748 2749
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2750
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2751
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2752
	kasan_kmalloc(s, ret, size, gfpflags);
2753 2754 2755
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2756 2757
#endif

C
Christoph Lameter 已提交
2758 2759 2760
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2761
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2762

2763
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2764
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2765 2766

	return ret;
C
Christoph Lameter 已提交
2767 2768 2769
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2770
#ifdef CONFIG_TRACING
2771
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2772
				    gfp_t gfpflags,
2773
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2774
{
2775
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2776 2777 2778

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2779

2780
	kasan_kmalloc(s, ret, size, gfpflags);
2781
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2782
}
2783
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2784
#endif
2785
#endif
E
Eduard - Gabriel Munteanu 已提交
2786

C
Christoph Lameter 已提交
2787
/*
K
Kim Phillips 已提交
2788
 * Slow path handling. This may still be called frequently since objects
2789
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2790
 *
2791 2792 2793
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2794
 */
2795
static void __slab_free(struct kmem_cache *s, struct page *page,
2796 2797 2798
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2799 2800
{
	void *prior;
2801 2802 2803 2804
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2805
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2806

2807
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2808

2809
	if (kmem_cache_debug(s) &&
2810
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2811
		return;
C
Christoph Lameter 已提交
2812

2813
	do {
2814 2815 2816 2817
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2818 2819
		prior = page->freelist;
		counters = page->counters;
2820
		set_freepointer(s, tail, prior);
2821 2822
		new.counters = counters;
		was_frozen = new.frozen;
2823
		new.inuse -= cnt;
2824
		if ((!new.inuse || !prior) && !was_frozen) {
2825

P
Peter Zijlstra 已提交
2826
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2827 2828

				/*
2829 2830 2831 2832
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2833 2834 2835
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2836
			} else { /* Needs to be taken off a list */
2837

2838
				n = get_node(s, page_to_nid(page));
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2850
		}
C
Christoph Lameter 已提交
2851

2852 2853
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2854
		head, new.counters,
2855
		"__slab_free"));
C
Christoph Lameter 已提交
2856

2857
	if (likely(!n)) {
2858 2859 2860 2861 2862

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2863
		if (new.frozen && !was_frozen) {
2864
			put_cpu_partial(s, page, 1);
2865 2866
			stat(s, CPU_PARTIAL_FREE);
		}
2867
		/*
2868 2869 2870
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2871 2872 2873 2874
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2875

2876
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2877 2878
		goto slab_empty;

C
Christoph Lameter 已提交
2879
	/*
2880 2881
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2882
	 */
2883 2884
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2885
			remove_full(s, n, page);
2886 2887
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2888
	}
2889
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2890 2891 2892
	return;

slab_empty:
2893
	if (prior) {
C
Christoph Lameter 已提交
2894
		/*
2895
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2896
		 */
2897
		remove_partial(n, page);
2898
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2899
	} else {
2900
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2901 2902
		remove_full(s, n, page);
	}
2903

2904
	spin_unlock_irqrestore(&n->list_lock, flags);
2905
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2906 2907 2908
	discard_slab(s, page);
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2919 2920 2921 2922
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2923
 */
2924 2925 2926
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2927
{
2928
	void *tail_obj = tail ? : head;
2929
	struct kmem_cache_cpu *c;
2930 2931 2932 2933 2934 2935
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2936
	 * during the cmpxchg then the free will succeed.
2937
	 */
2938 2939 2940
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2941 2942
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2943

2944 2945
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2946

2947
	if (likely(page == c->page)) {
2948
		set_freepointer(s, tail_obj, c->freelist);
2949

2950
		if (unlikely(!this_cpu_cmpxchg_double(
2951 2952
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2953
				head, next_tid(tid)))) {
2954 2955 2956 2957

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2958
		stat(s, FREE_FASTPATH);
2959
	} else
2960
		__slab_free(s, page, head, tail_obj, cnt, addr);
2961 2962 2963

}

2964 2965 2966 2967 2968 2969 2970 2971 2972
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	slab_free_freelist_hook(s, head, tail);
	/*
	 * slab_free_freelist_hook() could have put the items into quarantine.
	 * If so, no need to free them.
	 */
2973
	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
		return;
	do_slab_free(s, page, head, tail, cnt, addr);
}

#ifdef CONFIG_KASAN
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
2985 2986
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2987 2988
	s = cache_from_obj(s, x);
	if (!s)
2989
		return;
2990
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2991
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2992 2993 2994
}
EXPORT_SYMBOL(kmem_cache_free);

2995
struct detached_freelist {
2996
	struct page *page;
2997 2998 2999
	void *tail;
	void *freelist;
	int cnt;
3000
	struct kmem_cache *s;
3001
};
3002

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3015 3016 3017
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3018 3019 3020 3021
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3022
	struct page *page;
3023

3024 3025
	/* Always re-init detached_freelist */
	df->page = NULL;
3026

3027 3028
	do {
		object = p[--size];
3029
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3030
	} while (!object && size);
3031

3032 3033
	if (!object)
		return 0;
3034

3035 3036 3037 3038 3039 3040
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3041
			__free_pages(page, compound_order(page));
3042 3043 3044 3045 3046 3047 3048 3049
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3050

3051
	/* Start new detached freelist */
3052
	df->page = page;
3053
	set_freepointer(df->s, object, NULL);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3067
			set_freepointer(df->s, object, df->freelist);
3068 3069 3070 3071 3072
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3073
		}
3074 3075 3076 3077 3078 3079 3080

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3081
	}
3082 3083 3084 3085 3086

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3087
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3088 3089 3090 3091 3092 3093 3094 3095
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3096
		if (!df.page)
3097 3098
			continue;

3099
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3100
	} while (likely(size));
3101 3102 3103
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3104
/* Note that interrupts must be enabled when calling this function. */
3105 3106
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3107
{
3108 3109 3110
	struct kmem_cache_cpu *c;
	int i;

3111 3112 3113 3114
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3126 3127 3128 3129 3130
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3131
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3132
					    _RET_IP_, c);
3133 3134 3135
			if (unlikely(!p[i]))
				goto error;

3136 3137 3138
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3153 3154
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3155
	return i;
3156 3157
error:
	local_irq_enable();
3158 3159
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3160
	return 0;
3161 3162 3163 3164
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3165
/*
C
Christoph Lameter 已提交
3166 3167 3168 3169
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3170 3171 3172 3173
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3174
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
3185
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3186
static int slub_min_objects;
C
Christoph Lameter 已提交
3187 3188 3189 3190

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3191 3192 3193 3194
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3195
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3196 3197 3198 3199 3200 3201
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3202
 *
C
Christoph Lameter 已提交
3203 3204 3205 3206
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3207
 *
C
Christoph Lameter 已提交
3208 3209 3210 3211
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3212
 */
3213
static inline int slab_order(int size, int min_objects,
3214
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
3215 3216 3217
{
	int order;
	int rem;
3218
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
3219

3220
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3221
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3222

3223
	for (order = max(min_order, get_order(min_objects * size + reserved));
3224
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3225

3226
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
3227

3228
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
3229

3230
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3231 3232
			break;
	}
C
Christoph Lameter 已提交
3233

C
Christoph Lameter 已提交
3234 3235 3236
	return order;
}

3237
static inline int calculate_order(int size, int reserved)
3238 3239 3240 3241
{
	int order;
	int min_objects;
	int fraction;
3242
	int max_objects;
3243 3244 3245 3246 3247 3248

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3249
	 * First we increase the acceptable waste in a slab. Then
3250 3251 3252
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3253 3254
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3255
	max_objects = order_objects(slub_max_order, size, reserved);
3256 3257
	min_objects = min(min_objects, max_objects);

3258
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3259
		fraction = 16;
3260 3261
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3262
					slub_max_order, fraction, reserved);
3263 3264 3265 3266
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3267
		min_objects--;
3268 3269 3270 3271 3272 3273
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3274
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3275 3276 3277 3278 3279 3280
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3281
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3282
	if (order < MAX_ORDER)
3283 3284 3285 3286
		return order;
	return -ENOSYS;
}

3287
static void
3288
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3289 3290 3291 3292
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3293
#ifdef CONFIG_SLUB_DEBUG
3294
	atomic_long_set(&n->nr_slabs, 0);
3295
	atomic_long_set(&n->total_objects, 0);
3296
	INIT_LIST_HEAD(&n->full);
3297
#endif
C
Christoph Lameter 已提交
3298 3299
}

3300
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3301
{
3302
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3303
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3304

3305
	/*
3306 3307
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3308
	 */
3309 3310
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3311 3312 3313 3314 3315

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3316

3317
	return 1;
3318 3319
}

3320 3321
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3322 3323 3324 3325 3326
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3327 3328
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3329
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3330
 */
3331
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3332 3333 3334 3335
{
	struct page *page;
	struct kmem_cache_node *n;

3336
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3337

3338
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3339 3340

	BUG_ON(!page);
3341
	if (page_to_nid(page) != node) {
3342 3343
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3344 3345
	}

C
Christoph Lameter 已提交
3346 3347
	n = page->freelist;
	BUG_ON(!n);
3348
	page->freelist = get_freepointer(kmem_cache_node, n);
3349
	page->inuse = 1;
3350
	page->frozen = 0;
3351
	kmem_cache_node->node[node] = n;
3352
#ifdef CONFIG_SLUB_DEBUG
3353
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3354
	init_tracking(kmem_cache_node, n);
3355
#endif
3356 3357
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
		      GFP_KERNEL);
3358
	init_kmem_cache_node(n);
3359
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3360

3361
	/*
3362 3363
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3364
	 */
3365
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3366 3367 3368 3369 3370
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3371
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3372

C
Christoph Lameter 已提交
3373
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3374
		s->node[node] = NULL;
3375
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3376 3377 3378
	}
}

3379 3380
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3381
	cache_random_seq_destroy(s);
3382 3383 3384 3385
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3386
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3387 3388 3389
{
	int node;

C
Christoph Lameter 已提交
3390
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3391 3392
		struct kmem_cache_node *n;

3393
		if (slab_state == DOWN) {
3394
			early_kmem_cache_node_alloc(node);
3395 3396
			continue;
		}
3397
		n = kmem_cache_alloc_node(kmem_cache_node,
3398
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3399

3400 3401 3402
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3403
		}
3404

3405
		init_kmem_cache_node(n);
3406
		s->node[node] = n;
C
Christoph Lameter 已提交
3407 3408 3409 3410
	}
	return 1;
}

3411
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3412 3413 3414 3415 3416 3417 3418 3419
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;
#endif
}

C
Christoph Lameter 已提交
3453 3454 3455 3456
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3457
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3458
{
3459
	slab_flags_t flags = s->flags;
3460
	size_t size = s->object_size;
3461
	int order;
C
Christoph Lameter 已提交
3462

3463 3464 3465 3466 3467 3468 3469 3470
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3471 3472 3473 3474 3475
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3476
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3477
			!s->ctor)
C
Christoph Lameter 已提交
3478 3479 3480 3481 3482 3483
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3484
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3485
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3486
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3487
	 */
3488
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3489
		size += sizeof(void *);
C
Christoph Lameter 已提交
3490
#endif
C
Christoph Lameter 已提交
3491 3492

	/*
C
Christoph Lameter 已提交
3493 3494
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3495 3496 3497
	 */
	s->inuse = size;

3498
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3499
		s->ctor)) {
C
Christoph Lameter 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3512
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3513 3514 3515 3516 3517 3518
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3519
#endif
C
Christoph Lameter 已提交
3520

3521 3522
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3523
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3524 3525 3526 3527
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3528
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3529 3530 3531
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3532 3533 3534 3535 3536

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3537
#endif
C
Christoph Lameter 已提交
3538

C
Christoph Lameter 已提交
3539 3540 3541 3542 3543
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3544
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3545
	s->size = size;
3546 3547 3548
	if (forced_order >= 0)
		order = forced_order;
	else
3549
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3550

3551
	if (order < 0)
C
Christoph Lameter 已提交
3552 3553
		return 0;

3554
	s->allocflags = 0;
3555
	if (order)
3556 3557 3558
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3559
		s->allocflags |= GFP_DMA;
3560 3561 3562 3563

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3564 3565 3566
	/*
	 * Determine the number of objects per slab
	 */
3567 3568
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3569 3570
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3571

3572
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3573 3574
}

3575
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3576
{
3577
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3578
	s->reserved = 0;
3579 3580 3581
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3582

3583
	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3584
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3585

3586
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3587
		goto error;
3588 3589 3590 3591 3592
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3593
		if (get_order(s->size) > get_order(s->object_size)) {
3594 3595 3596 3597 3598 3599
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3600

3601 3602
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3603
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3604 3605 3606 3607
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3608 3609 3610 3611
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3612 3613
	set_min_partial(s, ilog2(s->size) / 2);

3614
	set_cpu_partial(s);
3615

C
Christoph Lameter 已提交
3616
#ifdef CONFIG_NUMA
3617
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3618
#endif
T
Thomas Garnier 已提交
3619 3620 3621 3622 3623 3624 3625

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3626
	if (!init_kmem_cache_nodes(s))
3627
		goto error;
C
Christoph Lameter 已提交
3628

3629
	if (alloc_kmem_cache_cpus(s))
3630
		return 0;
3631

3632
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3633 3634
error:
	if (flags & SLAB_PANIC)
J
Joe Perches 已提交
3635 3636
		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, (unsigned long)s->size, s->size,
3637
		      oo_order(s->oo), s->offset, (unsigned long)flags);
3638
	return -EINVAL;
C
Christoph Lameter 已提交
3639 3640
}

3641 3642 3643 3644 3645 3646
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3647 3648
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3649 3650
	if (!map)
		return;
3651
	slab_err(s, page, text, s->name);
3652 3653
	slab_lock(page);

3654
	get_map(s, page, map);
3655 3656 3657
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3658
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3659 3660 3661 3662
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3663
	kfree(map);
3664 3665 3666
#endif
}

C
Christoph Lameter 已提交
3667
/*
C
Christoph Lameter 已提交
3668
 * Attempt to free all partial slabs on a node.
3669 3670
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3671
 */
C
Christoph Lameter 已提交
3672
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3673
{
3674
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3675 3676
	struct page *page, *h;

3677 3678
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3679
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3680
		if (!page->inuse) {
3681
			remove_partial(n, page);
3682
			list_add(&page->lru, &discard);
3683 3684
		} else {
			list_slab_objects(s, page,
3685
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3686
		}
3687
	}
3688
	spin_unlock_irq(&n->list_lock);
3689 3690 3691

	list_for_each_entry_safe(page, h, &discard, lru)
		discard_slab(s, page);
C
Christoph Lameter 已提交
3692 3693 3694
}

/*
C
Christoph Lameter 已提交
3695
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3696
 */
3697
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3698 3699
{
	int node;
C
Christoph Lameter 已提交
3700
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3701 3702 3703

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3704
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3705 3706
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3707 3708
			return 1;
	}
3709
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3719
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3720 3721 3722 3723 3724 3725 3726 3727

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3728
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3729
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3730 3731 3732 3733 3734 3735 3736 3737

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3738
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3739 3740 3741 3742 3743 3744 3745 3746

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3747
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3748
	void *ret;
C
Christoph Lameter 已提交
3749

3750
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3751
		return kmalloc_large(size, flags);
3752

3753
	s = kmalloc_slab(size, flags);
3754 3755

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3756 3757
		return s;

3758
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3759

3760
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3761

3762
	kasan_kmalloc(s, ret, size, flags);
3763

E
Eduard - Gabriel Munteanu 已提交
3764
	return ret;
C
Christoph Lameter 已提交
3765 3766 3767
}
EXPORT_SYMBOL(__kmalloc);

3768
#ifdef CONFIG_NUMA
3769 3770
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3771
	struct page *page;
3772
	void *ptr = NULL;
3773

3774
	flags |= __GFP_COMP;
3775
	page = alloc_pages_node(node, flags, get_order(size));
3776
	if (page)
3777 3778
		ptr = page_address(page);

3779
	kmalloc_large_node_hook(ptr, size, flags);
3780
	return ptr;
3781 3782
}

C
Christoph Lameter 已提交
3783 3784
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3785
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3786
	void *ret;
C
Christoph Lameter 已提交
3787

3788
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3789 3790
		ret = kmalloc_large_node(size, flags, node);

3791 3792 3793
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3794 3795 3796

		return ret;
	}
3797

3798
	s = kmalloc_slab(size, flags);
3799 3800

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 3802
		return s;

3803
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3804

3805
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3806

3807
	kasan_kmalloc(s, ret, size, flags);
3808

E
Eduard - Gabriel Munteanu 已提交
3809
	return ret;
C
Christoph Lameter 已提交
3810 3811 3812 3813
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

K
Kees Cook 已提交
3814 3815
#ifdef CONFIG_HARDENED_USERCOPY
/*
3816 3817 3818
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
3819 3820 3821 3822
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
3823 3824
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
{
	struct kmem_cache *s;
	unsigned long offset;
	size_t object_size;

	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
3835 3836
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
3837 3838 3839 3840 3841 3842 3843

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
3844 3845
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
3846 3847 3848
		offset -= s->red_left_pad;
	}

3849 3850 3851 3852
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
3853
		return;
K
Kees Cook 已提交
3854

3855 3856 3857 3858 3859 3860 3861
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
3862 3863
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
3864 3865 3866 3867
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}

3868
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
3869 3870 3871
}
#endif /* CONFIG_HARDENED_USERCOPY */

3872
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3873
{
3874
	struct page *page;
C
Christoph Lameter 已提交
3875

3876
	if (unlikely(object == ZERO_SIZE_PTR))
3877 3878
		return 0;

3879 3880
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3881 3882
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3883
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3884
	}
C
Christoph Lameter 已提交
3885

3886
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3887
}
3888 3889 3890 3891 3892

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
3893 3894 3895
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(object, size);
3896 3897
	return size;
}
K
Kirill A. Shutemov 已提交
3898
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3899 3900 3901 3902

void kfree(const void *x)
{
	struct page *page;
3903
	void *object = (void *)x;
C
Christoph Lameter 已提交
3904

3905 3906
	trace_kfree(_RET_IP_, x);

3907
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3908 3909
		return;

3910
	page = virt_to_head_page(x);
3911
	if (unlikely(!PageSlab(page))) {
3912
		BUG_ON(!PageCompound(page));
3913
		kfree_hook(x);
3914
		__free_pages(page, compound_order(page));
3915 3916
		return;
	}
3917
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3918 3919 3920
}
EXPORT_SYMBOL(kfree);

3921 3922
#define SHRINK_PROMOTE_MAX 32

3923
/*
3924 3925 3926
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3927 3928 3929 3930
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3931
 */
3932
int __kmem_cache_shrink(struct kmem_cache *s)
3933 3934 3935 3936 3937 3938
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3939 3940
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3941
	unsigned long flags;
3942
	int ret = 0;
3943 3944

	flush_all(s);
C
Christoph Lameter 已提交
3945
	for_each_kmem_cache_node(s, node, n) {
3946 3947 3948
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3949 3950 3951 3952

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3953
		 * Build lists of slabs to discard or promote.
3954
		 *
C
Christoph Lameter 已提交
3955 3956
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3957 3958
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3969
				n->nr_partial--;
3970 3971
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3972 3973 3974
		}

		/*
3975 3976
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3977
		 */
3978 3979
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3980 3981

		spin_unlock_irqrestore(&n->list_lock, flags);
3982 3983

		/* Release empty slabs */
3984
		list_for_each_entry_safe(page, t, &discard, lru)
3985
			discard_slab(s, page);
3986 3987 3988

		if (slabs_node(s, node))
			ret = 1;
3989 3990
	}

3991
	return ret;
3992 3993
}

3994
#ifdef CONFIG_MEMCG
3995 3996
static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
{
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4011 4012
}

4013 4014 4015 4016 4017 4018
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4019
	slub_set_cpu_partial(s, 0);
4020 4021 4022 4023
	s->min_partial = 0;

	/*
	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4024
	 * we have to make sure the change is visible before shrinking.
4025
	 */
4026
	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4027 4028 4029
}
#endif

4030 4031 4032 4033
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4034
	mutex_lock(&slab_mutex);
4035
	list_for_each_entry(s, &slab_caches, list)
4036
		__kmem_cache_shrink(s);
4037
	mutex_unlock(&slab_mutex);
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4049
	offline_node = marg->status_change_nid_normal;
4050 4051 4052 4053 4054 4055 4056 4057

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4058
	mutex_lock(&slab_mutex);
4059 4060 4061 4062 4063 4064
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4065
			 * and offline_pages() function shouldn't call this
4066 4067
			 * callback. So, we must fail.
			 */
4068
			BUG_ON(slabs_node(s, offline_node));
4069 4070

			s->node[offline_node] = NULL;
4071
			kmem_cache_free(kmem_cache_node, n);
4072 4073
		}
	}
4074
	mutex_unlock(&slab_mutex);
4075 4076 4077 4078 4079 4080 4081
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4082
	int nid = marg->status_change_nid_normal;
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4093
	 * We are bringing a node online. No memory is available yet. We must
4094 4095 4096
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4097
	mutex_lock(&slab_mutex);
4098 4099 4100 4101 4102 4103
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4104
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4105 4106 4107 4108
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4109
		init_kmem_cache_node(n);
4110 4111 4112
		s->node[nid] = n;
	}
out:
4113
	mutex_unlock(&slab_mutex);
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4137 4138 4139 4140
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4141 4142 4143
	return ret;
}

4144 4145 4146 4147
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4148

C
Christoph Lameter 已提交
4149 4150 4151 4152
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4153 4154
/*
 * Used for early kmem_cache structures that were allocated using
4155 4156
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4157 4158
 */

4159
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4160 4161
{
	int node;
4162
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4163
	struct kmem_cache_node *n;
4164

4165
	memcpy(s, static_cache, kmem_cache->object_size);
4166

4167 4168 4169 4170 4171 4172
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4173
	for_each_kmem_cache_node(s, node, n) {
4174 4175
		struct page *p;

C
Christoph Lameter 已提交
4176 4177
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
4178

L
Li Zefan 已提交
4179
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4180 4181
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
4182 4183
#endif
	}
4184
	slab_init_memcg_params(s);
4185
	list_add(&s->list, &slab_caches);
4186
	memcg_link_cache(s);
4187
	return s;
4188 4189
}

C
Christoph Lameter 已提交
4190 4191
void __init kmem_cache_init(void)
{
4192 4193
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4194

4195 4196 4197
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4198 4199
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4200

4201
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4202
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4203

4204
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4205 4206 4207 4208

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4209 4210 4211
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4212
		       SLAB_HWCACHE_ALIGN, 0, 0);
4213

4214
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
4215

4216 4217 4218 4219 4220
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
4221
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4222 4223

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4224
	setup_kmalloc_cache_index_table();
4225
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4226

T
Thomas Garnier 已提交
4227 4228 4229
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4230 4231
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4232

4233
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4234
		cache_line_size(),
C
Christoph Lameter 已提交
4235 4236 4237 4238
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4239 4240 4241 4242
void __init kmem_cache_init_late(void)
{
}

4243
struct kmem_cache *
4244
__kmem_cache_alias(const char *name, size_t size, size_t align,
4245
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4246
{
4247
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4248

4249
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4250 4251
	if (s) {
		s->refcount++;
4252

C
Christoph Lameter 已提交
4253 4254 4255 4256
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4257
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
4258
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4259

4260
		for_each_memcg_cache(c, s) {
4261 4262 4263 4264 4265
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

4266 4267
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4268
			s = NULL;
4269
		}
4270
	}
C
Christoph Lameter 已提交
4271

4272 4273
	return s;
}
P
Pekka Enberg 已提交
4274

4275
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4276
{
4277 4278 4279 4280 4281
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4282

4283 4284 4285 4286
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4287
	memcg_propagate_slab_attrs(s);
4288 4289
	err = sysfs_slab_add(s);
	if (err)
4290
		__kmem_cache_release(s);
4291

4292
	return err;
C
Christoph Lameter 已提交
4293 4294
}

4295
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4296
{
4297
	struct kmem_cache *s;
4298
	void *ret;
4299

4300
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4301 4302
		return kmalloc_large(size, gfpflags);

4303
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4304

4305
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4306
		return s;
C
Christoph Lameter 已提交
4307

4308
	ret = slab_alloc(s, gfpflags, caller);
4309

L
Lucas De Marchi 已提交
4310
	/* Honor the call site pointer we received. */
4311
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4312 4313

	return ret;
C
Christoph Lameter 已提交
4314 4315
}

4316
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4317
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4318
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4319
{
4320
	struct kmem_cache *s;
4321
	void *ret;
4322

4323
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4324 4325 4326 4327 4328 4329 4330 4331
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4332

4333
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4334

4335
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4336
		return s;
C
Christoph Lameter 已提交
4337

4338
	ret = slab_alloc_node(s, gfpflags, node, caller);
4339

L
Lucas De Marchi 已提交
4340
	/* Honor the call site pointer we received. */
4341
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4342 4343

	return ret;
C
Christoph Lameter 已提交
4344
}
4345
#endif
C
Christoph Lameter 已提交
4346

4347
#ifdef CONFIG_SYSFS
4348 4349 4350 4351 4352 4353 4354 4355 4356
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4357
#endif
4358

4359
#ifdef CONFIG_SLUB_DEBUG
4360 4361
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4362 4363
{
	void *p;
4364
	void *addr = page_address(page);
4365 4366 4367 4368 4369 4370

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4371
	bitmap_zero(map, page->objects);
4372

4373 4374 4375 4376 4377
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4378 4379
	}

4380
	for_each_object(p, s, addr, page->objects)
4381
		if (!test_bit(slab_index(p, s, addr), map))
4382
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4383 4384 4385 4386
				return 0;
	return 1;
}

4387 4388
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4389
{
4390 4391 4392
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4393 4394
}

4395 4396
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4397 4398 4399 4400 4401 4402 4403 4404
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4405
		validate_slab_slab(s, page, map);
4406 4407 4408
		count++;
	}
	if (count != n->nr_partial)
4409 4410
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4411 4412 4413 4414 4415

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4416
		validate_slab_slab(s, page, map);
4417 4418 4419
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4420 4421
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4422 4423 4424 4425 4426 4427

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4428
static long validate_slab_cache(struct kmem_cache *s)
4429 4430 4431
{
	int node;
	unsigned long count = 0;
4432
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4433
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4434
	struct kmem_cache_node *n;
4435 4436 4437

	if (!map)
		return -ENOMEM;
4438 4439

	flush_all(s);
C
Christoph Lameter 已提交
4440
	for_each_kmem_cache_node(s, node, n)
4441 4442
		count += validate_slab_node(s, n, map);
	kfree(map);
4443 4444
	return count;
}
4445
/*
C
Christoph Lameter 已提交
4446
 * Generate lists of code addresses where slabcache objects are allocated
4447 4448 4449 4450 4451
 * and freed.
 */

struct location {
	unsigned long count;
4452
	unsigned long addr;
4453 4454 4455 4456 4457
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4458
	DECLARE_BITMAP(cpus, NR_CPUS);
4459
	nodemask_t nodes;
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4475
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4476 4477 4478 4479 4480 4481
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4482
	l = (void *)__get_free_pages(flags, order);
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4496
				const struct track *track)
4497 4498 4499
{
	long start, end, pos;
	struct location *l;
4500
	unsigned long caddr;
4501
	unsigned long age = jiffies - track->when;
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4533 4534
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4535 4536
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4537 4538 4539
			return 1;
		}

4540
		if (track->addr < caddr)
4541 4542 4543 4544 4545 4546
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4547
	 * Not found. Insert new tracking element.
4548
	 */
4549
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4550 4551 4552 4553 4554 4555 4556 4557
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4558 4559 4560 4561 4562 4563
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4564 4565
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4566 4567
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4568 4569 4570 4571
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4572
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4573
		unsigned long *map)
4574
{
4575
	void *addr = page_address(page);
4576 4577
	void *p;

4578
	bitmap_zero(map, page->objects);
4579
	get_map(s, page, map);
4580

4581
	for_each_object(p, s, addr, page->objects)
4582 4583
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4584 4585 4586 4587 4588
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4589
	int len = 0;
4590
	unsigned long i;
4591
	struct loc_track t = { 0, 0, NULL };
4592
	int node;
E
Eric Dumazet 已提交
4593 4594
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4595
	struct kmem_cache_node *n;
4596

E
Eric Dumazet 已提交
4597
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4598
				     GFP_KERNEL)) {
E
Eric Dumazet 已提交
4599
		kfree(map);
4600
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4601
	}
4602 4603 4604
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4605
	for_each_kmem_cache_node(s, node, n) {
4606 4607 4608
		unsigned long flags;
		struct page *page;

4609
		if (!atomic_long_read(&n->nr_slabs))
4610 4611 4612 4613
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4614
			process_slab(&t, s, page, alloc, map);
4615
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4616
			process_slab(&t, s, page, alloc, map);
4617 4618 4619 4620
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4621
		struct location *l = &t.loc[i];
4622

H
Hugh Dickins 已提交
4623
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4624
			break;
4625
		len += sprintf(buf + len, "%7ld ", l->count);
4626 4627

		if (l->addr)
J
Joe Perches 已提交
4628
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4629
		else
4630
			len += sprintf(buf + len, "<not-available>");
4631 4632

		if (l->sum_time != l->min_time) {
4633
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4634 4635 4636
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4637
		} else
4638
			len += sprintf(buf + len, " age=%ld",
4639 4640 4641
				l->min_time);

		if (l->min_pid != l->max_pid)
4642
			len += sprintf(buf + len, " pid=%ld-%ld",
4643 4644
				l->min_pid, l->max_pid);
		else
4645
			len += sprintf(buf + len, " pid=%ld",
4646 4647
				l->min_pid);

R
Rusty Russell 已提交
4648 4649
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4650 4651 4652 4653
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4654

4655
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4656 4657 4658 4659
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4660

4661
		len += sprintf(buf + len, "\n");
4662 4663 4664
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4665
	kfree(map);
4666
	if (!t.count)
4667 4668
		len += sprintf(buf, "No data\n");
	return len;
4669
}
4670
#endif
4671

4672
#ifdef SLUB_RESILIENCY_TEST
4673
static void __init resiliency_test(void)
4674 4675 4676
{
	u8 *p;

4677
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4678

4679 4680 4681
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4682 4683 4684

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4685 4686
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4687 4688 4689 4690 4691 4692

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4693 4694 4695
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4696 4697 4698 4699 4700

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4701 4702 4703
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4704 4705
	validate_slab_cache(kmalloc_caches[6]);

4706
	pr_err("\nB. Corruption after free\n");
4707 4708 4709
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4710
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4711 4712 4713 4714 4715
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4716
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4717 4718 4719 4720 4721
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4722
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4723 4724 4725 4726 4727 4728 4729 4730
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4731
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4732
enum slab_stat_type {
4733 4734 4735 4736 4737
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4738 4739
};

4740
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4741 4742 4743
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4744
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4745

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4762 4763
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4764 4765 4766 4767 4768 4769
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4770
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4771 4772
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4773

4774 4775
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4776

4777
		for_each_possible_cpu(cpu) {
4778 4779
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4780
			int node;
4781
			struct page *page;
4782

4783
			page = READ_ONCE(c->page);
4784 4785
			if (!page)
				continue;
4786

4787 4788 4789 4790 4791 4792 4793
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4794

4795 4796 4797
			total += x;
			nodes[node] += x;

4798
			page = slub_percpu_partial_read_once(c);
4799
			if (page) {
L
Li Zefan 已提交
4800 4801 4802 4803 4804 4805 4806
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4807 4808
				total += x;
				nodes[node] += x;
4809
			}
C
Christoph Lameter 已提交
4810 4811 4812
		}
	}

4813
	get_online_mems();
4814
#ifdef CONFIG_SLUB_DEBUG
4815
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4816 4817 4818
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4819

4820 4821 4822 4823 4824
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4825
			else
4826
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4827 4828 4829 4830
			total += x;
			nodes[node] += x;
		}

4831 4832 4833
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4834
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4835

C
Christoph Lameter 已提交
4836
		for_each_kmem_cache_node(s, node, n) {
4837 4838 4839 4840
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4841
			else
4842
				x = n->nr_partial;
C
Christoph Lameter 已提交
4843 4844 4845 4846 4847 4848
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4849
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4850 4851 4852 4853
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4854
	put_online_mems();
C
Christoph Lameter 已提交
4855 4856 4857 4858
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4859
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4860 4861 4862
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4863
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4864

C
Christoph Lameter 已提交
4865
	for_each_kmem_cache_node(s, node, n)
4866
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4867
			return 1;
C
Christoph Lameter 已提交
4868

C
Christoph Lameter 已提交
4869 4870
	return 0;
}
4871
#endif
C
Christoph Lameter 已提交
4872 4873

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4874
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4875 4876 4877 4878 4879 4880 4881 4882

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4883 4884
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4885 4886 4887

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4888
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4904
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4905 4906 4907 4908 4909
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4910
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4911 4912 4913
}
SLAB_ATTR_RO(objs_per_slab);

4914 4915 4916
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4917 4918 4919
	unsigned long order;
	int err;

4920
	err = kstrtoul(buf, 10, &order);
4921 4922
	if (err)
		return err;
4923 4924 4925 4926 4927 4928 4929 4930

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4931 4932
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4933
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4934
}
4935
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4936

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4948
	err = kstrtoul(buf, 10, &min);
4949 4950 4951
	if (err)
		return err;

4952
	set_min_partial(s, min);
4953 4954 4955 4956
	return length;
}
SLAB_ATTR(min_partial);

4957 4958
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
4959
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4960 4961 4962 4963 4964 4965 4966 4967
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4968
	err = kstrtoul(buf, 10, &objects);
4969 4970
	if (err)
		return err;
4971
	if (objects && !kmem_cache_has_cpu_partial(s))
4972
		return -EINVAL;
4973

4974
	slub_set_cpu_partial(s, objects);
4975 4976 4977 4978 4979
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4980 4981
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4982 4983 4984
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4985 4986 4987 4988 4989
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4990
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4991 4992 4993 4994 4995
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4996
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4997 4998 4999 5000 5001
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5002
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5003 5004 5005 5006 5007
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5008
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5009 5010 5011
}
SLAB_ATTR_RO(objects);

5012 5013 5014 5015 5016 5017
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5018 5019 5020 5021 5022 5023 5024 5025
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5026 5027 5028
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5040 5041 5042
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

5082 5083 5084 5085 5086 5087
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%zu\n", s->usersize);
}
SLAB_ATTR_RO(usersize);

5088 5089
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5090
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5091 5092 5093
}
SLAB_ATTR_RO(destroy_by_rcu);

5094 5095 5096 5097 5098 5099
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

5100
#ifdef CONFIG_SLUB_DEBUG
5101 5102 5103 5104 5105 5106
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5107 5108 5109 5110 5111 5112
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5113 5114
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5115
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5116 5117 5118 5119 5120
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5121
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5122 5123
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5124
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5125
	}
C
Christoph Lameter 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5138 5139 5140 5141 5142 5143 5144 5145
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5146
	s->flags &= ~SLAB_TRACE;
5147 5148
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5149
		s->flags |= SLAB_TRACE;
5150
	}
C
Christoph Lameter 已提交
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5167
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5168
		s->flags |= SLAB_RED_ZONE;
5169
	}
5170
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5187
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5188
		s->flags |= SLAB_POISON;
5189
	}
5190
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5207 5208
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5209
		s->flags |= SLAB_STORE_USER;
5210
	}
5211
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5212 5213 5214 5215
	return length;
}
SLAB_ATTR(store_user);

5216 5217 5218 5219 5220 5221 5222 5223
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5224 5225 5226 5227 5228 5229 5230 5231
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5232 5233
}
SLAB_ATTR(validate);
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5261 5262 5263
	if (s->refcount > 1)
		return -EINVAL;

5264 5265 5266 5267 5268 5269
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5270
#endif
5271

5272 5273 5274 5275 5276 5277 5278 5279
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5280 5281 5282
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5283 5284 5285 5286 5287
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5288
#ifdef CONFIG_NUMA
5289
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5290
{
5291
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5292 5293
}

5294
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5295 5296
				const char *buf, size_t length)
{
5297 5298 5299
	unsigned long ratio;
	int err;

5300
	err = kstrtoul(buf, 10, &ratio);
5301 5302 5303
	if (err)
		return err;

5304
	if (ratio <= 100)
5305
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5306 5307 5308

	return length;
}
5309
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5310 5311
#endif

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5324
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5325 5326 5327 5328 5329 5330 5331

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5332
#ifdef CONFIG_SMP
5333 5334
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5335
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5336
	}
5337
#endif
5338 5339 5340 5341
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5342 5343 5344 5345 5346
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5347
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5348 5349
}

5350 5351 5352 5353 5354
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5375
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5376 5377 5378 5379 5380 5381 5382
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5383
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5384
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5385 5386
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5387 5388
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5389 5390
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5391 5392
#endif

P
Pekka Enberg 已提交
5393
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5394 5395 5396 5397
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5398
	&min_partial_attr.attr,
5399
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5400
	&objects_attr.attr,
5401
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5402 5403 5404 5405 5406 5407 5408 5409
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5410
	&shrink_attr.attr,
5411
	&reserved_attr.attr,
5412
	&slabs_cpu_partial_attr.attr,
5413
#ifdef CONFIG_SLUB_DEBUG
5414 5415 5416 5417
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5418 5419 5420
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5421
	&validate_attr.attr,
5422 5423
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5424
#endif
C
Christoph Lameter 已提交
5425 5426 5427 5428
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5429
	&remote_node_defrag_ratio_attr.attr,
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5442
	&alloc_node_mismatch_attr.attr,
5443 5444 5445 5446 5447 5448 5449
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5450
	&deactivate_bypass_attr.attr,
5451
	&order_fallback_attr.attr,
5452 5453
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5454 5455
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5456 5457
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5458
#endif
5459 5460 5461
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5462
	&usersize_attr.attr,
5463

C
Christoph Lameter 已提交
5464 5465 5466
	NULL
};

5467
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5505
#ifdef CONFIG_MEMCG
5506
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5507
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5508

5509 5510 5511 5512
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5530 5531
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5532 5533 5534
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5535 5536 5537
	return err;
}

5538 5539
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5540
#ifdef CONFIG_MEMCG
5541 5542
	int i;
	char *buffer = NULL;
5543
	struct kmem_cache *root_cache;
5544

5545
	if (is_root_cache(s))
5546 5547
		return;

5548
	root_cache = s->memcg_params.root_cache;
5549

5550 5551 5552 5553
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5554
	if (!root_cache->max_attr_size)
5555 5556 5557 5558 5559 5560
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5561
		ssize_t len;
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5577
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5578 5579 5580 5581 5582 5583 5584 5585
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5586 5587 5588
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5589 5590 5591 5592 5593 5594 5595
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5596 5597 5598 5599 5600
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5601
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5602 5603 5604 5605 5606 5607
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5608
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5620
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5621 5622 5623
	.filter = uevent_filter,
};

5624
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5625

5626 5627
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5628
#ifdef CONFIG_MEMCG
5629
	if (!is_root_cache(s))
5630
		return s->memcg_params.root_cache->memcg_kset;
5631 5632 5633 5634
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5635 5636 5637
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5638 5639
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5660
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5661
		*p++ = 'F';
V
Vladimir Davydov 已提交
5662 5663
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5664 5665 5666
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5667

C
Christoph Lameter 已提交
5668 5669 5670 5671
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5684
		goto out;
5685 5686 5687 5688 5689 5690

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
5691
out:
5692 5693 5694
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5695 5696 5697 5698
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5699
	struct kset *kset = cache_kset(s);
5700
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5701

5702 5703
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5704 5705 5706 5707 5708
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5709 5710 5711 5712
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5713 5714 5715 5716 5717 5718
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5719
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5720 5721 5722 5723 5724 5725 5726 5727 5728
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5729
	s->kobj.kset = kset;
5730
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5731
	if (err)
5732
		goto out;
C
Christoph Lameter 已提交
5733 5734

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5735 5736
	if (err)
		goto out_del_kobj;
5737

5738
#ifdef CONFIG_MEMCG
5739
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5740 5741
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5742 5743
			err = -ENOMEM;
			goto out_del_kobj;
5744 5745 5746 5747
		}
	}
#endif

C
Christoph Lameter 已提交
5748 5749 5750 5751 5752
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5753 5754 5755 5756 5757 5758 5759
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5760 5761
}

5762
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5763
{
5764
	if (slab_state < FULL)
5765 5766 5767 5768 5769 5770
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5771 5772
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5773 5774 5775 5776 5777 5778
}

void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5779 5780 5781 5782
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5783
 * available lest we lose that information.
C
Christoph Lameter 已提交
5784 5785 5786 5787 5788 5789 5790
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5791
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5792 5793 5794 5795 5796

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5797
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5798 5799 5800
		/*
		 * If we have a leftover link then remove it.
		 */
5801 5802
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5818
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5819 5820
	int err;

5821
	mutex_lock(&slab_mutex);
5822

5823
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5824
	if (!slab_kset) {
5825
		mutex_unlock(&slab_mutex);
5826
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5827 5828 5829
		return -ENOSYS;
	}

5830
	slab_state = FULL;
5831

5832
	list_for_each_entry(s, &slab_caches, list) {
5833
		err = sysfs_slab_add(s);
5834
		if (err)
5835 5836
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5837
	}
C
Christoph Lameter 已提交
5838 5839 5840 5841 5842 5843

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5844
		if (err)
5845 5846
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5847 5848 5849
		kfree(al);
	}

5850
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5851 5852 5853 5854 5855
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5856
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5857 5858 5859 5860

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5861
#ifdef CONFIG_SLUB_DEBUG
5862
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5863 5864
{
	unsigned long nr_slabs = 0;
5865 5866
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5867
	int node;
C
Christoph Lameter 已提交
5868
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5869

C
Christoph Lameter 已提交
5870
	for_each_kmem_cache_node(s, node, n) {
5871 5872
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5873
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5874 5875
	}

5876 5877 5878 5879 5880 5881
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5882 5883
}

5884
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5885 5886 5887
{
}

5888 5889
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5890
{
5891
	return -EIO;
5892
}
Y
Yang Shi 已提交
5893
#endif /* CONFIG_SLUB_DEBUG */