nand_base.c 129.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 *  Overview:
 *   This is the generic MTD driver for NAND flash devices. It should be
 *   capable of working with almost all NAND chips currently available.
5
 *
L
Linus Torvalds 已提交
6
 *	Additional technical information is available on
7
 *	http://www.linux-mtd.infradead.org/doc/nand.html
8
 *
L
Linus Torvalds 已提交
9
 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10
 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
L
Linus Torvalds 已提交
11
 *
12
 *  Credits:
13 14
 *	David Woodhouse for adding multichip support
 *
L
Linus Torvalds 已提交
15 16 17
 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
 *	rework for 2K page size chips
 *
18
 *  TODO:
L
Linus Torvalds 已提交
19 20
 *	Enable cached programming for 2k page size chips
 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21
 *	if we have HW ECC support.
22
 *	BBT table is not serialized, has to be fixed
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

30 31
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

32
#include <linux/module.h>
L
Linus Torvalds 已提交
33 34
#include <linux/delay.h>
#include <linux/errno.h>
T
Thomas Gleixner 已提交
35
#include <linux/err.h>
L
Linus Torvalds 已提交
36 37
#include <linux/sched.h>
#include <linux/slab.h>
38
#include <linux/mm.h>
39
#include <linux/nmi.h>
L
Linus Torvalds 已提交
40 41 42 43
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
44
#include <linux/mtd/nand_bch.h>
L
Linus Torvalds 已提交
45 46
#include <linux/interrupt.h>
#include <linux/bitops.h>
47
#include <linux/io.h>
L
Linus Torvalds 已提交
48
#include <linux/mtd/partitions.h>
49
#include <linux/of.h>
L
Linus Torvalds 已提交
50

51 52 53 54
static int nand_get_device(struct mtd_info *mtd, int new_state);

static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops);
L
Linus Torvalds 已提交
55 56

/* Define default oob placement schemes for large and small page devices */
57 58 59 60 61
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
62

63 64
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
65

66 67 68 69 70 71 72
	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 4;
	} else {
		oobregion->offset = 6;
		oobregion->length = ecc->total - 4;
	}
L
Linus Torvalds 已提交
73

74 75 76 77 78 79 80 81
	return 0;
}

static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	if (mtd->oobsize == 16) {
		if (section)
			return -ERANGE;

		oobregion->length = 8;
		oobregion->offset = 8;
	} else {
		oobregion->length = 2;
		if (!section)
			oobregion->offset = 3;
		else
			oobregion->offset = 6;
	}

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
	.ecc = nand_ooblayout_ecc_sp,
	.free = nand_ooblayout_free_sp,
103
};
104
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
105

106 107 108 109 110
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
111

112 113
	if (section)
		return -ERANGE;
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	oobregion->length = ecc->total;
	oobregion->offset = mtd->oobsize - oobregion->length;

	return 0;
}

static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

	if (section)
		return -ERANGE;

	oobregion->length = mtd->oobsize - ecc->total - 2;
	oobregion->offset = 2;

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
	.ecc = nand_ooblayout_ecc_lp,
	.free = nand_ooblayout_free_lp,
};
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
T
Thomas Gleixner 已提交
141

142 143 144
static int check_offs_len(struct mtd_info *mtd,
					loff_t ofs, uint64_t len)
{
145
	struct nand_chip *chip = mtd_to_nand(mtd);
146 147 148
	int ret = 0;

	/* Start address must align on block boundary */
149
	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
150
		pr_debug("%s: unaligned address\n", __func__);
151 152 153 154
		ret = -EINVAL;
	}

	/* Length must align on block boundary */
155
	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
156
		pr_debug("%s: length not block aligned\n", __func__);
157 158 159 160 161 162
		ret = -EINVAL;
	}

	return ret;
}

L
Linus Torvalds 已提交
163 164
/**
 * nand_release_device - [GENERIC] release chip
165
 * @mtd: MTD device structure
166
 *
167
 * Release chip lock and wake up anyone waiting on the device.
L
Linus Torvalds 已提交
168
 */
169
static void nand_release_device(struct mtd_info *mtd)
L
Linus Torvalds 已提交
170
{
171
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
172

T
Thomas Gleixner 已提交
173
	/* Release the controller and the chip */
174 175 176 177 178
	spin_lock(&chip->controller->lock);
	chip->controller->active = NULL;
	chip->state = FL_READY;
	wake_up(&chip->controller->wq);
	spin_unlock(&chip->controller->lock);
L
Linus Torvalds 已提交
179 180 181 182
}

/**
 * nand_read_byte - [DEFAULT] read one byte from the chip
183
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
184
 *
185
 * Default read function for 8bit buswidth
L
Linus Torvalds 已提交
186
 */
187
static uint8_t nand_read_byte(struct mtd_info *mtd)
L
Linus Torvalds 已提交
188
{
189
	struct nand_chip *chip = mtd_to_nand(mtd);
190
	return readb(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
191 192 193
}

/**
194
 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
195
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
196
 *
197 198
 * Default read function for 16bit buswidth with endianness conversion.
 *
L
Linus Torvalds 已提交
199
 */
200
static uint8_t nand_read_byte16(struct mtd_info *mtd)
L
Linus Torvalds 已提交
201
{
202
	struct nand_chip *chip = mtd_to_nand(mtd);
203
	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
L
Linus Torvalds 已提交
204 205 206 207
}

/**
 * nand_read_word - [DEFAULT] read one word from the chip
208
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
209
 *
210
 * Default read function for 16bit buswidth without endianness conversion.
L
Linus Torvalds 已提交
211 212 213
 */
static u16 nand_read_word(struct mtd_info *mtd)
{
214
	struct nand_chip *chip = mtd_to_nand(mtd);
215
	return readw(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
216 217 218 219
}

/**
 * nand_select_chip - [DEFAULT] control CE line
220 221
 * @mtd: MTD device structure
 * @chipnr: chipnumber to select, -1 for deselect
L
Linus Torvalds 已提交
222 223 224
 *
 * Default select function for 1 chip devices.
 */
225
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
L
Linus Torvalds 已提交
226
{
227
	struct nand_chip *chip = mtd_to_nand(mtd);
228 229

	switch (chipnr) {
L
Linus Torvalds 已提交
230
	case -1:
231
		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240
		break;
	case 0:
		break;

	default:
		BUG();
	}
}

241 242 243 244 245 246 247 248 249
/**
 * nand_write_byte - [DEFAULT] write single byte to chip
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0]
 */
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
{
250
	struct nand_chip *chip = mtd_to_nand(mtd);
251 252 253 254 255 256 257 258 259 260 261 262 263

	chip->write_buf(mtd, &byte, 1);
}

/**
 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 */
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
{
264
	struct nand_chip *chip = mtd_to_nand(mtd);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	uint16_t word = byte;

	/*
	 * It's not entirely clear what should happen to I/O[15:8] when writing
	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
	 *
	 *    When the host supports a 16-bit bus width, only data is
	 *    transferred at the 16-bit width. All address and command line
	 *    transfers shall use only the lower 8-bits of the data bus. During
	 *    command transfers, the host may place any value on the upper
	 *    8-bits of the data bus. During address transfers, the host shall
	 *    set the upper 8-bits of the data bus to 00h.
	 *
	 * One user of the write_byte callback is nand_onfi_set_features. The
	 * four parameters are specified to be written to I/O[7:0], but this is
	 * neither an address nor a command transfer. Let's assume a 0 on the
	 * upper I/O lines is OK.
	 */
	chip->write_buf(mtd, (uint8_t *)&word, 2);
}

L
Linus Torvalds 已提交
286 287
/**
 * nand_write_buf - [DEFAULT] write buffer to chip
288 289 290
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
291
 *
292
 * Default write function for 8bit buswidth.
L
Linus Torvalds 已提交
293
 */
294
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
295
{
296
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
297

298
	iowrite8_rep(chip->IO_ADDR_W, buf, len);
L
Linus Torvalds 已提交
299 300 301
}

/**
302
 * nand_read_buf - [DEFAULT] read chip data into buffer
303 304 305
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
306
 *
307
 * Default read function for 8bit buswidth.
L
Linus Torvalds 已提交
308
 */
309
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
310
{
311
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
312

313
	ioread8_rep(chip->IO_ADDR_R, buf, len);
L
Linus Torvalds 已提交
314 315 316 317
}

/**
 * nand_write_buf16 - [DEFAULT] write buffer to chip
318 319 320
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
321
 *
322
 * Default write function for 16bit buswidth.
L
Linus Torvalds 已提交
323
 */
324
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
325
{
326
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
327
	u16 *p = (u16 *) buf;
328

329
	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
L
Linus Torvalds 已提交
330 331 332
}

/**
333
 * nand_read_buf16 - [DEFAULT] read chip data into buffer
334 335 336
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
337
 *
338
 * Default read function for 16bit buswidth.
L
Linus Torvalds 已提交
339
 */
340
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
341
{
342
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
343 344
	u16 *p = (u16 *) buf;

345
	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
L
Linus Torvalds 已提交
346 347 348 349
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
350 351
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
352
 *
353
 * Check, if the block is bad.
L
Linus Torvalds 已提交
354
 */
355
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
356
{
357
	int page, res = 0, i = 0;
358
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
359 360
	u16 bad;

361
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
362 363
		ofs += mtd->erasesize - mtd->writesize;

364 365
	page = (int)(ofs >> chip->page_shift) & chip->pagemask;

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	do {
		if (chip->options & NAND_BUSWIDTH_16) {
			chip->cmdfunc(mtd, NAND_CMD_READOOB,
					chip->badblockpos & 0xFE, page);
			bad = cpu_to_le16(chip->read_word(mtd));
			if (chip->badblockpos & 0x1)
				bad >>= 8;
			else
				bad &= 0xFF;
		} else {
			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
					page);
			bad = chip->read_byte(mtd);
		}

		if (likely(chip->badblockbits == 8))
			res = bad != 0xFF;
383
		else
384 385 386 387 388
			res = hweight8(bad) < chip->badblockbits;
		ofs += mtd->writesize;
		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
		i++;
	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
389

L
Linus Torvalds 已提交
390 391 392 393
	return res;
}

/**
394
 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
395 396
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
397
 *
398
 * This is the default implementation, which can be overridden by a hardware
399 400 401 402 403
 * specific driver. It provides the details for writing a bad block marker to a
 * block.
 */
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
404
	struct nand_chip *chip = mtd_to_nand(mtd);
405 406 407 408
	struct mtd_oob_ops ops;
	uint8_t buf[2] = { 0, 0 };
	int ret = 0, res, i = 0;

409
	memset(&ops, 0, sizeof(ops));
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	ops.oobbuf = buf;
	ops.ooboffs = chip->badblockpos;
	if (chip->options & NAND_BUSWIDTH_16) {
		ops.ooboffs &= ~0x01;
		ops.len = ops.ooblen = 2;
	} else {
		ops.len = ops.ooblen = 1;
	}
	ops.mode = MTD_OPS_PLACE_OOB;

	/* Write to first/last page(s) if necessary */
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
		ofs += mtd->erasesize - mtd->writesize;
	do {
		res = nand_do_write_oob(mtd, ofs, &ops);
		if (!ret)
			ret = res;

		i++;
		ofs += mtd->writesize;
	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);

	return ret;
}

/**
 * nand_block_markbad_lowlevel - mark a block bad
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
 * This function performs the generic NAND bad block marking steps (i.e., bad
 * block table(s) and/or marker(s)). We only allow the hardware driver to
 * specify how to write bad block markers to OOB (chip->block_markbad).
 *
444
 * We try operations in the following order:
445
 *  (1) erase the affected block, to allow OOB marker to be written cleanly
446 447 448 449
 *  (2) write bad block marker to OOB area of affected block (unless flag
 *      NAND_BBT_NO_OOB_BBM is present)
 *  (3) update the BBT
 * Note that we retain the first error encountered in (2) or (3), finish the
450
 * procedures, and dump the error in the end.
L
Linus Torvalds 已提交
451
*/
452
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
453
{
454
	struct nand_chip *chip = mtd_to_nand(mtd);
455
	int res, ret = 0;
456

457
	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
458 459 460 461 462 463
		struct erase_info einfo;

		/* Attempt erase before marking OOB */
		memset(&einfo, 0, sizeof(einfo));
		einfo.mtd = mtd;
		einfo.addr = ofs;
464
		einfo.len = 1ULL << chip->phys_erase_shift;
465
		nand_erase_nand(mtd, &einfo, 0);
L
Linus Torvalds 已提交
466

467
		/* Write bad block marker to OOB */
468
		nand_get_device(mtd, FL_WRITING);
469
		ret = chip->block_markbad(mtd, ofs);
470
		nand_release_device(mtd);
471
	}
472

473 474 475
	/* Mark block bad in BBT */
	if (chip->bbt) {
		res = nand_markbad_bbt(mtd, ofs);
476 477 478 479
		if (!ret)
			ret = res;
	}

480 481
	if (!ret)
		mtd->ecc_stats.badblocks++;
482

483
	return ret;
L
Linus Torvalds 已提交
484 485
}

486
/**
L
Linus Torvalds 已提交
487
 * nand_check_wp - [GENERIC] check if the chip is write protected
488
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
489
 *
490 491
 * Check, if the device is write protected. The function expects, that the
 * device is already selected.
L
Linus Torvalds 已提交
492
 */
493
static int nand_check_wp(struct mtd_info *mtd)
L
Linus Torvalds 已提交
494
{
495
	struct nand_chip *chip = mtd_to_nand(mtd);
496

497
	/* Broken xD cards report WP despite being writable */
498 499 500
	if (chip->options & NAND_BROKEN_XD)
		return 0;

L
Linus Torvalds 已提交
501
	/* Check the WP bit */
502 503
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
L
Linus Torvalds 已提交
504 505
}

506
/**
507
 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
508 509 510
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
511
 * Check if the block is marked as reserved.
512 513 514
 */
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
515
	struct nand_chip *chip = mtd_to_nand(mtd);
516 517 518 519 520 521 522

	if (!chip->bbt)
		return 0;
	/* Return info from the table */
	return nand_isreserved_bbt(mtd, ofs);
}

L
Linus Torvalds 已提交
523 524
/**
 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
525 526 527
 * @mtd: MTD device structure
 * @ofs: offset from device start
 * @allowbbt: 1, if its allowed to access the bbt area
L
Linus Torvalds 已提交
528 529 530 531
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
532
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
L
Linus Torvalds 已提交
533
{
534
	struct nand_chip *chip = mtd_to_nand(mtd);
535

536
	if (!chip->bbt)
537
		return chip->block_bad(mtd, ofs);
538

L
Linus Torvalds 已提交
539
	/* Return info from the table */
540
	return nand_isbad_bbt(mtd, ofs, allowbbt);
L
Linus Torvalds 已提交
541 542
}

543 544
/**
 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
545 546
 * @mtd: MTD device structure
 * @timeo: Timeout
547 548 549 550 551 552
 *
 * Helper function for nand_wait_ready used when needing to wait in interrupt
 * context.
 */
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
{
553
	struct nand_chip *chip = mtd_to_nand(mtd);
554 555 556 557 558 559 560 561 562 563 564
	int i;

	/* Wait for the device to get ready */
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready(mtd))
			break;
		touch_softlockup_watchdog();
		mdelay(1);
	}
}

565 566 567 568 569 570
/**
 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 * @mtd: MTD device structure
 *
 * Wait for the ready pin after a command, and warn if a timeout occurs.
 */
571
void nand_wait_ready(struct mtd_info *mtd)
572
{
573
	struct nand_chip *chip = mtd_to_nand(mtd);
574
	unsigned long timeo = 400;
575

576
	if (in_interrupt() || oops_in_progress)
577
		return panic_nand_wait_ready(mtd, timeo);
578

579
	/* Wait until command is processed or timeout occurs */
580
	timeo = jiffies + msecs_to_jiffies(timeo);
581
	do {
582
		if (chip->dev_ready(mtd))
583
			return;
584
		cond_resched();
585
	} while (time_before(jiffies, timeo));
586

587 588
	if (!chip->dev_ready(mtd))
		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
589
}
590
EXPORT_SYMBOL_GPL(nand_wait_ready);
591

592 593 594 595 596 597 598 599 600
/**
 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 * @mtd: MTD device structure
 * @timeo: Timeout in ms
 *
 * Wait for status ready (i.e. command done) or timeout.
 */
static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
{
601
	register struct nand_chip *chip = mtd_to_nand(mtd);
602 603 604 605 606 607 608 609 610

	timeo = jiffies + msecs_to_jiffies(timeo);
	do {
		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
			break;
		touch_softlockup_watchdog();
	} while (time_before(jiffies, timeo));
};

L
Linus Torvalds 已提交
611 612
/**
 * nand_command - [DEFAULT] Send command to NAND device
613 614 615 616
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
617
 *
618
 * Send command to NAND device. This function is used for small page devices
619
 * (512 Bytes per page).
L
Linus Torvalds 已提交
620
 */
621 622
static void nand_command(struct mtd_info *mtd, unsigned int command,
			 int column, int page_addr)
L
Linus Torvalds 已提交
623
{
624
	register struct nand_chip *chip = mtd_to_nand(mtd);
625
	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
626

627
	/* Write out the command to the device */
L
Linus Torvalds 已提交
628 629 630
	if (command == NAND_CMD_SEQIN) {
		int readcmd;

J
Joern Engel 已提交
631
		if (column >= mtd->writesize) {
L
Linus Torvalds 已提交
632
			/* OOB area */
J
Joern Engel 已提交
633
			column -= mtd->writesize;
L
Linus Torvalds 已提交
634 635 636 637 638 639 640 641
			readcmd = NAND_CMD_READOOB;
		} else if (column < 256) {
			/* First 256 bytes --> READ0 */
			readcmd = NAND_CMD_READ0;
		} else {
			column -= 256;
			readcmd = NAND_CMD_READ1;
		}
642
		chip->cmd_ctrl(mtd, readcmd, ctrl);
643
		ctrl &= ~NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
644
	}
645
	chip->cmd_ctrl(mtd, command, ctrl);
L
Linus Torvalds 已提交
646

647
	/* Address cycle, when necessary */
648 649 650 651
	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
	/* Serially input address */
	if (column != -1) {
		/* Adjust columns for 16 bit buswidth */
652 653
		if (chip->options & NAND_BUSWIDTH_16 &&
				!nand_opcode_8bits(command))
654
			column >>= 1;
655
		chip->cmd_ctrl(mtd, column, ctrl);
656 657 658
		ctrl &= ~NAND_CTRL_CHANGE;
	}
	if (page_addr != -1) {
659
		chip->cmd_ctrl(mtd, page_addr, ctrl);
660
		ctrl &= ~NAND_CTRL_CHANGE;
661
		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
662
		/* One more address cycle for devices > 32MiB */
663 664
		if (chip->chipsize > (32 << 20))
			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
L
Linus Torvalds 已提交
665
	}
666
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
667 668

	/*
669 670
	 * Program and erase have their own busy handlers status and sequential
	 * in needs no delay
671
	 */
L
Linus Torvalds 已提交
672
	switch (command) {
673

L
Linus Torvalds 已提交
674 675 676 677 678 679 680 681
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
		return;

	case NAND_CMD_RESET:
682
		if (chip->dev_ready)
L
Linus Torvalds 已提交
683
			break;
684 685
		udelay(chip->chip_delay);
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
686
			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
687 688
		chip->cmd_ctrl(mtd,
			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
689 690
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
691 692
		return;

693
		/* This applies to read commands */
L
Linus Torvalds 已提交
694
	default:
695
		/*
L
Linus Torvalds 已提交
696 697
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
698
		 */
699 700
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
701
			return;
702
		}
L
Linus Torvalds 已提交
703
	}
704 705 706 707
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
708
	ndelay(100);
709 710

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
711 712
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static void nand_ccs_delay(struct nand_chip *chip)
{
	/*
	 * The controller already takes care of waiting for tCCS when the RNDIN
	 * or RNDOUT command is sent, return directly.
	 */
	if (!(chip->options & NAND_WAIT_TCCS))
		return;

	/*
	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
	 * (which should be safe for all NANDs).
	 */
	if (chip->data_interface && chip->data_interface->timings.sdr.tCCS_min)
		ndelay(chip->data_interface->timings.sdr.tCCS_min / 1000);
	else
		ndelay(500);
}

L
Linus Torvalds 已提交
732 733
/**
 * nand_command_lp - [DEFAULT] Send command to NAND large page device
734 735 736 737
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
738
 *
739
 * Send command to NAND device. This is the version for the new large page
740 741
 * devices. We don't have the separate regions as we have in the small page
 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
L
Linus Torvalds 已提交
742
 */
743 744
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
			    int column, int page_addr)
L
Linus Torvalds 已提交
745
{
746
	register struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
747 748 749

	/* Emulate NAND_CMD_READOOB */
	if (command == NAND_CMD_READOOB) {
J
Joern Engel 已提交
750
		column += mtd->writesize;
L
Linus Torvalds 已提交
751 752
		command = NAND_CMD_READ0;
	}
753

754
	/* Command latch cycle */
755
	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
756 757

	if (column != -1 || page_addr != -1) {
758
		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
L
Linus Torvalds 已提交
759 760 761 762

		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
763 764
			if (chip->options & NAND_BUSWIDTH_16 &&
					!nand_opcode_8bits(command))
L
Linus Torvalds 已提交
765
				column >>= 1;
766
			chip->cmd_ctrl(mtd, column, ctrl);
767
			ctrl &= ~NAND_CTRL_CHANGE;
768

769
			/* Only output a single addr cycle for 8bits opcodes. */
770 771
			if (!nand_opcode_8bits(command))
				chip->cmd_ctrl(mtd, column >> 8, ctrl);
772
		}
L
Linus Torvalds 已提交
773
		if (page_addr != -1) {
774 775
			chip->cmd_ctrl(mtd, page_addr, ctrl);
			chip->cmd_ctrl(mtd, page_addr >> 8,
776
				       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
777
			/* One more address cycle for devices > 128MiB */
778 779
			if (chip->chipsize > (128 << 20))
				chip->cmd_ctrl(mtd, page_addr >> 16,
780
					       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
781 782
		}
	}
783
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
784 785

	/*
786
	 * Program and erase have their own busy handlers status, sequential
787
	 * in and status need no delay.
788
	 */
L
Linus Torvalds 已提交
789
	switch (command) {
790

L
Linus Torvalds 已提交
791 792 793 794 795 796
	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
797
		return;
L
Linus Torvalds 已提交
798

799 800 801 802
	case NAND_CMD_RNDIN:
		nand_ccs_delay(chip);
		return;

L
Linus Torvalds 已提交
803
	case NAND_CMD_RESET:
804
		if (chip->dev_ready)
L
Linus Torvalds 已提交
805
			break;
806
		udelay(chip->chip_delay);
807 808 809 810
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
811 812
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
813 814
		return;

815 816 817 818 819 820
	case NAND_CMD_RNDOUT:
		/* No ready / busy check necessary */
		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
821 822

		nand_ccs_delay(chip);
823 824
		return;

L
Linus Torvalds 已提交
825
	case NAND_CMD_READ0:
826 827 828 829
		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
830

831
		/* This applies to read commands */
L
Linus Torvalds 已提交
832
	default:
833
		/*
L
Linus Torvalds 已提交
834
		 * If we don't have access to the busy pin, we apply the given
835
		 * command delay.
836
		 */
837 838
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
839
			return;
840
		}
L
Linus Torvalds 已提交
841
	}
842

843 844 845 846
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
847
	ndelay(100);
848 849

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
850 851
}

852 853
/**
 * panic_nand_get_device - [GENERIC] Get chip for selected access
854 855 856
 * @chip: the nand chip descriptor
 * @mtd: MTD device structure
 * @new_state: the state which is requested
857 858 859 860 861 862
 *
 * Used when in panic, no locks are taken.
 */
static void panic_nand_get_device(struct nand_chip *chip,
		      struct mtd_info *mtd, int new_state)
{
863
	/* Hardware controller shared among independent devices */
864 865 866 867
	chip->controller->active = chip;
	chip->state = new_state;
}

L
Linus Torvalds 已提交
868 869
/**
 * nand_get_device - [GENERIC] Get chip for selected access
870 871
 * @mtd: MTD device structure
 * @new_state: the state which is requested
L
Linus Torvalds 已提交
872 873 874
 *
 * Get the device and lock it for exclusive access
 */
875
static int
876
nand_get_device(struct mtd_info *mtd, int new_state)
L
Linus Torvalds 已提交
877
{
878
	struct nand_chip *chip = mtd_to_nand(mtd);
879 880
	spinlock_t *lock = &chip->controller->lock;
	wait_queue_head_t *wq = &chip->controller->wq;
881
	DECLARE_WAITQUEUE(wait, current);
882
retry:
883 884
	spin_lock(lock);

885
	/* Hardware controller shared among independent devices */
886 887
	if (!chip->controller->active)
		chip->controller->active = chip;
T
Thomas Gleixner 已提交
888

889 890
	if (chip->controller->active == chip && chip->state == FL_READY) {
		chip->state = new_state;
891
		spin_unlock(lock);
892 893 894
		return 0;
	}
	if (new_state == FL_PM_SUSPENDED) {
895 896 897 898 899
		if (chip->controller->active->state == FL_PM_SUSPENDED) {
			chip->state = FL_PM_SUSPENDED;
			spin_unlock(lock);
			return 0;
		}
900 901 902 903 904 905
	}
	set_current_state(TASK_UNINTERRUPTIBLE);
	add_wait_queue(wq, &wait);
	spin_unlock(lock);
	schedule();
	remove_wait_queue(wq, &wait);
L
Linus Torvalds 已提交
906 907 908
	goto retry;
}

909
/**
910 911 912 913
 * panic_nand_wait - [GENERIC] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
 * @timeo: timeout
914 915 916
 *
 * Wait for command done. This is a helper function for nand_wait used when
 * we are in interrupt context. May happen when in panic and trying to write
917
 * an oops through mtdoops.
918 919 920 921 922 923 924 925 926 927 928 929 930 931
 */
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
			    unsigned long timeo)
{
	int i;
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready) {
			if (chip->dev_ready(mtd))
				break;
		} else {
			if (chip->read_byte(mtd) & NAND_STATUS_READY)
				break;
		}
		mdelay(1);
932
	}
933 934
}

L
Linus Torvalds 已提交
935
/**
936 937 938
 * nand_wait - [DEFAULT] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
L
Linus Torvalds 已提交
939
 *
940
 * Wait for command done. This applies to erase and program only.
R
Randy Dunlap 已提交
941
 */
942
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
L
Linus Torvalds 已提交
943 944
{

945 946
	int status;
	unsigned long timeo = 400;
L
Linus Torvalds 已提交
947

948 949 950 951
	/*
	 * Apply this short delay always to ensure that we do wait tWB in any
	 * case on any machine.
	 */
952
	ndelay(100);
L
Linus Torvalds 已提交
953

954
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
L
Linus Torvalds 已提交
955

956 957 958
	if (in_interrupt() || oops_in_progress)
		panic_nand_wait(mtd, chip, timeo);
	else {
959
		timeo = jiffies + msecs_to_jiffies(timeo);
960
		do {
961 962 963 964 965 966 967 968
			if (chip->dev_ready) {
				if (chip->dev_ready(mtd))
					break;
			} else {
				if (chip->read_byte(mtd) & NAND_STATUS_READY)
					break;
			}
			cond_resched();
969
		} while (time_before(jiffies, timeo));
L
Linus Torvalds 已提交
970
	}
971

972
	status = (int)chip->read_byte(mtd);
973 974
	/* This can happen if in case of timeout or buggy dev_ready */
	WARN_ON(!(status & NAND_STATUS_READY));
L
Linus Torvalds 已提交
975 976 977
	return status;
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/**
 * nand_reset_data_interface - Reset data interface and timings
 * @chip: The NAND chip
 *
 * Reset the Data interface and timings to ONFI mode 0.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_reset_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct nand_data_interface *conf;
	int ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * The ONFI specification says:
	 * "
	 * To transition from NV-DDR or NV-DDR2 to the SDR data
	 * interface, the host shall use the Reset (FFh) command
	 * using SDR timing mode 0. A device in any timing mode is
	 * required to recognize Reset (FFh) command issued in SDR
	 * timing mode 0.
	 * "
	 *
	 * Configure the data interface in SDR mode and set the
	 * timings to timing mode 0.
	 */

	conf = nand_get_default_data_interface();
	ret = chip->setup_data_interface(mtd, conf, false);
	if (ret)
		pr_err("Failed to configure data interface to SDR timing mode 0\n");

	return ret;
}

/**
 * nand_setup_data_interface - Setup the best data interface and timings
 * @chip: The NAND chip
 *
 * Find and configure the best data interface and NAND timings supported by
 * the chip and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_setup_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	if (!chip->setup_data_interface || !chip->data_interface)
		return 0;

	/*
	 * Ensure the timing mode has been changed on the chip side
	 * before changing timings on the controller side.
	 */
	if (chip->onfi_version) {
		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
			chip->onfi_timing_mode_default,
		};

		ret = chip->onfi_set_features(mtd, chip,
				ONFI_FEATURE_ADDR_TIMING_MODE,
				tmode_param);
		if (ret)
			goto err;
	}

	ret = chip->setup_data_interface(mtd, chip->data_interface, false);
err:
	return ret;
}

/**
 * nand_init_data_interface - find the best data interface and timings
 * @chip: The NAND chip
 *
 * Find the best data interface and NAND timings supported by the chip
 * and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table. After this
 * function nand_chip->data_interface is initialized with the best timing mode
 * available.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_init_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int modes, mode, ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * First try to identify the best timings from ONFI parameters and
	 * if the NAND does not support ONFI, fallback to the default ONFI
	 * timing mode.
	 */
	modes = onfi_get_async_timing_mode(chip);
	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
		if (!chip->onfi_timing_mode_default)
			return 0;

		modes = GENMASK(chip->onfi_timing_mode_default, 0);
	}

	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
				       GFP_KERNEL);
	if (!chip->data_interface)
		return -ENOMEM;

	for (mode = fls(modes) - 1; mode >= 0; mode--) {
		ret = onfi_init_data_interface(chip, chip->data_interface,
					       NAND_SDR_IFACE, mode);
		if (ret)
			continue;

		ret = chip->setup_data_interface(mtd, chip->data_interface,
						 true);
		if (!ret) {
			chip->onfi_timing_mode_default = mode;
			break;
		}
	}

	return 0;
}

static void nand_release_data_interface(struct nand_chip *chip)
{
	kfree(chip->data_interface);
}

1120 1121 1122
/**
 * nand_reset - Reset and initialize a NAND device
 * @chip: The NAND chip
1123
 * @chipnr: Internal die id
1124 1125 1126
 *
 * Returns 0 for success or negative error code otherwise
 */
1127
int nand_reset(struct nand_chip *chip, int chipnr)
1128 1129
{
	struct mtd_info *mtd = nand_to_mtd(chip);
1130 1131 1132 1133 1134
	int ret;

	ret = nand_reset_data_interface(chip);
	if (ret)
		return ret;
1135

1136 1137 1138 1139 1140
	/*
	 * The CS line has to be released before we can apply the new NAND
	 * interface settings, hence this weird ->select_chip() dance.
	 */
	chip->select_chip(mtd, chipnr);
1141
	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1142
	chip->select_chip(mtd, -1);
1143

1144
	chip->select_chip(mtd, chipnr);
1145
	ret = nand_setup_data_interface(chip);
1146
	chip->select_chip(mtd, -1);
1147 1148 1149
	if (ret)
		return ret;

1150 1151 1152
	return 0;
}

1153
/**
1154 1155 1156 1157
 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1158 1159 1160 1161
 * @invert: when = 0, unlock the range of blocks within the lower and
 *                    upper boundary address
 *          when = 1, unlock the range of blocks outside the boundaries
 *                    of the lower and upper boundary address
1162
 *
1163
 * Returs unlock status.
1164 1165 1166 1167 1168 1169
 */
static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
					uint64_t len, int invert)
{
	int ret = 0;
	int status, page;
1170
	struct nand_chip *chip = mtd_to_nand(mtd);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	/* Submit address of first page to unlock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);

	/* Submit address of last page to unlock */
	page = (ofs + len) >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
				(page | invert) & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1184
	if (status & NAND_STATUS_FAIL) {
1185
		pr_debug("%s: error status = 0x%08x\n",
1186 1187 1188 1189 1190 1191 1192 1193
					__func__, status);
		ret = -EIO;
	}

	return ret;
}

/**
1194 1195 1196 1197
 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1198
 *
1199
 * Returns unlock status.
1200 1201 1202 1203 1204
 */
int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr;
1205
	struct nand_chip *chip = mtd_to_nand(mtd);
1206

1207
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1208 1209 1210
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1211
		return -EINVAL;
1212 1213 1214 1215 1216

	/* Align to last block address if size addresses end of the device */
	if (ofs + len == mtd->size)
		len -= mtd->erasesize;

1217
	nand_get_device(mtd, FL_UNLOCKING);
1218 1219 1220 1221

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

1222 1223 1224 1225 1226 1227 1228
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1229 1230 1231
	nand_reset(chip, chipnr);

	chip->select_chip(mtd, chipnr);
1232

1233 1234
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1235
		pr_debug("%s: device is write protected!\n",
1236 1237 1238 1239 1240 1241 1242 1243
					__func__);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0);

out:
1244
	chip->select_chip(mtd, -1);
1245 1246 1247 1248
	nand_release_device(mtd);

	return ret;
}
1249
EXPORT_SYMBOL(nand_unlock);
1250 1251

/**
1252 1253 1254 1255
 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1256
 *
1257 1258 1259 1260
 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
 * have this feature, but it allows only to lock all blocks, not for specified
 * range for block. Implementing 'lock' feature by making use of 'unlock', for
 * now.
1261
 *
1262
 * Returns lock status.
1263 1264 1265 1266 1267
 */
int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr, status, page;
1268
	struct nand_chip *chip = mtd_to_nand(mtd);
1269

1270
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1271 1272 1273
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1274
		return -EINVAL;
1275

1276
	nand_get_device(mtd, FL_LOCKING);
1277 1278 1279 1280

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

1281 1282 1283 1284 1285 1286 1287
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1288 1289 1290
	nand_reset(chip, chipnr);

	chip->select_chip(mtd, chipnr);
1291

1292 1293
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1294
		pr_debug("%s: device is write protected!\n",
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
					__func__);
		status = MTD_ERASE_FAILED;
		ret = -EIO;
		goto out;
	}

	/* Submit address of first page to lock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1308
	if (status & NAND_STATUS_FAIL) {
1309
		pr_debug("%s: error status = 0x%08x\n",
1310 1311 1312 1313 1314 1315 1316 1317
					__func__, status);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0x1);

out:
1318
	chip->select_chip(mtd, -1);
1319 1320 1321 1322
	nand_release_device(mtd);

	return ret;
}
1323
EXPORT_SYMBOL(nand_lock);
1324

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/**
 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
 * @buf: buffer to test
 * @len: buffer length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a buffer contains only 0xff, which means the underlying region
 * has been erased and is ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region is not erased.
 * Note: The logic of this function has been extracted from the memweight
 * implementation, except that nand_check_erased_buf function exit before
 * testing the whole buffer if the number of bitflips exceed the
 * bitflips_threshold value.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold.
 */
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
	const unsigned char *bitmap = buf;
	int bitflips = 0;
	int weight;

	for (; len && ((uintptr_t)bitmap) % sizeof(long);
	     len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len >= sizeof(long);
	     len -= sizeof(long), bitmap += sizeof(long)) {
		weight = hweight_long(*((unsigned long *)bitmap));
		bitflips += BITS_PER_LONG - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len > 0; len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	return bitflips;
}

/**
 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
 *				 0xff data
 * @data: data buffer to test
 * @datalen: data length
 * @ecc: ECC buffer
 * @ecclen: ECC length
 * @extraoob: extra OOB buffer
 * @extraooblen: extra OOB length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a data buffer and its associated ECC and OOB data contains only
 * 0xff pattern, which means the underlying region has been erased and is
 * ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region as not erased.
 *
 * Note:
 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
 *    different from the NAND page size. When fixing bitflips, ECC engines will
 *    report the number of errors per chunk, and the NAND core infrastructure
 *    expect you to return the maximum number of bitflips for the whole page.
 *    This is why you should always use this function on a single chunk and
 *    not on the whole page. After checking each chunk you should update your
 *    max_bitflips value accordingly.
 * 2/ When checking for bitflips in erased pages you should not only check
 *    the payload data but also their associated ECC data, because a user might
 *    have programmed almost all bits to 1 but a few. In this case, we
 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
 *    this case.
 * 3/ The extraoob argument is optional, and should be used if some of your OOB
 *    data are protected by the ECC engine.
 *    It could also be used if you support subpages and want to attach some
 *    extra OOB data to an ECC chunk.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold. In case of success, the passed buffers are filled with 0xff.
 */
int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int bitflips_threshold)
{
	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;

	data_bitflips = nand_check_erased_buf(data, datalen,
					      bitflips_threshold);
	if (data_bitflips < 0)
		return data_bitflips;

	bitflips_threshold -= data_bitflips;

	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
	if (ecc_bitflips < 0)
		return ecc_bitflips;

	bitflips_threshold -= ecc_bitflips;

	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
						  bitflips_threshold);
	if (extraoob_bitflips < 0)
		return extraoob_bitflips;

	if (data_bitflips)
		memset(data, 0xff, datalen);

	if (ecc_bitflips)
		memset(ecc, 0xff, ecclen);

	if (extraoob_bitflips)
		memset(extraoob, 0xff, extraooblen);

	return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);

1453
/**
1454
 * nand_read_page_raw - [INTERN] read raw page data without ecc
1455 1456 1457
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1458
 * @oob_required: caller requires OOB data read to chip->oob_poi
1459
 * @page: page number to read
1460
 *
1461
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1462 1463
 */
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1464
			      uint8_t *buf, int oob_required, int page)
1465 1466
{
	chip->read_buf(mtd, buf, mtd->writesize);
1467 1468
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1469 1470 1471
	return 0;
}

1472
/**
1473
 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1474 1475 1476
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1477
 * @oob_required: caller requires OOB data read to chip->oob_poi
1478
 * @page: page number to read
1479 1480 1481
 *
 * We need a special oob layout and handling even when OOB isn't used.
 */
1482
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1483 1484
				       struct nand_chip *chip, uint8_t *buf,
				       int oob_required, int page)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->read_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->read_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->read_buf(mtd, oob, size);

	return 0;
}

L
Linus Torvalds 已提交
1516
/**
1517
 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1518 1519 1520
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1521
 * @oob_required: caller requires OOB data read to chip->oob_poi
1522
 * @page: page number to read
1523
 */
1524
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1525
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1526
{
1527
	int i, eccsize = chip->ecc.size, ret;
1528 1529 1530
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1531 1532
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1533
	unsigned int max_bitflips = 0;
1534

1535
	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1536 1537 1538 1539

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

1540 1541 1542 1543
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1544 1545 1546 1547 1548 1549 1550 1551

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1552
		if (stat < 0) {
1553
			mtd->ecc_stats.failed++;
1554
		} else {
1555
			mtd->ecc_stats.corrected += stat;
1556 1557
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1558
	}
1559
	return max_bitflips;
1560
}
L
Linus Torvalds 已提交
1561

1562
/**
1563
 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1564 1565 1566 1567 1568
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @data_offs: offset of requested data within the page
 * @readlen: data length
 * @bufpoi: buffer to store read data
1569
 * @page: page number to read
1570
 */
1571
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1572 1573
			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
			int page)
1574
{
1575
	int start_step, end_step, num_steps, ret;
1576 1577 1578 1579
	uint8_t *p;
	int data_col_addr, i, gaps = 0;
	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1580
	int index, section = 0;
1581
	unsigned int max_bitflips = 0;
1582
	struct mtd_oob_region oobregion = { };
1583

1584
	/* Column address within the page aligned to ECC size (256bytes) */
1585 1586 1587
	start_step = data_offs / chip->ecc.size;
	end_step = (data_offs + readlen - 1) / chip->ecc.size;
	num_steps = end_step - start_step + 1;
R
Ron 已提交
1588
	index = start_step * chip->ecc.bytes;
1589

1590
	/* Data size aligned to ECC ecc.size */
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	datafrag_len = num_steps * chip->ecc.size;
	eccfrag_len = num_steps * chip->ecc.bytes;

	data_col_addr = start_step * chip->ecc.size;
	/* If we read not a page aligned data */
	if (data_col_addr != 0)
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);

	p = bufpoi + data_col_addr;
	chip->read_buf(mtd, p, datafrag_len);

1602
	/* Calculate ECC */
1603 1604 1605
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);

1606 1607
	/*
	 * The performance is faster if we position offsets according to
1608
	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1609
	 */
1610 1611 1612 1613 1614 1615 1616
	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
	if (ret)
		return ret;

	if (oobregion.length < eccfrag_len)
		gaps = 1;

1617 1618 1619 1620
	if (gaps) {
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	} else {
1621
		/*
1622
		 * Send the command to read the particular ECC bytes take care
1623 1624
		 * about buswidth alignment in read_buf.
		 */
1625
		aligned_pos = oobregion.offset & ~(busw - 1);
1626
		aligned_len = eccfrag_len;
1627
		if (oobregion.offset & (busw - 1))
1628
			aligned_len++;
1629 1630
		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
		    (busw - 1))
1631 1632
			aligned_len++;

1633
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1634
			      mtd->writesize + aligned_pos, -1);
1635 1636 1637
		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
	}

1638 1639 1640 1641
	ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
					 chip->oob_poi, index, eccfrag_len);
	if (ret)
		return ret;
1642 1643 1644 1645 1646

	p = bufpoi + data_col_addr;
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
		int stat;

1647 1648
		stat = chip->ecc.correct(mtd, p,
			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
						&chip->buffers->ecccode[i],
						chip->ecc.bytes,
						NULL, 0,
						chip->ecc.strength);
		}

1659
		if (stat < 0) {
1660
			mtd->ecc_stats.failed++;
1661
		} else {
1662
			mtd->ecc_stats.corrected += stat;
1663 1664
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1665
	}
1666
	return max_bitflips;
1667 1668
}

1669
/**
1670
 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1671 1672 1673
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1674
 * @oob_required: caller requires OOB data read to chip->oob_poi
1675
 * @page: page number to read
1676
 *
1677
 * Not for syndrome calculating ECC controllers which need a special oob layout.
1678
 */
1679
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1680
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1681
{
1682
	int i, eccsize = chip->ecc.size, ret;
1683 1684 1685
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1686 1687
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1688
	unsigned int max_bitflips = 0;
1689 1690 1691 1692 1693

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
L
Linus Torvalds 已提交
1694
	}
1695
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
L
Linus Torvalds 已提交
1696

1697 1698 1699 1700
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
1701

1702 1703
	eccsteps = chip->ecc.steps;
	p = buf;
1704

1705 1706
	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
L
Linus Torvalds 已提交
1707

1708
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1709 1710 1711 1712 1713 1714 1715 1716 1717
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1718
		if (stat < 0) {
1719
			mtd->ecc_stats.failed++;
1720
		} else {
1721
			mtd->ecc_stats.corrected += stat;
1722 1723
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1724
	}
1725
	return max_bitflips;
1726
}
L
Linus Torvalds 已提交
1727

1728
/**
1729
 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1730 1731 1732
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1733
 * @oob_required: caller requires OOB data read to chip->oob_poi
1734
 * @page: page number to read
1735
 *
1736 1737 1738 1739 1740
 * Hardware ECC for large page chips, require OOB to be read first. For this
 * ECC mode, the write_page method is re-used from ECC_HW. These methods
 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
 * the data area, by overwriting the NAND manufacturer bad block markings.
1741 1742
 */
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1743
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1744
{
1745
	int i, eccsize = chip->ecc.size, ret;
1746 1747 1748 1749 1750
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
1751
	unsigned int max_bitflips = 0;
1752 1753 1754 1755 1756 1757

	/* Read the OOB area first */
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

1758 1759 1760 1761
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1762 1763 1764 1765 1766 1767 1768 1769 1770

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1771 1772 1773 1774 1775 1776 1777 1778 1779
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1780
		if (stat < 0) {
1781
			mtd->ecc_stats.failed++;
1782
		} else {
1783
			mtd->ecc_stats.corrected += stat;
1784 1785
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1786
	}
1787
	return max_bitflips;
1788 1789
}

1790
/**
1791
 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1792 1793 1794
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1795
 * @oob_required: caller requires OOB data read to chip->oob_poi
1796
 * @page: page number to read
1797
 *
1798 1799
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
1800 1801
 */
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1802
				   uint8_t *buf, int oob_required, int page)
1803 1804 1805 1806
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
1807
	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1808
	uint8_t *p = buf;
1809
	uint8_t *oob = chip->oob_poi;
1810
	unsigned int max_bitflips = 0;
L
Linus Torvalds 已提交
1811

1812 1813
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
1814

1815 1816
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
L
Linus Torvalds 已提交
1817

1818 1819 1820 1821
		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}
L
Linus Torvalds 已提交
1822

1823 1824 1825
		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
		chip->read_buf(mtd, oob, eccbytes);
		stat = chip->ecc.correct(mtd, p, oob, NULL);
1826

1827
		oob += eccbytes;
L
Linus Torvalds 已提交
1828

1829 1830 1831
		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
1832
		}
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
							   oob - eccpadbytes,
							   eccpadbytes,
							   NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1850
	}
L
Linus Torvalds 已提交
1851

1852
	/* Calculate remaining oob bytes */
1853
	i = mtd->oobsize - (oob - chip->oob_poi);
1854 1855
	if (i)
		chip->read_buf(mtd, oob, i);
1856

1857
	return max_bitflips;
1858
}
L
Linus Torvalds 已提交
1859

1860
/**
1861
 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1862
 * @mtd: mtd info structure
1863 1864 1865
 * @oob: oob destination address
 * @ops: oob ops structure
 * @len: size of oob to transfer
1866
 */
1867
static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1868
				  struct mtd_oob_ops *ops, size_t len)
1869
{
1870 1871 1872
	struct nand_chip *chip = mtd_to_nand(mtd);
	int ret;

1873
	switch (ops->mode) {
1874

1875 1876
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
1877 1878 1879
		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
		return oob + len;

1880 1881 1882 1883 1884 1885
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

1886 1887 1888 1889 1890 1891
	default:
		BUG();
	}
	return NULL;
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/**
 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
 * @mtd: MTD device structure
 * @retry_mode: the retry mode to use
 *
 * Some vendors supply a special command to shift the Vt threshold, to be used
 * when there are too many bitflips in a page (i.e., ECC error). After setting
 * a new threshold, the host should retry reading the page.
 */
static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
1903
	struct nand_chip *chip = mtd_to_nand(mtd);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	pr_debug("setting READ RETRY mode %d\n", retry_mode);

	if (retry_mode >= chip->read_retries)
		return -EINVAL;

	if (!chip->setup_read_retry)
		return -EOPNOTSUPP;

	return chip->setup_read_retry(mtd, retry_mode);
}

1916
/**
1917
 * nand_do_read_ops - [INTERN] Read data with ECC
1918 1919 1920
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob ops structure
1921 1922 1923
 *
 * Internal function. Called with chip held.
 */
1924 1925
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
1926
{
1927
	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1928
	struct nand_chip *chip = mtd_to_nand(mtd);
1929
	int ret = 0;
1930
	uint32_t readlen = ops->len;
1931
	uint32_t oobreadlen = ops->ooblen;
1932
	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1933

1934
	uint8_t *bufpoi, *oob, *buf;
1935
	int use_bufpoi;
1936
	unsigned int max_bitflips = 0;
1937
	int retry_mode = 0;
1938
	bool ecc_fail = false;
L
Linus Torvalds 已提交
1939

1940 1941
	chipnr = (int)(from >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);
1942

1943 1944
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
1945

1946
	col = (int)(from & (mtd->writesize - 1));
1947

1948 1949
	buf = ops->datbuf;
	oob = ops->oobbuf;
1950
	oob_required = oob ? 1 : 0;
1951

1952
	while (1) {
1953 1954
		unsigned int ecc_failures = mtd->ecc_stats.failed;

1955 1956
		bytes = min(mtd->writesize - col, readlen);
		aligned = (bytes == mtd->writesize);
1957

1958 1959 1960 1961 1962 1963 1964
		if (!aligned)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;

1965
		/* Is the current page in the buffer? */
1966
		if (realpage != chip->pagebuf || oob) {
1967 1968 1969 1970 1971
			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;

			if (use_bufpoi && aligned)
				pr_debug("%s: using read bounce buffer for buf@%p\n",
						 __func__, buf);
1972

1973
read_retry:
1974 1975
			if (nand_standard_page_accessors(&chip->ecc))
				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
L
Linus Torvalds 已提交
1976

1977 1978 1979 1980
			/*
			 * Now read the page into the buffer.  Absent an error,
			 * the read methods return max bitflips per ecc step.
			 */
1981
			if (unlikely(ops->mode == MTD_OPS_RAW))
1982
				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1983 1984
							      oob_required,
							      page);
1985 1986
			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
				 !oob)
1987
				ret = chip->ecc.read_subpage(mtd, chip,
1988 1989
							col, bytes, bufpoi,
							page);
1990
			else
1991
				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1992
							  oob_required, page);
1993
			if (ret < 0) {
1994
				if (use_bufpoi)
1995 1996
					/* Invalidate page cache */
					chip->pagebuf = -1;
L
Linus Torvalds 已提交
1997
				break;
1998
			}
1999

2000 2001
			max_bitflips = max_t(unsigned int, max_bitflips, ret);

2002
			/* Transfer not aligned data */
2003
			if (use_bufpoi) {
2004
				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
2005
				    !(mtd->ecc_stats.failed - ecc_failures) &&
2006
				    (ops->mode != MTD_OPS_RAW)) {
2007
					chip->pagebuf = realpage;
2008 2009
					chip->pagebuf_bitflips = ret;
				} else {
2010 2011
					/* Invalidate page cache */
					chip->pagebuf = -1;
2012
				}
2013
				memcpy(buf, chip->buffers->databuf + col, bytes);
2014 2015
			}

2016
			if (unlikely(oob)) {
2017 2018 2019
				int toread = min(oobreadlen, max_oobsize);

				if (toread) {
2020
					oob = nand_transfer_oob(mtd,
2021 2022 2023
						oob, ops, toread);
					oobreadlen -= toread;
				}
2024
			}
2025 2026 2027 2028 2029 2030 2031 2032

			if (chip->options & NAND_NEED_READRDY) {
				/* Apply delay or wait for ready/busy pin */
				if (!chip->dev_ready)
					udelay(chip->chip_delay);
				else
					nand_wait_ready(mtd);
			}
2033

2034
			if (mtd->ecc_stats.failed - ecc_failures) {
2035
				if (retry_mode + 1 < chip->read_retries) {
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
					retry_mode++;
					ret = nand_setup_read_retry(mtd,
							retry_mode);
					if (ret < 0)
						break;

					/* Reset failures; retry */
					mtd->ecc_stats.failed = ecc_failures;
					goto read_retry;
				} else {
					/* No more retry modes; real failure */
					ecc_fail = true;
				}
			}

			buf += bytes;
2052
		} else {
2053
			memcpy(buf, chip->buffers->databuf + col, bytes);
2054
			buf += bytes;
2055 2056
			max_bitflips = max_t(unsigned int, max_bitflips,
					     chip->pagebuf_bitflips);
2057
		}
L
Linus Torvalds 已提交
2058

2059
		readlen -= bytes;
2060

2061 2062 2063 2064 2065 2066 2067 2068
		/* Reset to retry mode 0 */
		if (retry_mode) {
			ret = nand_setup_read_retry(mtd, 0);
			if (ret < 0)
				break;
			retry_mode = 0;
		}

2069
		if (!readlen)
2070
			break;
L
Linus Torvalds 已提交
2071

2072
		/* For subsequent reads align to page boundary */
L
Linus Torvalds 已提交
2073 2074 2075 2076
		col = 0;
		/* Increment page address */
		realpage++;

2077
		page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2078 2079 2080
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
2081 2082
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2083 2084
		}
	}
2085
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2086

2087
	ops->retlen = ops->len - (size_t) readlen;
2088 2089
	if (oob)
		ops->oobretlen = ops->ooblen - oobreadlen;
L
Linus Torvalds 已提交
2090

2091
	if (ret < 0)
2092 2093
		return ret;

2094
	if (ecc_fail)
2095 2096
		return -EBADMSG;

2097
	return max_bitflips;
2098 2099 2100
}

/**
L
Lucas De Marchi 已提交
2101
 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2102 2103 2104 2105 2106
 * @mtd: MTD device structure
 * @from: offset to read from
 * @len: number of bytes to read
 * @retlen: pointer to variable to store the number of read bytes
 * @buf: the databuffer to put data
2107
 *
2108
 * Get hold of the chip and call nand_do_read.
2109 2110 2111 2112
 */
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
		     size_t *retlen, uint8_t *buf)
{
2113
	struct mtd_oob_ops ops;
2114 2115
	int ret;

2116
	nand_get_device(mtd, FL_READING);
2117
	memset(&ops, 0, sizeof(ops));
2118 2119
	ops.len = len;
	ops.datbuf = buf;
2120
	ops.mode = MTD_OPS_PLACE_OOB;
2121 2122
	ret = nand_do_read_ops(mtd, from, &ops);
	*retlen = ops.retlen;
2123 2124
	nand_release_device(mtd);
	return ret;
L
Linus Torvalds 已提交
2125 2126
}

2127
/**
2128
 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2129 2130 2131
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2132
 */
2133
int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2134
{
2135
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2136
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2137
	return 0;
2138
}
2139
EXPORT_SYMBOL(nand_read_oob_std);
2140 2141

/**
2142
 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2143
 *			    with syndromes
2144 2145 2146
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2147
 */
2148 2149
int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			   int page)
2150 2151 2152 2153
{
	int length = mtd->oobsize;
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size;
2154
	uint8_t *bufpoi = chip->oob_poi;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	int i, toread, sndrnd = 0, pos;

	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
	for (i = 0; i < chip->ecc.steps; i++) {
		if (sndrnd) {
			pos = eccsize + i * (eccsize + chunk);
			if (mtd->writesize > 512)
				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
			else
				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
		} else
			sndrnd = 1;
		toread = min_t(int, length, chunk);
		chip->read_buf(mtd, bufpoi, toread);
		bufpoi += toread;
		length -= toread;
	}
	if (length > 0)
		chip->read_buf(mtd, bufpoi, length);

2175
	return 0;
2176
}
2177
EXPORT_SYMBOL(nand_read_oob_syndrome);
2178 2179

/**
2180
 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2181 2182 2183
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2184
 */
2185
int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
{
	int status = 0;
	const uint8_t *buf = chip->oob_poi;
	int length = mtd->oobsize;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, buf, length);
	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

S
Savin Zlobec 已提交
2198
	return status & NAND_STATUS_FAIL ? -EIO : 0;
2199
}
2200
EXPORT_SYMBOL(nand_write_oob_std);
2201 2202

/**
2203
 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2204 2205 2206 2207
 *			     with syndrome - only for large page flash
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2208
 */
2209 2210
int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
{
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size, length = mtd->oobsize;
	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
	const uint8_t *bufpoi = chip->oob_poi;

	/*
	 * data-ecc-data-ecc ... ecc-oob
	 * or
	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
	 */
	if (!chip->ecc.prepad && !chip->ecc.postpad) {
		pos = steps * (eccsize + chunk);
		steps = 0;
	} else
2226
		pos = eccsize;
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
	for (i = 0; i < steps; i++) {
		if (sndcmd) {
			if (mtd->writesize <= 512) {
				uint32_t fill = 0xFFFFFFFF;

				len = eccsize;
				while (len > 0) {
					int num = min_t(int, len, 4);
					chip->write_buf(mtd, (uint8_t *)&fill,
							num);
					len -= num;
				}
			} else {
				pos = eccsize + i * (eccsize + chunk);
				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
			}
		} else
			sndcmd = 1;
		len = min_t(int, length, chunk);
		chip->write_buf(mtd, bufpoi, len);
		bufpoi += len;
		length -= len;
	}
	if (length > 0)
		chip->write_buf(mtd, bufpoi, length);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}
2260
EXPORT_SYMBOL(nand_write_oob_syndrome);
2261

L
Linus Torvalds 已提交
2262
/**
2263
 * nand_do_read_oob - [INTERN] NAND read out-of-band
2264 2265 2266
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2267
 *
2268
 * NAND read out-of-band data from the spare area.
L
Linus Torvalds 已提交
2269
 */
2270 2271
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2272
{
2273
	int page, realpage, chipnr;
2274
	struct nand_chip *chip = mtd_to_nand(mtd);
2275
	struct mtd_ecc_stats stats;
2276 2277
	int readlen = ops->ooblen;
	int len;
2278
	uint8_t *buf = ops->oobbuf;
2279
	int ret = 0;
2280

2281
	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2282
			__func__, (unsigned long long)from, readlen);
L
Linus Torvalds 已提交
2283

2284 2285
	stats = mtd->ecc_stats;

2286
	len = mtd_oobavail(mtd, ops);
2287 2288

	if (unlikely(ops->ooboffs >= len)) {
2289 2290
		pr_debug("%s: attempt to start read outside oob\n",
				__func__);
2291 2292 2293 2294 2295 2296 2297
		return -EINVAL;
	}

	/* Do not allow reads past end of device */
	if (unlikely(from >= mtd->size ||
		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
					(from >> chip->page_shift)) * len)) {
2298 2299
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
2300 2301
		return -EINVAL;
	}
2302

2303
	chipnr = (int)(from >> chip->chip_shift);
2304
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2305

2306 2307 2308
	/* Shift to get page */
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2309

2310
	while (1) {
2311
		if (ops->mode == MTD_OPS_RAW)
2312
			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2313
		else
2314 2315 2316 2317
			ret = chip->ecc.read_oob(mtd, chip, page);

		if (ret < 0)
			break;
2318 2319

		len = min(len, readlen);
2320
		buf = nand_transfer_oob(mtd, buf, ops, len);
2321

2322 2323 2324 2325 2326 2327 2328 2329
		if (chip->options & NAND_NEED_READRDY) {
			/* Apply delay or wait for ready/busy pin */
			if (!chip->dev_ready)
				udelay(chip->chip_delay);
			else
				nand_wait_ready(mtd);
		}

2330
		readlen -= len;
S
Savin Zlobec 已提交
2331 2332 2333
		if (!readlen)
			break;

2334 2335 2336 2337 2338 2339 2340 2341 2342
		/* Increment page address */
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2343 2344
		}
	}
2345
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2346

2347 2348 2349 2350
	ops->oobretlen = ops->ooblen - readlen;

	if (ret < 0)
		return ret;
2351 2352 2353 2354 2355

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
L
Linus Torvalds 已提交
2356 2357 2358
}

/**
2359
 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2360 2361 2362
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2363
 *
2364
 * NAND read data and/or out-of-band data.
L
Linus Torvalds 已提交
2365
 */
2366 2367
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
			 struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2368
{
2369
	int ret;
2370 2371

	ops->retlen = 0;
L
Linus Torvalds 已提交
2372 2373

	/* Do not allow reads past end of device */
2374
	if (ops->datbuf && (from + ops->len) > mtd->size) {
2375 2376
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
L
Linus Torvalds 已提交
2377 2378 2379
		return -EINVAL;
	}

2380 2381 2382 2383
	if (ops->mode != MTD_OPS_PLACE_OOB &&
	    ops->mode != MTD_OPS_AUTO_OOB &&
	    ops->mode != MTD_OPS_RAW)
		return -ENOTSUPP;
L
Linus Torvalds 已提交
2384

2385
	nand_get_device(mtd, FL_READING);
L
Linus Torvalds 已提交
2386

2387 2388 2389 2390
	if (!ops->datbuf)
		ret = nand_do_read_oob(mtd, from, ops);
	else
		ret = nand_do_read_ops(mtd, from, ops);
2391

2392 2393 2394
	nand_release_device(mtd);
	return ret;
}
2395

L
Linus Torvalds 已提交
2396

2397
/**
2398
 * nand_write_page_raw - [INTERN] raw page write function
2399 2400 2401
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2402
 * @oob_required: must write chip->oob_poi to OOB
2403
 * @page: page number to write
2404
 *
2405
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2406
 */
2407
static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2408
			       const uint8_t *buf, int oob_required, int page)
2409 2410
{
	chip->write_buf(mtd, buf, mtd->writesize);
2411 2412
	if (oob_required)
		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2413 2414

	return 0;
L
Linus Torvalds 已提交
2415 2416
}

2417
/**
2418
 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2419 2420 2421
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2422
 * @oob_required: must write chip->oob_poi to OOB
2423
 * @page: page number to write
2424 2425 2426
 *
 * We need a special oob layout and handling even when ECC isn't checked.
 */
2427
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2428
					struct nand_chip *chip,
2429 2430
					const uint8_t *buf, int oob_required,
					int page)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->write_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

2446
		chip->write_buf(mtd, oob, eccbytes);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->write_buf(mtd, oob, size);
2458 2459

	return 0;
2460
}
2461
/**
2462
 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2463 2464 2465
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2466
 * @oob_required: must write chip->oob_poi to OOB
2467
 * @page: page number to write
2468
 */
2469
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2470 2471
				 const uint8_t *buf, int oob_required,
				 int page)
2472
{
2473
	int i, eccsize = chip->ecc.size, ret;
2474 2475
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2476
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2477
	const uint8_t *p = buf;
2478

2479
	/* Software ECC calculation */
2480 2481
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2482

2483 2484 2485 2486
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2487

2488
	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2489
}
2490

2491
/**
2492
 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2493 2494 2495
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2496
 * @oob_required: must write chip->oob_poi to OOB
2497
 * @page: page number to write
2498
 */
2499
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2500 2501
				  const uint8_t *buf, int oob_required,
				  int page)
2502
{
2503
	int i, eccsize = chip->ecc.size, ret;
2504 2505
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2506
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2507
	const uint8_t *p = buf;
2508

2509 2510
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2511
		chip->write_buf(mtd, p, eccsize);
2512
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2513 2514
	}

2515 2516 2517 2518
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2519 2520

	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2521 2522

	return 0;
2523 2524
}

2525 2526

/**
2527
 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2528 2529
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
2530
 * @offset:	column address of subpage within the page
2531
 * @data_len:	data length
2532
 * @buf:	data buffer
2533
 * @oob_required: must write chip->oob_poi to OOB
2534
 * @page: page number to write
2535 2536 2537
 */
static int nand_write_subpage_hwecc(struct mtd_info *mtd,
				struct nand_chip *chip, uint32_t offset,
2538
				uint32_t data_len, const uint8_t *buf,
2539
				int oob_required, int page)
2540 2541 2542 2543 2544 2545 2546 2547 2548
{
	uint8_t *oob_buf  = chip->oob_poi;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	int ecc_size      = chip->ecc.size;
	int ecc_bytes     = chip->ecc.bytes;
	int ecc_steps     = chip->ecc.steps;
	uint32_t start_step = offset / ecc_size;
	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
	int oob_bytes       = mtd->oobsize / ecc_steps;
2549
	int step, ret;
2550 2551 2552 2553 2554 2555

	for (step = 0; step < ecc_steps; step++) {
		/* configure controller for WRITE access */
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

		/* write data (untouched subpages already masked by 0xFF) */
2556
		chip->write_buf(mtd, buf, ecc_size);
2557 2558 2559 2560 2561

		/* mask ECC of un-touched subpages by padding 0xFF */
		if ((step < start_step) || (step > end_step))
			memset(ecc_calc, 0xff, ecc_bytes);
		else
2562
			chip->ecc.calculate(mtd, buf, ecc_calc);
2563 2564 2565 2566 2567 2568

		/* mask OOB of un-touched subpages by padding 0xFF */
		/* if oob_required, preserve OOB metadata of written subpage */
		if (!oob_required || (step < start_step) || (step > end_step))
			memset(oob_buf, 0xff, oob_bytes);

2569
		buf += ecc_size;
2570 2571 2572 2573 2574 2575 2576
		ecc_calc += ecc_bytes;
		oob_buf  += oob_bytes;
	}

	/* copy calculated ECC for whole page to chip->buffer->oob */
	/* this include masked-value(0xFF) for unwritten subpages */
	ecc_calc = chip->buffers->ecccalc;
2577 2578 2579 2580
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2581 2582 2583 2584 2585 2586 2587 2588

	/* write OOB buffer to NAND device */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}


2589
/**
2590
 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2591 2592 2593
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2594
 * @oob_required: must write chip->oob_poi to OOB
2595
 * @page: page number to write
L
Linus Torvalds 已提交
2596
 *
2597 2598
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
2599
 */
2600
static int nand_write_page_syndrome(struct mtd_info *mtd,
2601
				    struct nand_chip *chip,
2602 2603
				    const uint8_t *buf, int oob_required,
				    int page)
L
Linus Torvalds 已提交
2604
{
2605 2606 2607 2608 2609
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
L
Linus Torvalds 已提交
2610

2611
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
L
Linus Torvalds 已提交
2612

2613 2614
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
		chip->write_buf(mtd, p, eccsize);
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->ecc.calculate(mtd, p, oob);
		chip->write_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
L
Linus Torvalds 已提交
2628 2629
		}
	}
2630 2631

	/* Calculate remaining oob bytes */
2632
	i = mtd->oobsize - (oob - chip->oob_poi);
2633 2634
	if (i)
		chip->write_buf(mtd, oob, i);
2635 2636

	return 0;
2637 2638 2639
}

/**
2640
 * nand_write_page - [REPLACEABLE] write one page
2641 2642
 * @mtd: MTD device structure
 * @chip: NAND chip descriptor
2643 2644
 * @offset: address offset within the page
 * @data_len: length of actual data to be written
2645
 * @buf: the data to write
2646
 * @oob_required: must write chip->oob_poi to OOB
2647 2648 2649
 * @page: page number to write
 * @cached: cached programming
 * @raw: use _raw version of write_page
2650 2651
 */
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2652 2653
		uint32_t offset, int data_len, const uint8_t *buf,
		int oob_required, int page, int cached, int raw)
2654
{
2655 2656 2657 2658 2659 2660 2661
	int status, subpage;

	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
		chip->ecc.write_subpage)
		subpage = offset || (data_len < mtd->writesize);
	else
		subpage = 0;
2662

2663 2664
	if (nand_standard_page_accessors(&chip->ecc))
		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2665

2666
	if (unlikely(raw))
2667
		status = chip->ecc.write_page_raw(mtd, chip, buf,
2668
						  oob_required, page);
2669 2670
	else if (subpage)
		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2671
						 buf, oob_required, page);
2672
	else
2673 2674
		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
					      page);
2675 2676 2677

	if (status < 0)
		return status;
2678 2679

	/*
2680
	 * Cached progamming disabled for now. Not sure if it's worth the
2681
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2682 2683 2684
	 */
	cached = 0;

2685
	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2686

2687 2688
		if (nand_standard_page_accessors(&chip->ecc))
			chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2689
		status = chip->waitfunc(mtd, chip);
2690 2691
		/*
		 * See if operation failed and additional status checks are
2692
		 * available.
2693 2694 2695 2696 2697 2698 2699 2700 2701
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2702
		status = chip->waitfunc(mtd, chip);
2703 2704 2705
	}

	return 0;
L
Linus Torvalds 已提交
2706 2707
}

2708
/**
2709
 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2710
 * @mtd: MTD device structure
2711 2712 2713
 * @oob: oob data buffer
 * @len: oob data write length
 * @ops: oob ops structure
2714
 */
2715 2716
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
			      struct mtd_oob_ops *ops)
2717
{
2718
	struct nand_chip *chip = mtd_to_nand(mtd);
2719
	int ret;
2720 2721 2722 2723 2724 2725 2726

	/*
	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
	 * data from a previous OOB read.
	 */
	memset(chip->oob_poi, 0xff, mtd->oobsize);

2727
	switch (ops->mode) {
2728

2729 2730
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
2731 2732 2733
		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
		return oob + len;

2734 2735 2736 2737 2738 2739
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

2740 2741 2742 2743 2744 2745
	default:
		BUG();
	}
	return NULL;
}

2746
#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
L
Linus Torvalds 已提交
2747 2748

/**
2749
 * nand_do_write_ops - [INTERN] NAND write with ECC
2750 2751 2752
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2753
 *
2754
 * NAND write with ECC.
L
Linus Torvalds 已提交
2755
 */
2756 2757
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2758
{
2759
	int chipnr, realpage, page, blockmask, column;
2760
	struct nand_chip *chip = mtd_to_nand(mtd);
2761
	uint32_t writelen = ops->len;
2762 2763

	uint32_t oobwritelen = ops->ooblen;
2764
	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2765

2766 2767
	uint8_t *oob = ops->oobbuf;
	uint8_t *buf = ops->datbuf;
2768
	int ret;
2769
	int oob_required = oob ? 1 : 0;
L
Linus Torvalds 已提交
2770

2771
	ops->retlen = 0;
2772 2773
	if (!writelen)
		return 0;
L
Linus Torvalds 已提交
2774

2775
	/* Reject writes, which are not page aligned */
2776
	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2777 2778
		pr_notice("%s: attempt to write non page aligned data\n",
			   __func__);
L
Linus Torvalds 已提交
2779 2780 2781
		return -EINVAL;
	}

2782
	column = to & (mtd->writesize - 1);
L
Linus Torvalds 已提交
2783

2784 2785 2786
	chipnr = (int)(to >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);

L
Linus Torvalds 已提交
2787
	/* Check, if it is write protected */
2788 2789 2790 2791
	if (nand_check_wp(mtd)) {
		ret = -EIO;
		goto err_out;
	}
L
Linus Torvalds 已提交
2792

2793 2794 2795 2796 2797
	realpage = (int)(to >> chip->page_shift);
	page = realpage & chip->pagemask;
	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;

	/* Invalidate the page cache, when we write to the cached page */
2798 2799
	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2800
		chip->pagebuf = -1;
2801

2802
	/* Don't allow multipage oob writes with offset */
2803 2804 2805 2806
	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
		ret = -EINVAL;
		goto err_out;
	}
2807

2808
	while (1) {
2809
		int bytes = mtd->writesize;
2810
		int cached = writelen > bytes && page != blockmask;
2811
		uint8_t *wbuf = buf;
2812
		int use_bufpoi;
2813
		int part_pagewr = (column || writelen < mtd->writesize);
2814 2815 2816 2817 2818 2819 2820

		if (part_pagewr)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;
2821

2822 2823 2824 2825
		/* Partial page write?, or need to use bounce buffer */
		if (use_bufpoi) {
			pr_debug("%s: using write bounce buffer for buf@%p\n",
					 __func__, buf);
2826
			cached = 0;
2827 2828
			if (part_pagewr)
				bytes = min_t(int, bytes - column, writelen);
2829 2830 2831 2832 2833
			chip->pagebuf = -1;
			memset(chip->buffers->databuf, 0xff, mtd->writesize);
			memcpy(&chip->buffers->databuf[column], buf, bytes);
			wbuf = chip->buffers->databuf;
		}
L
Linus Torvalds 已提交
2834

2835 2836
		if (unlikely(oob)) {
			size_t len = min(oobwritelen, oobmaxlen);
2837
			oob = nand_fill_oob(mtd, oob, len, ops);
2838
			oobwritelen -= len;
2839 2840 2841
		} else {
			/* We still need to erase leftover OOB data */
			memset(chip->oob_poi, 0xff, mtd->oobsize);
2842
		}
2843 2844 2845
		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
					oob_required, page, cached,
					(ops->mode == MTD_OPS_RAW));
2846 2847 2848 2849 2850 2851 2852
		if (ret)
			break;

		writelen -= bytes;
		if (!writelen)
			break;

2853
		column = 0;
2854 2855 2856 2857 2858 2859 2860 2861 2862
		buf += bytes;
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2863 2864
		}
	}
2865 2866

	ops->retlen = ops->len - writelen;
2867 2868
	if (unlikely(oob))
		ops->oobretlen = ops->ooblen;
2869 2870 2871

err_out:
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2872 2873 2874
	return ret;
}

2875 2876
/**
 * panic_nand_write - [MTD Interface] NAND write with ECC
2877 2878 2879 2880 2881
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2882 2883 2884 2885 2886 2887 2888
 *
 * NAND write with ECC. Used when performing writes in interrupt context, this
 * may for example be called by mtdoops when writing an oops while in panic.
 */
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, const uint8_t *buf)
{
2889
	struct nand_chip *chip = mtd_to_nand(mtd);
2890
	struct mtd_oob_ops ops;
2891 2892
	int ret;

2893
	/* Wait for the device to get ready */
2894 2895
	panic_nand_wait(mtd, chip, 400);

2896
	/* Grab the device */
2897 2898
	panic_nand_get_device(chip, mtd, FL_WRITING);

2899
	memset(&ops, 0, sizeof(ops));
2900 2901
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2902
	ops.mode = MTD_OPS_PLACE_OOB;
2903

2904
	ret = nand_do_write_ops(mtd, to, &ops);
2905

2906
	*retlen = ops.retlen;
2907 2908 2909
	return ret;
}

2910
/**
2911
 * nand_write - [MTD Interface] NAND write with ECC
2912 2913 2914 2915 2916
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2917
 *
2918
 * NAND write with ECC.
2919
 */
2920 2921
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			  size_t *retlen, const uint8_t *buf)
2922
{
2923
	struct mtd_oob_ops ops;
2924 2925
	int ret;

2926
	nand_get_device(mtd, FL_WRITING);
2927
	memset(&ops, 0, sizeof(ops));
2928 2929
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2930
	ops.mode = MTD_OPS_PLACE_OOB;
2931 2932
	ret = nand_do_write_ops(mtd, to, &ops);
	*retlen = ops.retlen;
2933
	nand_release_device(mtd);
2934
	return ret;
2935
}
2936

L
Linus Torvalds 已提交
2937
/**
2938
 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2939 2940 2941
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2942
 *
2943
 * NAND write out-of-band.
L
Linus Torvalds 已提交
2944
 */
2945 2946
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2947
{
2948
	int chipnr, page, status, len;
2949
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
2950

2951
	pr_debug("%s: to = 0x%08x, len = %i\n",
2952
			 __func__, (unsigned int)to, (int)ops->ooblen);
L
Linus Torvalds 已提交
2953

2954
	len = mtd_oobavail(mtd, ops);
2955

L
Linus Torvalds 已提交
2956
	/* Do not allow write past end of page */
2957
	if ((ops->ooboffs + ops->ooblen) > len) {
2958 2959
		pr_debug("%s: attempt to write past end of page\n",
				__func__);
L
Linus Torvalds 已提交
2960 2961 2962
		return -EINVAL;
	}

2963
	if (unlikely(ops->ooboffs >= len)) {
2964 2965
		pr_debug("%s: attempt to start write outside oob\n",
				__func__);
2966 2967 2968
		return -EINVAL;
	}

2969
	/* Do not allow write past end of device */
2970 2971 2972 2973
	if (unlikely(to >= mtd->size ||
		     ops->ooboffs + ops->ooblen >
			((mtd->size >> chip->page_shift) -
			 (to >> chip->page_shift)) * len)) {
2974 2975
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
2976 2977 2978
		return -EINVAL;
	}

2979 2980 2981 2982 2983 2984 2985 2986
	chipnr = (int)(to >> chip->chip_shift);

	/*
	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
	 * of my DiskOnChip 2000 test units) will clear the whole data page too
	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
	 * it in the doc2000 driver in August 1999.  dwmw2.
	 */
2987 2988 2989 2990 2991 2992
	nand_reset(chip, chipnr);

	chip->select_chip(mtd, chipnr);

	/* Shift to get page */
	page = (int)(to >> chip->page_shift);
L
Linus Torvalds 已提交
2993 2994

	/* Check, if it is write protected */
2995 2996
	if (nand_check_wp(mtd)) {
		chip->select_chip(mtd, -1);
2997
		return -EROFS;
2998
	}
2999

L
Linus Torvalds 已提交
3000
	/* Invalidate the page cache, if we write to the cached page */
3001 3002
	if (page == chip->pagebuf)
		chip->pagebuf = -1;
L
Linus Torvalds 已提交
3003

3004
	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
3005

3006
	if (ops->mode == MTD_OPS_RAW)
3007 3008 3009
		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
	else
		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
L
Linus Torvalds 已提交
3010

3011 3012
	chip->select_chip(mtd, -1);

3013 3014
	if (status)
		return status;
L
Linus Torvalds 已提交
3015

3016
	ops->oobretlen = ops->ooblen;
L
Linus Torvalds 已提交
3017

3018
	return 0;
3019 3020 3021 3022
}

/**
 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3023 3024 3025
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
3026 3027 3028 3029 3030 3031 3032 3033 3034
 */
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
			  struct mtd_oob_ops *ops)
{
	int ret = -ENOTSUPP;

	ops->retlen = 0;

	/* Do not allow writes past end of device */
3035
	if (ops->datbuf && (to + ops->len) > mtd->size) {
3036 3037
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
3038 3039 3040
		return -EINVAL;
	}

3041
	nand_get_device(mtd, FL_WRITING);
3042

3043
	switch (ops->mode) {
3044 3045 3046
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_AUTO_OOB:
	case MTD_OPS_RAW:
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		break;

	default:
		goto out;
	}

	if (!ops->datbuf)
		ret = nand_do_write_oob(mtd, to, ops);
	else
		ret = nand_do_write_ops(mtd, to, ops);

3058
out:
L
Linus Torvalds 已提交
3059 3060 3061 3062 3063
	nand_release_device(mtd);
	return ret;
}

/**
3064
 * single_erase - [GENERIC] NAND standard block erase command function
3065 3066
 * @mtd: MTD device structure
 * @page: the page address of the block which will be erased
L
Linus Torvalds 已提交
3067
 *
3068
 * Standard erase command for NAND chips. Returns NAND status.
L
Linus Torvalds 已提交
3069
 */
3070
static int single_erase(struct mtd_info *mtd, int page)
L
Linus Torvalds 已提交
3071
{
3072
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
3073
	/* Send commands to erase a block */
3074 3075
	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
3076 3077

	return chip->waitfunc(mtd, chip);
L
Linus Torvalds 已提交
3078 3079 3080 3081
}

/**
 * nand_erase - [MTD Interface] erase block(s)
3082 3083
 * @mtd: MTD device structure
 * @instr: erase instruction
L
Linus Torvalds 已提交
3084
 *
3085
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3086
 */
3087
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
L
Linus Torvalds 已提交
3088
{
3089
	return nand_erase_nand(mtd, instr, 0);
L
Linus Torvalds 已提交
3090
}
3091

L
Linus Torvalds 已提交
3092
/**
3093
 * nand_erase_nand - [INTERN] erase block(s)
3094 3095 3096
 * @mtd: MTD device structure
 * @instr: erase instruction
 * @allowbbt: allow erasing the bbt area
L
Linus Torvalds 已提交
3097
 *
3098
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3099
 */
3100 3101
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
		    int allowbbt)
L
Linus Torvalds 已提交
3102
{
3103
	int page, status, pages_per_block, ret, chipnr;
3104
	struct nand_chip *chip = mtd_to_nand(mtd);
3105
	loff_t len;
L
Linus Torvalds 已提交
3106

3107 3108 3109
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
			__func__, (unsigned long long)instr->addr,
			(unsigned long long)instr->len);
L
Linus Torvalds 已提交
3110

3111
	if (check_offs_len(mtd, instr->addr, instr->len))
L
Linus Torvalds 已提交
3112 3113 3114
		return -EINVAL;

	/* Grab the lock and see if the device is available */
3115
	nand_get_device(mtd, FL_ERASING);
L
Linus Torvalds 已提交
3116 3117

	/* Shift to get first page */
3118 3119
	page = (int)(instr->addr >> chip->page_shift);
	chipnr = (int)(instr->addr >> chip->chip_shift);
L
Linus Torvalds 已提交
3120 3121

	/* Calculate pages in each block */
3122
	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
L
Linus Torvalds 已提交
3123 3124

	/* Select the NAND device */
3125
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3126 3127 3128

	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
3129 3130
		pr_debug("%s: device is write protected!\n",
				__func__);
L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		instr->state = MTD_ERASE_FAILED;
		goto erase_exit;
	}

	/* Loop through the pages */
	len = instr->len;

	instr->state = MTD_ERASING;

	while (len) {
W
Wolfram Sang 已提交
3141
		/* Check if we have a bad block, we do not erase bad blocks! */
3142
		if (nand_block_checkbad(mtd, ((loff_t) page) <<
3143
					chip->page_shift, allowbbt)) {
3144 3145
			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
				    __func__, page);
L
Linus Torvalds 已提交
3146 3147 3148
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
3149

3150 3151
		/*
		 * Invalidate the page cache, if we erase the block which
3152
		 * contains the current cached page.
3153 3154 3155 3156
		 */
		if (page <= chip->pagebuf && chip->pagebuf <
		    (page + pages_per_block))
			chip->pagebuf = -1;
L
Linus Torvalds 已提交
3157

3158
		status = chip->erase(mtd, page & chip->pagemask);
L
Linus Torvalds 已提交
3159

3160 3161 3162 3163 3164 3165 3166
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_ERASING,
					       status, page);
3167

L
Linus Torvalds 已提交
3168
		/* See if block erase succeeded */
3169
		if (status & NAND_STATUS_FAIL) {
3170 3171
			pr_debug("%s: failed erase, page 0x%08x\n",
					__func__, page);
L
Linus Torvalds 已提交
3172
			instr->state = MTD_ERASE_FAILED;
3173 3174
			instr->fail_addr =
				((loff_t)page << chip->page_shift);
L
Linus Torvalds 已提交
3175 3176
			goto erase_exit;
		}
3177

L
Linus Torvalds 已提交
3178
		/* Increment page address and decrement length */
3179
		len -= (1ULL << chip->phys_erase_shift);
L
Linus Torvalds 已提交
3180 3181 3182
		page += pages_per_block;

		/* Check, if we cross a chip boundary */
3183
		if (len && !(page & chip->pagemask)) {
L
Linus Torvalds 已提交
3184
			chipnr++;
3185 3186
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3187 3188 3189 3190
		}
	}
	instr->state = MTD_ERASE_DONE;

3191
erase_exit:
L
Linus Torvalds 已提交
3192 3193 3194 3195

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;

	/* Deselect and wake up anyone waiting on the device */
3196
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
3197 3198
	nand_release_device(mtd);

3199 3200 3201 3202
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

L
Linus Torvalds 已提交
3203 3204 3205 3206 3207 3208
	/* Return more or less happy */
	return ret;
}

/**
 * nand_sync - [MTD Interface] sync
3209
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
3210
 *
3211
 * Sync is actually a wait for chip ready function.
L
Linus Torvalds 已提交
3212
 */
3213
static void nand_sync(struct mtd_info *mtd)
L
Linus Torvalds 已提交
3214
{
3215
	pr_debug("%s: called\n", __func__);
L
Linus Torvalds 已提交
3216 3217

	/* Grab the lock and see if the device is available */
3218
	nand_get_device(mtd, FL_SYNCING);
L
Linus Torvalds 已提交
3219
	/* Release it and go back */
3220
	nand_release_device(mtd);
L
Linus Torvalds 已提交
3221 3222 3223
}

/**
3224
 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3225 3226
 * @mtd: MTD device structure
 * @offs: offset relative to mtd start
L
Linus Torvalds 已提交
3227
 */
3228
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
L
Linus Torvalds 已提交
3229
{
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	struct nand_chip *chip = mtd_to_nand(mtd);
	int chipnr = (int)(offs >> chip->chip_shift);
	int ret;

	/* Select the NAND device */
	nand_get_device(mtd, FL_READING);
	chip->select_chip(mtd, chipnr);

	ret = nand_block_checkbad(mtd, offs, 0);

	chip->select_chip(mtd, -1);
	nand_release_device(mtd);

	return ret;
L
Linus Torvalds 已提交
3244 3245 3246
}

/**
3247
 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3248 3249
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
L
Linus Torvalds 已提交
3250
 */
3251
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
3252 3253 3254
{
	int ret;

3255 3256
	ret = nand_block_isbad(mtd, ofs);
	if (ret) {
3257
		/* If it was bad already, return success and do nothing */
L
Linus Torvalds 已提交
3258 3259
		if (ret > 0)
			return 0;
3260 3261
		return ret;
	}
L
Linus Torvalds 已提交
3262

3263
	return nand_block_markbad_lowlevel(mtd, ofs);
L
Linus Torvalds 已提交
3264 3265
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
/**
 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
 * @len: length of mtd
 */
static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	u32 part_start_block;
	u32 part_end_block;
	u32 part_start_die;
	u32 part_end_die;

	/*
	 * max_bb_per_die and blocks_per_die used to determine
	 * the maximum bad block count.
	 */
	if (!chip->max_bb_per_die || !chip->blocks_per_die)
		return -ENOTSUPP;

	/* Get the start and end of the partition in erase blocks. */
	part_start_block = mtd_div_by_eb(ofs, mtd);
	part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;

	/* Get the start and end LUNs of the partition. */
	part_start_die = part_start_block / chip->blocks_per_die;
	part_end_die = part_end_block / chip->blocks_per_die;

	/*
	 * Look up the bad blocks per unit and multiply by the number of units
	 * that the partition spans.
	 */
	return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
}

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
/**
 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
	int status;
3313
	int i;
3314

3315 3316 3317
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3318 3319 3320
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3321 3322 3323
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		chip->write_byte(mtd, subfeature_param[i]);

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	status = chip->waitfunc(mtd, chip);
	if (status & NAND_STATUS_FAIL)
		return -EIO;
	return 0;
}

/**
 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
3340 3341
	int i;

3342 3343 3344
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3345 3346 3347
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3348 3349
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		*subfeature_param++ = chip->read_byte(mtd);
3350 3351 3352
	return 0;
}

3353 3354
/**
 * nand_suspend - [MTD Interface] Suspend the NAND flash
3355
 * @mtd: MTD device structure
3356 3357 3358
 */
static int nand_suspend(struct mtd_info *mtd)
{
3359
	return nand_get_device(mtd, FL_PM_SUSPENDED);
3360 3361 3362 3363
}

/**
 * nand_resume - [MTD Interface] Resume the NAND flash
3364
 * @mtd: MTD device structure
3365 3366 3367
 */
static void nand_resume(struct mtd_info *mtd)
{
3368
	struct nand_chip *chip = mtd_to_nand(mtd);
3369

3370
	if (chip->state == FL_PM_SUSPENDED)
3371 3372
		nand_release_device(mtd);
	else
3373 3374
		pr_err("%s called for a chip which is not in suspended state\n",
			__func__);
3375 3376
}

S
Scott Branden 已提交
3377 3378 3379 3380 3381 3382 3383
/**
 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
 *                 prevent further operations
 * @mtd: MTD device structure
 */
static void nand_shutdown(struct mtd_info *mtd)
{
3384
	nand_get_device(mtd, FL_PM_SUSPENDED);
S
Scott Branden 已提交
3385 3386
}

3387
/* Set default functions */
3388
static void nand_set_defaults(struct nand_chip *chip)
T
Thomas Gleixner 已提交
3389
{
3390 3391
	unsigned int busw = chip->options & NAND_BUSWIDTH_16;

L
Linus Torvalds 已提交
3392
	/* check for proper chip_delay setup, set 20us if not */
3393 3394
	if (!chip->chip_delay)
		chip->chip_delay = 20;
L
Linus Torvalds 已提交
3395 3396

	/* check, if a user supplied command function given */
3397 3398
	if (chip->cmdfunc == NULL)
		chip->cmdfunc = nand_command;
L
Linus Torvalds 已提交
3399 3400

	/* check, if a user supplied wait function given */
3401 3402 3403 3404 3405
	if (chip->waitfunc == NULL)
		chip->waitfunc = nand_wait;

	if (!chip->select_chip)
		chip->select_chip = nand_select_chip;
3406

3407 3408 3409 3410 3411 3412
	/* set for ONFI nand */
	if (!chip->onfi_set_features)
		chip->onfi_set_features = nand_onfi_set_features;
	if (!chip->onfi_get_features)
		chip->onfi_get_features = nand_onfi_get_features;

3413 3414
	/* If called twice, pointers that depend on busw may need to be reset */
	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3415 3416 3417 3418 3419 3420 3421
		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
	if (!chip->read_word)
		chip->read_word = nand_read_word;
	if (!chip->block_bad)
		chip->block_bad = nand_block_bad;
	if (!chip->block_markbad)
		chip->block_markbad = nand_default_block_markbad;
3422
	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3423
		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3424 3425
	if (!chip->write_byte || chip->write_byte == nand_write_byte)
		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3426
	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3427 3428 3429
		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
	if (!chip->scan_bbt)
		chip->scan_bbt = nand_default_bbt;
3430 3431 3432

	if (!chip->controller) {
		chip->controller = &chip->hwcontrol;
3433
		nand_hw_control_init(chip->controller);
3434 3435
	}

T
Thomas Gleixner 已提交
3436 3437
}

3438
/* Sanitize ONFI strings so we can safely print them */
3439 3440 3441 3442
static void sanitize_string(uint8_t *s, size_t len)
{
	ssize_t i;

3443
	/* Null terminate */
3444 3445
	s[len - 1] = 0;

3446
	/* Remove non printable chars */
3447 3448 3449 3450 3451
	for (i = 0; i < len - 1; i++) {
		if (s[i] < ' ' || s[i] > 127)
			s[i] = '?';
	}

3452
	/* Remove trailing spaces */
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	strim(s);
}

static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
	int i;
	while (len--) {
		crc ^= *p++ << 8;
		for (i = 0; i < 8; i++)
			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
	}

	return crc;
}

3468
/* Parse the Extended Parameter Page. */
3469 3470
static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
					    struct nand_onfi_params *p)
3471
{
3472
	struct mtd_info *mtd = nand_to_mtd(chip);
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	struct onfi_ext_param_page *ep;
	struct onfi_ext_section *s;
	struct onfi_ext_ecc_info *ecc;
	uint8_t *cursor;
	int ret = -EINVAL;
	int len;
	int i;

	len = le16_to_cpu(p->ext_param_page_length) * 16;
	ep = kmalloc(len, GFP_KERNEL);
3483 3484
	if (!ep)
		return -ENOMEM;
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

	/* Send our own NAND_CMD_PARAM. */
	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);

	/* Use the Change Read Column command to skip the ONFI param pages. */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
			sizeof(*p) * p->num_of_param_pages , -1);

	/* Read out the Extended Parameter Page. */
	chip->read_buf(mtd, (uint8_t *)ep, len);
	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
		!= le16_to_cpu(ep->crc))) {
		pr_debug("fail in the CRC.\n");
		goto ext_out;
	}

	/*
	 * Check the signature.
	 * Do not strictly follow the ONFI spec, maybe changed in future.
	 */
	if (strncmp(ep->sig, "EPPS", 4)) {
		pr_debug("The signature is invalid.\n");
		goto ext_out;
	}

	/* find the ECC section. */
	cursor = (uint8_t *)(ep + 1);
	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
		s = ep->sections + i;
		if (s->type == ONFI_SECTION_TYPE_2)
			break;
		cursor += s->length * 16;
	}
	if (i == ONFI_EXT_SECTION_MAX) {
		pr_debug("We can not find the ECC section.\n");
		goto ext_out;
	}

	/* get the info we want. */
	ecc = (struct onfi_ext_ecc_info *)cursor;

3526 3527 3528
	if (!ecc->codeword_size) {
		pr_debug("Invalid codeword size\n");
		goto ext_out;
3529 3530
	}

3531 3532
	chip->ecc_strength_ds = ecc->ecc_bits;
	chip->ecc_step_ds = 1 << ecc->codeword_size;
3533
	ret = 0;
3534 3535 3536 3537 3538 3539

ext_out:
	kfree(ep);
	return ret;
}

3540 3541
static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
{
3542
	struct nand_chip *chip = mtd_to_nand(mtd);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
			feature);
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static void nand_onfi_detect_micron(struct nand_chip *chip,
		struct nand_onfi_params *p)
{
	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;

	if (le16_to_cpu(p->vendor_revision) < 1)
		return;

	chip->read_retries = micron->read_retry_options;
	chip->setup_read_retry = nand_setup_read_retry_micron;
}

3564
/*
3565
 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3566
 */
3567
static int nand_flash_detect_onfi(struct nand_chip *chip)
3568
{
3569
	struct mtd_info *mtd = nand_to_mtd(chip);
3570
	struct nand_onfi_params *p = &chip->onfi_params;
3571
	int i, j;
3572 3573
	int val;

3574
	/* Try ONFI for unknown chip or LP */
3575 3576 3577 3578 3579 3580 3581
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
	for (i = 0; i < 3; i++) {
3582 3583
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);
3584 3585 3586 3587 3588 3589
		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
				le16_to_cpu(p->crc)) {
			break;
		}
	}

3590 3591
	if (i == 3) {
		pr_err("Could not find valid ONFI parameter page; aborting\n");
3592
		return 0;
3593
	}
3594

3595
	/* Check version */
3596
	val = le16_to_cpu(p->revision);
3597 3598 3599
	if (val & (1 << 5))
		chip->onfi_version = 23;
	else if (val & (1 << 4))
3600 3601 3602 3603 3604
		chip->onfi_version = 22;
	else if (val & (1 << 3))
		chip->onfi_version = 21;
	else if (val & (1 << 2))
		chip->onfi_version = 20;
3605
	else if (val & (1 << 1))
3606
		chip->onfi_version = 10;
3607 3608

	if (!chip->onfi_version) {
3609
		pr_info("unsupported ONFI version: %d\n", val);
3610 3611
		return 0;
	}
3612 3613 3614 3615 3616

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;
3617

3618
	mtd->writesize = le32_to_cpu(p->byte_per_page);
3619 3620 3621 3622 3623 3624 3625 3626 3627

	/*
	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
	 * (don't ask me who thought of this...). MTD assumes that these
	 * dimensions will be power-of-2, so just truncate the remaining area.
	 */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

3628
	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3629 3630 3631

	/* See erasesize comment */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3632
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3633
	chip->bits_per_cell = p->bits_per_cell;
3634

3635 3636 3637
	chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
	chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);

3638
	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3639
		chip->options |= NAND_BUSWIDTH_16;
3640

3641 3642 3643
	if (p->ecc_bits != 0xff) {
		chip->ecc_strength_ds = p->ecc_bits;
		chip->ecc_step_ds = 512;
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	} else if (chip->onfi_version >= 21 &&
		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {

		/*
		 * The nand_flash_detect_ext_param_page() uses the
		 * Change Read Column command which maybe not supported
		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
		 * now. We do not replace user supplied command function.
		 */
		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
			chip->cmdfunc = nand_command_lp;

		/* The Extended Parameter Page is supported since ONFI 2.1. */
3657
		if (nand_flash_detect_ext_param_page(chip, p))
3658 3659 3660
			pr_warn("Failed to detect ONFI extended param page\n");
	} else {
		pr_warn("Could not retrieve ONFI ECC requirements\n");
3661 3662
	}

3663 3664 3665
	if (p->jedec_id == NAND_MFR_MICRON)
		nand_onfi_detect_micron(chip, p);

3666 3667 3668
	return 1;
}

3669 3670 3671
/*
 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
 */
3672
static int nand_flash_detect_jedec(struct nand_chip *chip)
3673
{
3674
	struct mtd_info *mtd = nand_to_mtd(chip);
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	struct nand_jedec_params *p = &chip->jedec_params;
	struct jedec_ecc_info *ecc;
	int val;
	int i, j;

	/* Try JEDEC for unknown chip or LP */
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'C')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
	for (i = 0; i < 3; i++) {
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);

		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
				le16_to_cpu(p->crc))
			break;
	}

	if (i == 3) {
		pr_err("Could not find valid JEDEC parameter page; aborting\n");
		return 0;
	}

	/* Check version */
	val = le16_to_cpu(p->revision);
	if (val & (1 << 2))
		chip->jedec_version = 10;
	else if (val & (1 << 1))
		chip->jedec_version = 1; /* vendor specific version */

	if (!chip->jedec_version) {
		pr_info("unsupported JEDEC version: %d\n", val);
		return 0;
	}

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;

	mtd->writesize = le32_to_cpu(p->byte_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
	chip->bits_per_cell = p->bits_per_cell;

	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3733
		chip->options |= NAND_BUSWIDTH_16;
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747

	/* ECC info */
	ecc = &p->ecc_info[0];

	if (ecc->codeword_size >= 9) {
		chip->ecc_strength_ds = ecc->ecc_bits;
		chip->ecc_step_ds = 1 << ecc->codeword_size;
	} else {
		pr_warn("Invalid codeword size\n");
	}

	return 1;
}

3748 3749 3750 3751 3752 3753 3754 3755
/*
 * nand_id_has_period - Check if an ID string has a given wraparound period
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array
 * @period: the period of repitition
 *
 * Check if an ID string is repeated within a given sequence of bytes at
 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3756
 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
 * if the repetition has a period of @period; otherwise, returns zero.
 */
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
	int i, j;
	for (i = 0; i < period; i++)
		for (j = i + period; j < arrlen; j += period)
			if (id_data[i] != id_data[j])
				return 0;
	return 1;
}

/*
 * nand_id_len - Get the length of an ID string returned by CMD_READID
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array

 * Returns the length of the ID string, according to known wraparound/trailing
 * zero patterns. If no pattern exists, returns the length of the array.
 */
static int nand_id_len(u8 *id_data, int arrlen)
{
	int last_nonzero, period;

	/* Find last non-zero byte */
	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
		if (id_data[last_nonzero])
			break;

	/* All zeros */
	if (last_nonzero < 0)
		return 0;

	/* Calculate wraparound period */
	for (period = 1; period < arrlen; period++)
		if (nand_id_has_period(id_data, arrlen, period))
			break;

	/* There's a repeated pattern */
	if (period < arrlen)
		return period;

	/* There are trailing zeros */
	if (last_nonzero < arrlen - 1)
		return last_nonzero + 1;

	/* No pattern detected */
	return arrlen;
}

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
	int bits;

	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
	bits >>= NAND_CI_CELLTYPE_SHIFT;
	return bits + 1;
}

3817 3818 3819 3820 3821
/*
 * Many new NAND share similar device ID codes, which represent the size of the
 * chip. The rest of the parameters must be decoded according to generic or
 * manufacturer-specific "extended ID" decoding patterns.
 */
3822
static void nand_decode_ext_id(struct nand_chip *chip)
3823
{
3824
	struct mtd_info *mtd = nand_to_mtd(chip);
3825 3826
	int extid, id_len = chip->id.len;
	u8 *id_data = chip->id.data;
3827
	/* The 3rd id byte holds MLC / multichip data */
3828
	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3829 3830 3831 3832 3833 3834
	/* The 4th id byte is the important one */
	extid = id_data[3];

	/*
	 * Field definitions are in the following datasheets:
	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3835
	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3836
	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3837
	 *
3838 3839
	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
	 * ID to decide what to do.
3840
	 */
3841
	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3842
			!nand_is_slc(chip) && id_data[5] != 0x00) {
3843 3844 3845 3846
		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
3847
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3848 3849 3850 3851 3852 3853 3854 3855 3856
		case 1:
			mtd->oobsize = 128;
			break;
		case 2:
			mtd->oobsize = 218;
			break;
		case 3:
			mtd->oobsize = 400;
			break;
3857
		case 4:
3858 3859
			mtd->oobsize = 436;
			break;
3860 3861 3862 3863 3864 3865
		case 5:
			mtd->oobsize = 512;
			break;
		case 6:
			mtd->oobsize = 640;
			break;
3866 3867 3868 3869
		case 7:
		default: /* Other cases are "reserved" (unknown) */
			mtd->oobsize = 1024;
			break;
3870 3871 3872 3873 3874
		}
		extid >>= 2;
		/* Calc blocksize */
		mtd->erasesize = (128 * 1024) <<
			(((extid >> 1) & 0x04) | (extid & 0x03));
3875
	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3876
			!nand_is_slc(chip)) {
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
		unsigned int tmp;

		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
		case 0:
			mtd->oobsize = 128;
			break;
		case 1:
			mtd->oobsize = 224;
			break;
		case 2:
			mtd->oobsize = 448;
			break;
		case 3:
			mtd->oobsize = 64;
			break;
		case 4:
			mtd->oobsize = 32;
			break;
		case 5:
			mtd->oobsize = 16;
			break;
		default:
			mtd->oobsize = 640;
			break;
		}
		extid >>= 2;
		/* Calc blocksize */
		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
		if (tmp < 0x03)
			mtd->erasesize = (128 * 1024) << tmp;
		else if (tmp == 0x03)
			mtd->erasesize = 768 * 1024;
		else
			mtd->erasesize = (64 * 1024) << tmp;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	} else {
		/* Calc pagesize */
		mtd->writesize = 1024 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		mtd->oobsize = (8 << (extid & 0x01)) *
			(mtd->writesize >> 9);
		extid >>= 2;
		/* Calc blocksize. Blocksize is multiples of 64KiB */
		mtd->erasesize = (64 * 1024) << (extid & 0x03);
		extid >>= 2;
		/* Get buswidth information */
3927 3928
		if (extid & 0x1)
			chip->options |= NAND_BUSWIDTH_16;
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938

		/*
		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
		 * follows:
		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
		 *                         110b -> 24nm
		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
		 */
		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3939
				nand_is_slc(chip) &&
3940 3941 3942 3943 3944
				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
				!(id_data[4] & 0x80) /* !BENAND */) {
			mtd->oobsize = 32 * mtd->writesize >> 9;
		}

3945 3946 3947
	}
}

3948 3949 3950 3951 3952
/*
 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
 * decodes a matching ID table entry and assigns the MTD size parameters for
 * the chip.
 */
3953
static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
3954
{
3955
	struct mtd_info *mtd = nand_to_mtd(chip);
3956
	u8 *id_data = chip->id.data;
3957 3958 3959 3960 3961 3962
	int maf_id = id_data[0];

	mtd->erasesize = type->erasesize;
	mtd->writesize = type->pagesize;
	mtd->oobsize = mtd->writesize / 32;

3963 3964 3965
	/* All legacy ID NAND are small-page, SLC */
	chip->bits_per_cell = 1;

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	/*
	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
	 * some Spansion chips have erasesize that conflicts with size
	 * listed in nand_ids table.
	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
	 */
	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
			&& id_data[6] == 0x00 && id_data[7] == 0x00
			&& mtd->writesize == 512) {
		mtd->erasesize = 128 * 1024;
		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
	}
}

3980 3981 3982 3983 3984
/*
 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
 * heuristic patterns using various detected parameters (e.g., manufacturer,
 * page size, cell-type information).
 */
3985
static void nand_decode_bbm_options(struct nand_chip *chip)
3986
{
3987
	struct mtd_info *mtd = nand_to_mtd(chip);
3988
	u8 *id_data = chip->id.data;
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	int maf_id = id_data[0];

	/* Set the bad block position */
	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
	else
		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;

	/*
	 * Bad block marker is stored in the last page of each block on Samsung
	 * and Hynix MLC devices; stored in first two pages of each block on
	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
	 * AMD/Spansion, and Macronix.  All others scan only the first page.
	 */
4003
	if (!nand_is_slc(chip) &&
4004 4005 4006
			(maf_id == NAND_MFR_SAMSUNG ||
			 maf_id == NAND_MFR_HYNIX))
		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
4007
	else if ((nand_is_slc(chip) &&
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
				(maf_id == NAND_MFR_SAMSUNG ||
				 maf_id == NAND_MFR_HYNIX ||
				 maf_id == NAND_MFR_TOSHIBA ||
				 maf_id == NAND_MFR_AMD ||
				 maf_id == NAND_MFR_MACRONIX)) ||
			(mtd->writesize == 2048 &&
			 maf_id == NAND_MFR_MICRON))
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}

4018 4019 4020 4021 4022
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
	return type->id_len;
}

4023
static bool find_full_id_nand(struct nand_chip *chip,
4024
			      struct nand_flash_dev *type)
4025
{
4026
	struct mtd_info *mtd = nand_to_mtd(chip);
4027
	u8 *id_data = chip->id.data;
4028

4029 4030 4031 4032 4033
	if (!strncmp(type->id, id_data, type->id_len)) {
		mtd->writesize = type->pagesize;
		mtd->erasesize = type->erasesize;
		mtd->oobsize = type->oobsize;

4034
		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4035 4036
		chip->chipsize = (uint64_t)type->chipsize << 20;
		chip->options |= type->options;
4037 4038
		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
		chip->ecc_step_ds = NAND_ECC_STEP(type);
4039 4040
		chip->onfi_timing_mode_default =
					type->onfi_timing_mode_default;
4041

4042 4043 4044
		if (!mtd->name)
			mtd->name = type->name;

4045 4046 4047 4048 4049
		return true;
	}
	return false;
}

T
Thomas Gleixner 已提交
4050
/*
4051
 * Get the flash and manufacturer id and lookup if the type is supported.
T
Thomas Gleixner 已提交
4052
 */
4053
static int nand_get_flash_type(struct nand_chip *chip,
4054
			       struct nand_flash_dev *type)
T
Thomas Gleixner 已提交
4055
{
4056
	struct mtd_info *mtd = nand_to_mtd(chip);
4057
	int busw;
4058
	int i, maf_idx;
4059 4060
	u8 *id_data = chip->id.data;
	u8 maf_id, dev_id;
L
Linus Torvalds 已提交
4061

4062 4063
	/*
	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4064
	 * after power-up.
4065
	 */
4066 4067 4068 4069
	nand_reset(chip, 0);

	/* Select the device */
	chip->select_chip(mtd, 0);
4070

L
Linus Torvalds 已提交
4071
	/* Send the command for reading device ID */
4072
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4073 4074

	/* Read manufacturer and device IDs */
4075 4076
	maf_id = chip->read_byte(mtd);
	dev_id = chip->read_byte(mtd);
L
Linus Torvalds 已提交
4077

4078 4079
	/*
	 * Try again to make sure, as some systems the bus-hold or other
4080 4081 4082 4083 4084 4085 4086
	 * interface concerns can cause random data which looks like a
	 * possibly credible NAND flash to appear. If the two results do
	 * not match, ignore the device completely.
	 */

	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

4087 4088
	/* Read entire ID string */
	for (i = 0; i < 8; i++)
4089
		id_data[i] = chip->read_byte(mtd);
4090

4091
	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4092
		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4093
			maf_id, dev_id, id_data[0], id_data[1]);
4094
		return -ENODEV;
4095 4096
	}

4097 4098
	chip->id.len = nand_id_len(id_data, 8);

T
Thomas Gleixner 已提交
4099
	if (!type)
4100 4101
		type = nand_flash_ids;

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	/*
	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
	 * override it.
	 * This is required to make sure initial NAND bus width set by the
	 * NAND controller driver is coherent with the real NAND bus width
	 * (extracted by auto-detection code).
	 */
	busw = chip->options & NAND_BUSWIDTH_16;

	/*
	 * The flag is only set (never cleared), reset it to its default value
	 * before starting auto-detection.
	 */
	chip->options &= ~NAND_BUSWIDTH_16;

4117 4118
	for (; type->name != NULL; type++) {
		if (is_full_id_nand(type)) {
4119
			if (find_full_id_nand(chip, type))
4120
				goto ident_done;
4121
		} else if (dev_id == type->dev_id) {
4122
			break;
4123 4124
		}
	}
4125

4126 4127
	chip->onfi_version = 0;
	if (!type->name || !type->pagesize) {
4128
		/* Check if the chip is ONFI compliant */
4129
		if (nand_flash_detect_onfi(chip))
4130
			goto ident_done;
4131 4132

		/* Check if the chip is JEDEC compliant */
4133
		if (nand_flash_detect_jedec(chip))
4134
			goto ident_done;
4135 4136
	}

4137
	if (!type->name)
4138
		return -ENODEV;
T
Thomas Gleixner 已提交
4139

4140 4141 4142
	if (!mtd->name)
		mtd->name = type->name;

4143
	chip->chipsize = (uint64_t)type->chipsize << 20;
T
Thomas Gleixner 已提交
4144

4145
	if (!type->pagesize) {
4146
		/* Decode parameters from extended ID */
4147
		nand_decode_ext_id(chip);
T
Thomas Gleixner 已提交
4148
	} else {
4149
		nand_decode_id(chip, type);
T
Thomas Gleixner 已提交
4150
	}
4151 4152
	/* Get chip options */
	chip->options |= type->options;
4153

4154 4155 4156
	/*
	 * Check if chip is not a Samsung device. Do not clear the
	 * options for chips which do not have an extended id.
4157
	 */
4158
	if (maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
4159 4160 4161
		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:

T
Thomas Gleixner 已提交
4162
	/* Try to identify manufacturer */
4163
	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
4164
		if (nand_manuf_ids[maf_idx].id == maf_id)
T
Thomas Gleixner 已提交
4165 4166
			break;
	}
4167

4168
	if (chip->options & NAND_BUSWIDTH_AUTO) {
4169 4170
		WARN_ON(busw & NAND_BUSWIDTH_16);
		nand_set_defaults(chip);
4171 4172 4173 4174 4175
	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
		/*
		 * Check, if buswidth is correct. Hardware drivers should set
		 * chip correct!
		 */
4176
		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4177
			maf_id, dev_id);
4178
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
4179 4180
		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4181
		return -EINVAL;
T
Thomas Gleixner 已提交
4182
	}
4183

4184
	nand_decode_bbm_options(chip);
4185

T
Thomas Gleixner 已提交
4186
	/* Calculate the address shift from the page size */
4187
	chip->page_shift = ffs(mtd->writesize) - 1;
4188
	/* Convert chipsize to number of pages per chip -1 */
4189
	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4190

4191
	chip->bbt_erase_shift = chip->phys_erase_shift =
T
Thomas Gleixner 已提交
4192
		ffs(mtd->erasesize) - 1;
4193 4194
	if (chip->chipsize & 0xffffffff)
		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4195 4196 4197 4198
	else {
		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
		chip->chip_shift += 32 - 1;
	}
L
Linus Torvalds 已提交
4199

A
Artem Bityutskiy 已提交
4200
	chip->badblockbits = 8;
4201
	chip->erase = single_erase;
T
Thomas Gleixner 已提交
4202

4203
	/* Do not replace user supplied command function! */
4204 4205
	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
		chip->cmdfunc = nand_command_lp;
T
Thomas Gleixner 已提交
4206

4207
	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4208
		maf_id, dev_id);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

	if (chip->onfi_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->onfi_params.model);
	else if (chip->jedec_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->jedec_params.model);
	else
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				type->name);

4220
	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4221
		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4222
		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4223
	return 0;
T
Thomas Gleixner 已提交
4224 4225
}

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
static const char * const nand_ecc_modes[] = {
	[NAND_ECC_NONE]		= "none",
	[NAND_ECC_SOFT]		= "soft",
	[NAND_ECC_HW]		= "hw",
	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
};

static int of_get_nand_ecc_mode(struct device_node *np)
{
	const char *pm;
	int err, i;

	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
		if (!strcasecmp(pm, nand_ecc_modes[i]))
			return i;

4247 4248 4249 4250 4251 4252 4253 4254
	/*
	 * For backward compatibility we support few obsoleted values that don't
	 * have their mappings into nand_ecc_modes_t anymore (they were merged
	 * with other enums).
	 */
	if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_SOFT;

4255 4256 4257
	return -ENODEV;
}

4258 4259 4260 4261 4262
static const char * const nand_ecc_algos[] = {
	[NAND_ECC_HAMMING]	= "hamming",
	[NAND_ECC_BCH]		= "bch",
};

4263 4264 4265
static int of_get_nand_ecc_algo(struct device_node *np)
{
	const char *pm;
4266
	int err, i;
4267

4268 4269 4270 4271 4272 4273 4274
	err = of_property_read_string(np, "nand-ecc-algo", &pm);
	if (!err) {
		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
			if (!strcasecmp(pm, nand_ecc_algos[i]))
				return i;
		return -ENODEV;
	}
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330

	/*
	 * For backward compatibility we also read "nand-ecc-mode" checking
	 * for some obsoleted values that were specifying ECC algorithm.
	 */
	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	if (!strcasecmp(pm, "soft"))
		return NAND_ECC_HAMMING;
	else if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_BCH;

	return -ENODEV;
}

static int of_get_nand_ecc_step_size(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
	return ret ? ret : val;
}

static int of_get_nand_ecc_strength(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
	return ret ? ret : val;
}

static int of_get_nand_bus_width(struct device_node *np)
{
	u32 val;

	if (of_property_read_u32(np, "nand-bus-width", &val))
		return 8;

	switch (val) {
	case 8:
	case 16:
		return val;
	default:
		return -EIO;
	}
}

static bool of_get_nand_on_flash_bbt(struct device_node *np)
{
	return of_property_read_bool(np, "nand-on-flash-bbt");
}

4331
static int nand_dt_init(struct nand_chip *chip)
4332
{
4333
	struct device_node *dn = nand_get_flash_node(chip);
4334
	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4335

4336 4337 4338
	if (!dn)
		return 0;

4339 4340 4341 4342 4343 4344 4345
	if (of_get_nand_bus_width(dn) == 16)
		chip->options |= NAND_BUSWIDTH_16;

	if (of_get_nand_on_flash_bbt(dn))
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	ecc_mode = of_get_nand_ecc_mode(dn);
4346
	ecc_algo = of_get_nand_ecc_algo(dn);
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
	ecc_strength = of_get_nand_ecc_strength(dn);
	ecc_step = of_get_nand_ecc_step_size(dn);

	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
		pr_err("must set both strength and step size in DT\n");
		return -EINVAL;
	}

	if (ecc_mode >= 0)
		chip->ecc.mode = ecc_mode;

4359 4360 4361
	if (ecc_algo >= 0)
		chip->ecc.algo = ecc_algo;

4362 4363 4364 4365 4366 4367
	if (ecc_strength >= 0)
		chip->ecc.strength = ecc_strength;

	if (ecc_step > 0)
		chip->ecc.size = ecc_step;

4368 4369 4370
	if (of_property_read_bool(dn, "nand-ecc-maximize"))
		chip->ecc.options |= NAND_ECC_MAXIMIZE;

4371 4372 4373
	return 0;
}

T
Thomas Gleixner 已提交
4374
/**
4375
 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4376 4377 4378
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
 * @table: alternative NAND ID table
T
Thomas Gleixner 已提交
4379
 *
4380 4381
 * This is the first phase of the normal nand_scan() function. It reads the
 * flash ID and sets up MTD fields accordingly.
T
Thomas Gleixner 已提交
4382 4383
 *
 */
4384 4385
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
		    struct nand_flash_dev *table)
T
Thomas Gleixner 已提交
4386
{
4387
	int i, nand_maf_id, nand_dev_id;
4388
	struct nand_chip *chip = mtd_to_nand(mtd);
4389 4390
	int ret;

4391 4392 4393
	ret = nand_dt_init(chip);
	if (ret)
		return ret;
T
Thomas Gleixner 已提交
4394

4395 4396 4397
	if (!mtd->name && mtd->dev.parent)
		mtd->name = dev_name(mtd->dev.parent);

4398 4399 4400 4401 4402 4403 4404 4405 4406
	if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
		/*
		 * Default functions assigned for chip_select() and
		 * cmdfunc() both expect cmd_ctrl() to be populated,
		 * so we need to check that that's the case
		 */
		pr_err("chip.cmd_ctrl() callback is not provided");
		return -EINVAL;
	}
T
Thomas Gleixner 已提交
4407
	/* Set the default functions */
4408
	nand_set_defaults(chip);
T
Thomas Gleixner 已提交
4409 4410

	/* Read the flash type */
4411
	ret = nand_get_flash_type(chip, table);
4412
	if (ret) {
4413
		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4414
			pr_warn("No NAND device found\n");
4415
		chip->select_chip(mtd, -1);
4416
		return ret;
L
Linus Torvalds 已提交
4417 4418
	}

4419
	/* Initialize the ->data_interface field. */
4420 4421 4422 4423
	ret = nand_init_data_interface(chip);
	if (ret)
		return ret;

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	/*
	 * Setup the data interface correctly on the chip and controller side.
	 * This explicit call to nand_setup_data_interface() is only required
	 * for the first die, because nand_reset() has been called before
	 * ->data_interface and ->default_onfi_timing_mode were set.
	 * For the other dies, nand_reset() will automatically switch to the
	 * best mode for us.
	 */
	ret = nand_setup_data_interface(chip);
	if (ret)
		return ret;

4436 4437 4438
	nand_maf_id = chip->id.data[0];
	nand_dev_id = chip->id.data[1];

4439 4440
	chip->select_chip(mtd, -1);

T
Thomas Gleixner 已提交
4441
	/* Check for a chip array */
4442
	for (i = 1; i < maxchips; i++) {
4443
		/* See comment in nand_get_flash_type for reset */
4444 4445 4446
		nand_reset(chip, i);

		chip->select_chip(mtd, i);
L
Linus Torvalds 已提交
4447
		/* Send the command for reading device ID */
4448
		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4449
		/* Read manufacturer and device IDs */
4450
		if (nand_maf_id != chip->read_byte(mtd) ||
4451 4452
		    nand_dev_id != chip->read_byte(mtd)) {
			chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4453
			break;
4454 4455
		}
		chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4456 4457
	}
	if (i > 1)
4458
		pr_info("%d chips detected\n", i);
4459

L
Linus Torvalds 已提交
4460
	/* Store the number of chips and calc total size for mtd */
4461 4462
	chip->numchips = i;
	mtd->size = i * chip->chipsize;
T
Thomas Gleixner 已提交
4463

4464 4465
	return 0;
}
4466
EXPORT_SYMBOL(nand_scan_ident);
4467

4468 4469 4470 4471 4472
static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

4473
	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
		return -EINVAL;

	switch (ecc->algo) {
	case NAND_ECC_HAMMING:
		ecc->calculate = nand_calculate_ecc;
		ecc->correct = nand_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
		if (!ecc->size)
			ecc->size = 256;
		ecc->bytes = 3;
		ecc->strength = 1;
		return 0;
	case NAND_ECC_BCH:
		if (!mtd_nand_has_bch()) {
			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
			return -EINVAL;
		}
		ecc->calculate = nand_bch_calculate_ecc;
		ecc->correct = nand_bch_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
4506

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
		/*
		* Board driver should supply ecc.size and ecc.strength
		* values to select how many bits are correctable.
		* Otherwise, default to 4 bits for large page devices.
		*/
		if (!ecc->size && (mtd->oobsize >= 64)) {
			ecc->size = 512;
			ecc->strength = 4;
		}

		/*
		 * if no ecc placement scheme was provided pickup the default
		 * large page one.
		 */
		if (!mtd->ooblayout) {
			/* handle large page devices only */
			if (mtd->oobsize < 64) {
				WARN(1, "OOB layout is required when using software BCH on small pages\n");
				return -EINVAL;
			}

			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

		}

		/*
		 * We can only maximize ECC config when the default layout is
		 * used, otherwise we don't know how many bytes can really be
		 * used.
		 */
		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
		    ecc->options & NAND_ECC_MAXIMIZE) {
			int steps, bytes;

			/* Always prefer 1k blocks over 512bytes ones */
			ecc->size = 1024;
			steps = mtd->writesize / ecc->size;

			/* Reserve 2 bytes for the BBM */
			bytes = (mtd->oobsize - 2) / steps;
			ecc->strength = bytes * 8 / fls(8 * ecc->size);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
		}

		/* See nand_bch_init() for details. */
		ecc->bytes = 0;
		ecc->priv = nand_bch_init(mtd);
		if (!ecc->priv) {
			WARN(1, "BCH ECC initialization failed!\n");
			return -EINVAL;
		}
		return 0;
	default:
		WARN(1, "Unsupported ECC algorithm!\n");
		return -EINVAL;
	}
}

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
/*
 * Check if the chip configuration meet the datasheet requirements.

 * If our configuration corrects A bits per B bytes and the minimum
 * required correction level is X bits per Y bytes, then we must ensure
 * both of the following are true:
 *
 * (1) A / B >= X / Y
 * (2) A >= X
 *
 * Requirement (1) ensures we can correct for the required bitflip density.
 * Requirement (2) ensures we can correct even when all bitflips are clumped
 * in the same sector.
 */
static bool nand_ecc_strength_good(struct mtd_info *mtd)
{
4580
	struct nand_chip *chip = mtd_to_nand(mtd);
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int corr, ds_corr;

	if (ecc->size == 0 || chip->ecc_step_ds == 0)
		/* Not enough information */
		return true;

	/*
	 * We get the number of corrected bits per page to compare
	 * the correction density.
	 */
	corr = (mtd->writesize * ecc->strength) / ecc->size;
	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;

	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
}
4597

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
static bool invalid_ecc_page_accessors(struct nand_chip *chip)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;

	if (nand_standard_page_accessors(ecc))
		return false;

	/*
	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
	 * controller driver implements all the page accessors because
	 * default helpers are not suitable when the core does not
	 * send the READ0/PAGEPROG commands.
	 */
	return (!ecc->read_page || !ecc->write_page ||
		!ecc->read_page_raw || !ecc->write_page_raw ||
		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
		 ecc->hwctl && ecc->calculate));
}

4618 4619
/**
 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4620
 * @mtd: MTD device structure
4621
 *
4622 4623 4624
 * This is the second phase of the normal nand_scan() function. It fills out
 * all the uninitialized function pointers with the defaults and scans for a
 * bad block table if appropriate.
4625 4626 4627
 */
int nand_scan_tail(struct mtd_info *mtd)
{
4628
	struct nand_chip *chip = mtd_to_nand(mtd);
4629
	struct nand_ecc_ctrl *ecc = &chip->ecc;
4630
	struct nand_buffers *nbuf;
4631
	int ret;
4632

4633
	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
4634 4635 4636
	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
		   !(chip->bbt_options & NAND_BBT_USE_FLASH)))
		return -EINVAL;
4637

4638 4639 4640 4641 4642
	if (invalid_ecc_page_accessors(chip)) {
		pr_err("Invalid ECC page accessors setup\n");
		return -EINVAL;
	}

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	if (!(chip->options & NAND_OWN_BUFFERS)) {
		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
				+ mtd->oobsize * 3, GFP_KERNEL);
		if (!nbuf)
			return -ENOMEM;
		nbuf->ecccalc = (uint8_t *)(nbuf + 1);
		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
		nbuf->databuf = nbuf->ecccode + mtd->oobsize;

		chip->buffers = nbuf;
	} else {
		if (!chip->buffers)
			return -ENOMEM;
	}
4657

4658
	/* Set the internal oob buffer location, just after the page data */
4659
	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
L
Linus Torvalds 已提交
4660

T
Thomas Gleixner 已提交
4661
	/*
4662
	 * If no default placement scheme is given, select an appropriate one.
T
Thomas Gleixner 已提交
4663
	 */
4664
	if (!mtd->ooblayout &&
4665
	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4666
		switch (mtd->oobsize) {
L
Linus Torvalds 已提交
4667 4668
		case 8:
		case 16:
4669
			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
L
Linus Torvalds 已提交
4670 4671
			break;
		case 64:
4672
		case 128:
4673
			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4674
			break;
L
Linus Torvalds 已提交
4675
		default:
4676 4677 4678 4679
			WARN(1, "No oob scheme defined for oobsize %d\n",
				mtd->oobsize);
			ret = -EINVAL;
			goto err_free;
L
Linus Torvalds 已提交
4680 4681
		}
	}
4682

4683 4684 4685
	if (!chip->write_page)
		chip->write_page = nand_write_page;

4686
	/*
4687
	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
T
Thomas Gleixner 已提交
4688
	 * selected and we have 256 byte pagesize fallback to software ECC
4689
	 */
4690

4691
	switch (ecc->mode) {
4692 4693
	case NAND_ECC_HW_OOB_FIRST:
		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4694
		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4695 4696 4697
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
4698
		}
4699 4700
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc_oob_first;
4701

T
Thomas Gleixner 已提交
4702
	case NAND_ECC_HW:
4703
		/* Use standard hwecc read page function? */
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_hwecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_std;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_std;
		if (!ecc->read_subpage)
			ecc->read_subpage = nand_read_subpage;
4718
		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4719
			ecc->write_subpage = nand_write_subpage_hwecc;
4720

T
Thomas Gleixner 已提交
4721
	case NAND_ECC_HW_SYNDROME:
4722 4723 4724 4725 4726
		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
		    (!ecc->read_page ||
		     ecc->read_page == nand_read_page_hwecc ||
		     !ecc->write_page ||
		     ecc->write_page == nand_write_page_hwecc)) {
4727 4728 4729
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
T
Thomas Gleixner 已提交
4730
		}
4731
		/* Use standard syndrome read/write page function? */
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_syndrome;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_syndrome;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw_syndrome;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw_syndrome;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_syndrome;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_syndrome;

		if (mtd->writesize >= ecc->size) {
			if (!ecc->strength) {
4747 4748 4749
				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
				ret = -EINVAL;
				goto err_free;
4750
			}
T
Thomas Gleixner 已提交
4751
			break;
4752
		}
4753 4754
		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
			ecc->size, mtd->writesize);
4755
		ecc->mode = NAND_ECC_SOFT;
4756
		ecc->algo = NAND_ECC_HAMMING;
4757

T
Thomas Gleixner 已提交
4758
	case NAND_ECC_SOFT:
4759 4760
		ret = nand_set_ecc_soft_ops(mtd);
		if (ret) {
4761 4762
			ret = -EINVAL;
			goto err_free;
4763 4764 4765
		}
		break;

4766
	case NAND_ECC_NONE:
4767
		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4768 4769 4770 4771 4772 4773 4774 4775 4776
		ecc->read_page = nand_read_page_raw;
		ecc->write_page = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->write_oob = nand_write_oob_std;
		ecc->size = mtd->writesize;
		ecc->bytes = 0;
		ecc->strength = 0;
L
Linus Torvalds 已提交
4777
		break;
4778

L
Linus Torvalds 已提交
4779
	default:
4780 4781 4782
		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4783
	}
4784

4785
	/* For many systems, the standard OOB write also works for raw */
4786 4787 4788 4789
	if (!ecc->read_oob_raw)
		ecc->read_oob_raw = ecc->read_oob;
	if (!ecc->write_oob_raw)
		ecc->write_oob_raw = ecc->write_oob;
4790

4791 4792 4793
	/* propagate ecc info to mtd_info */
	mtd->ecc_strength = ecc->strength;
	mtd->ecc_step_size = ecc->size;
4794

T
Thomas Gleixner 已提交
4795 4796
	/*
	 * Set the number of read / write steps for one page depending on ECC
4797
	 * mode.
T
Thomas Gleixner 已提交
4798
	 */
4799 4800
	ecc->steps = mtd->writesize / ecc->size;
	if (ecc->steps * ecc->size != mtd->writesize) {
4801 4802 4803
		WARN(1, "Invalid ECC parameters\n");
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4804
	}
4805
	ecc->total = ecc->steps * ecc->bytes;
4806

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area.
	 */
	ret = mtd_ooblayout_count_freebytes(mtd);
	if (ret < 0)
		ret = 0;

	mtd->oobavail = ret;

	/* ECC sanity check: warn if it's too weak */
	if (!nand_ecc_strength_good(mtd))
		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
			mtd->name);

4822
	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4823
	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4824
		switch (ecc->steps) {
4825 4826 4827 4828 4829
		case 2:
			mtd->subpage_sft = 1;
			break;
		case 4:
		case 8:
4830
		case 16:
4831 4832 4833 4834 4835 4836
			mtd->subpage_sft = 2;
			break;
		}
	}
	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;

4837
	/* Initialize state */
4838
	chip->state = FL_READY;
L
Linus Torvalds 已提交
4839 4840

	/* Invalidate the pagebuffer reference */
4841
	chip->pagebuf = -1;
L
Linus Torvalds 已提交
4842

4843
	/* Large page NAND with SOFT_ECC should support subpage reads */
4844 4845 4846 4847 4848 4849 4850 4851 4852
	switch (ecc->mode) {
	case NAND_ECC_SOFT:
		if (chip->page_shift > 9)
			chip->options |= NAND_SUBPAGE_READ;
		break;

	default:
		break;
	}
4853

L
Linus Torvalds 已提交
4854
	/* Fill in remaining MTD driver data */
4855
	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4856 4857
	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
						MTD_CAP_NANDFLASH;
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	mtd->_erase = nand_erase;
	mtd->_point = NULL;
	mtd->_unpoint = NULL;
	mtd->_read = nand_read;
	mtd->_write = nand_write;
	mtd->_panic_write = panic_nand_write;
	mtd->_read_oob = nand_read_oob;
	mtd->_write_oob = nand_write_oob;
	mtd->_sync = nand_sync;
	mtd->_lock = NULL;
	mtd->_unlock = NULL;
	mtd->_suspend = nand_suspend;
	mtd->_resume = nand_resume;
S
Scott Branden 已提交
4871
	mtd->_reboot = nand_shutdown;
4872
	mtd->_block_isreserved = nand_block_isreserved;
4873 4874
	mtd->_block_isbad = nand_block_isbad;
	mtd->_block_markbad = nand_block_markbad;
4875
	mtd->_max_bad_blocks = nand_max_bad_blocks;
4876
	mtd->writebufsize = mtd->writesize;
L
Linus Torvalds 已提交
4877

4878 4879 4880 4881 4882 4883
	/*
	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
	 * properly set.
	 */
	if (!mtd->bitflip_threshold)
4884
		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
L
Linus Torvalds 已提交
4885

4886
	/* Check, if we should skip the bad block table scan */
4887
	if (chip->options & NAND_SKIP_BBTSCAN)
4888
		return 0;
L
Linus Torvalds 已提交
4889 4890

	/* Build bad block table */
4891
	return chip->scan_bbt(mtd);
4892 4893 4894 4895
err_free:
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
	return ret;
L
Linus Torvalds 已提交
4896
}
4897
EXPORT_SYMBOL(nand_scan_tail);
L
Linus Torvalds 已提交
4898

4899 4900
/*
 * is_module_text_address() isn't exported, and it's mostly a pointless
4901
 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4902 4903
 * to call us from in-kernel code if the core NAND support is modular.
 */
4904 4905 4906 4907
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() \
4908
	is_module_text_address((unsigned long)__builtin_return_address(0))
4909 4910 4911 4912
#endif

/**
 * nand_scan - [NAND Interface] Scan for the NAND device
4913 4914
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
4915
 *
4916 4917
 * This fills out all the uninitialized function pointers with the defaults.
 * The flash ID is read and the mtd/chip structures are filled with the
4918
 * appropriate values.
4919 4920 4921 4922 4923
 */
int nand_scan(struct mtd_info *mtd, int maxchips)
{
	int ret;

4924
	ret = nand_scan_ident(mtd, maxchips, NULL);
4925 4926 4927 4928
	if (!ret)
		ret = nand_scan_tail(mtd);
	return ret;
}
4929
EXPORT_SYMBOL(nand_scan);
4930

L
Linus Torvalds 已提交
4931
/**
4932 4933
 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
 * @chip: NAND chip object
4934
 */
4935
void nand_cleanup(struct nand_chip *chip)
L
Linus Torvalds 已提交
4936
{
4937
	if (chip->ecc.mode == NAND_ECC_SOFT &&
4938
	    chip->ecc.algo == NAND_ECC_BCH)
4939 4940
		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);

4941 4942
	nand_release_data_interface(chip);

J
Jesper Juhl 已提交
4943
	/* Free bad block table memory */
4944
	kfree(chip->bbt);
4945 4946
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
4947 4948 4949 4950 4951

	/* Free bad block descriptor memory */
	if (chip->badblock_pattern && chip->badblock_pattern->options
			& NAND_BBT_DYNAMICSTRUCT)
		kfree(chip->badblock_pattern);
L
Linus Torvalds 已提交
4952
}
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
EXPORT_SYMBOL_GPL(nand_cleanup);

/**
 * nand_release - [NAND Interface] Unregister the MTD device and free resources
 *		  held by the NAND device
 * @mtd: MTD device structure
 */
void nand_release(struct mtd_info *mtd)
{
	mtd_device_unregister(mtd);
	nand_cleanup(mtd_to_nand(mtd));
}
4965
EXPORT_SYMBOL_GPL(nand_release);
4966

4967
MODULE_LICENSE("GPL");
4968 4969
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4970
MODULE_DESCRIPTION("Generic NAND flash driver code");