nand_base.c 125.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 *  Overview:
 *   This is the generic MTD driver for NAND flash devices. It should be
 *   capable of working with almost all NAND chips currently available.
5
 *
L
Linus Torvalds 已提交
6
 *	Additional technical information is available on
7
 *	http://www.linux-mtd.infradead.org/doc/nand.html
8
 *
L
Linus Torvalds 已提交
9
 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10
 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
L
Linus Torvalds 已提交
11
 *
12
 *  Credits:
13 14
 *	David Woodhouse for adding multichip support
 *
L
Linus Torvalds 已提交
15 16 17
 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
 *	rework for 2K page size chips
 *
18
 *  TODO:
L
Linus Torvalds 已提交
19 20
 *	Enable cached programming for 2k page size chips
 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21
 *	if we have HW ECC support.
22
 *	BBT table is not serialized, has to be fixed
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

30 31
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

32
#include <linux/module.h>
L
Linus Torvalds 已提交
33 34
#include <linux/delay.h>
#include <linux/errno.h>
T
Thomas Gleixner 已提交
35
#include <linux/err.h>
L
Linus Torvalds 已提交
36 37
#include <linux/sched.h>
#include <linux/slab.h>
38
#include <linux/mm.h>
L
Linus Torvalds 已提交
39 40 41 42
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
43
#include <linux/mtd/nand_bch.h>
L
Linus Torvalds 已提交
44 45
#include <linux/interrupt.h>
#include <linux/bitops.h>
46
#include <linux/io.h>
L
Linus Torvalds 已提交
47
#include <linux/mtd/partitions.h>
48
#include <linux/of.h>
L
Linus Torvalds 已提交
49

50 51 52 53
static int nand_get_device(struct mtd_info *mtd, int new_state);

static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops);
L
Linus Torvalds 已提交
54 55

/* Define default oob placement schemes for large and small page devices */
56 57 58 59 60
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
61

62 63
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
64

65 66 67 68 69 70 71
	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 4;
	} else {
		oobregion->offset = 6;
		oobregion->length = ecc->total - 4;
	}
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79 80
	return 0;
}

static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	if (mtd->oobsize == 16) {
		if (section)
			return -ERANGE;

		oobregion->length = 8;
		oobregion->offset = 8;
	} else {
		oobregion->length = 2;
		if (!section)
			oobregion->offset = 3;
		else
			oobregion->offset = 6;
	}

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
	.ecc = nand_ooblayout_ecc_sp,
	.free = nand_ooblayout_free_sp,
102
};
103
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
104

105 106 107 108 109
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
110

111 112
	if (section)
		return -ERANGE;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	oobregion->length = ecc->total;
	oobregion->offset = mtd->oobsize - oobregion->length;

	return 0;
}

static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

	if (section)
		return -ERANGE;

	oobregion->length = mtd->oobsize - ecc->total - 2;
	oobregion->offset = 2;

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
	.ecc = nand_ooblayout_ecc_lp,
	.free = nand_ooblayout_free_lp,
};
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
T
Thomas Gleixner 已提交
140

141 142 143
static int check_offs_len(struct mtd_info *mtd,
					loff_t ofs, uint64_t len)
{
144
	struct nand_chip *chip = mtd_to_nand(mtd);
145 146 147
	int ret = 0;

	/* Start address must align on block boundary */
148
	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
149
		pr_debug("%s: unaligned address\n", __func__);
150 151 152 153
		ret = -EINVAL;
	}

	/* Length must align on block boundary */
154
	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
155
		pr_debug("%s: length not block aligned\n", __func__);
156 157 158 159 160 161
		ret = -EINVAL;
	}

	return ret;
}

L
Linus Torvalds 已提交
162 163
/**
 * nand_release_device - [GENERIC] release chip
164
 * @mtd: MTD device structure
165
 *
166
 * Release chip lock and wake up anyone waiting on the device.
L
Linus Torvalds 已提交
167
 */
168
static void nand_release_device(struct mtd_info *mtd)
L
Linus Torvalds 已提交
169
{
170
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
171

T
Thomas Gleixner 已提交
172
	/* Release the controller and the chip */
173 174 175 176 177
	spin_lock(&chip->controller->lock);
	chip->controller->active = NULL;
	chip->state = FL_READY;
	wake_up(&chip->controller->wq);
	spin_unlock(&chip->controller->lock);
L
Linus Torvalds 已提交
178 179 180 181
}

/**
 * nand_read_byte - [DEFAULT] read one byte from the chip
182
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
183
 *
184
 * Default read function for 8bit buswidth
L
Linus Torvalds 已提交
185
 */
186
static uint8_t nand_read_byte(struct mtd_info *mtd)
L
Linus Torvalds 已提交
187
{
188
	struct nand_chip *chip = mtd_to_nand(mtd);
189
	return readb(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
190 191 192
}

/**
193
 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
194
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
195
 *
196 197
 * Default read function for 16bit buswidth with endianness conversion.
 *
L
Linus Torvalds 已提交
198
 */
199
static uint8_t nand_read_byte16(struct mtd_info *mtd)
L
Linus Torvalds 已提交
200
{
201
	struct nand_chip *chip = mtd_to_nand(mtd);
202
	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
L
Linus Torvalds 已提交
203 204 205 206
}

/**
 * nand_read_word - [DEFAULT] read one word from the chip
207
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
208
 *
209
 * Default read function for 16bit buswidth without endianness conversion.
L
Linus Torvalds 已提交
210 211 212
 */
static u16 nand_read_word(struct mtd_info *mtd)
{
213
	struct nand_chip *chip = mtd_to_nand(mtd);
214
	return readw(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
215 216 217 218
}

/**
 * nand_select_chip - [DEFAULT] control CE line
219 220
 * @mtd: MTD device structure
 * @chipnr: chipnumber to select, -1 for deselect
L
Linus Torvalds 已提交
221 222 223
 *
 * Default select function for 1 chip devices.
 */
224
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
L
Linus Torvalds 已提交
225
{
226
	struct nand_chip *chip = mtd_to_nand(mtd);
227 228

	switch (chipnr) {
L
Linus Torvalds 已提交
229
	case -1:
230
		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239
		break;
	case 0:
		break;

	default:
		BUG();
	}
}

240 241 242 243 244 245 246 247 248
/**
 * nand_write_byte - [DEFAULT] write single byte to chip
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0]
 */
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
{
249
	struct nand_chip *chip = mtd_to_nand(mtd);
250 251 252 253 254 255 256 257 258 259 260 261 262

	chip->write_buf(mtd, &byte, 1);
}

/**
 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 */
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
{
263
	struct nand_chip *chip = mtd_to_nand(mtd);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	uint16_t word = byte;

	/*
	 * It's not entirely clear what should happen to I/O[15:8] when writing
	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
	 *
	 *    When the host supports a 16-bit bus width, only data is
	 *    transferred at the 16-bit width. All address and command line
	 *    transfers shall use only the lower 8-bits of the data bus. During
	 *    command transfers, the host may place any value on the upper
	 *    8-bits of the data bus. During address transfers, the host shall
	 *    set the upper 8-bits of the data bus to 00h.
	 *
	 * One user of the write_byte callback is nand_onfi_set_features. The
	 * four parameters are specified to be written to I/O[7:0], but this is
	 * neither an address nor a command transfer. Let's assume a 0 on the
	 * upper I/O lines is OK.
	 */
	chip->write_buf(mtd, (uint8_t *)&word, 2);
}

L
Linus Torvalds 已提交
285 286
/**
 * nand_write_buf - [DEFAULT] write buffer to chip
287 288 289
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
290
 *
291
 * Default write function for 8bit buswidth.
L
Linus Torvalds 已提交
292
 */
293
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
294
{
295
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
296

297
	iowrite8_rep(chip->IO_ADDR_W, buf, len);
L
Linus Torvalds 已提交
298 299 300
}

/**
301
 * nand_read_buf - [DEFAULT] read chip data into buffer
302 303 304
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
305
 *
306
 * Default read function for 8bit buswidth.
L
Linus Torvalds 已提交
307
 */
308
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
309
{
310
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
311

312
	ioread8_rep(chip->IO_ADDR_R, buf, len);
L
Linus Torvalds 已提交
313 314 315 316
}

/**
 * nand_write_buf16 - [DEFAULT] write buffer to chip
317 318 319
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
320
 *
321
 * Default write function for 16bit buswidth.
L
Linus Torvalds 已提交
322
 */
323
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
324
{
325
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
326
	u16 *p = (u16 *) buf;
327

328
	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
L
Linus Torvalds 已提交
329 330 331
}

/**
332
 * nand_read_buf16 - [DEFAULT] read chip data into buffer
333 334 335
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
336
 *
337
 * Default read function for 16bit buswidth.
L
Linus Torvalds 已提交
338
 */
339
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
340
{
341
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
342 343
	u16 *p = (u16 *) buf;

344
	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
L
Linus Torvalds 已提交
345 346 347 348
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
349 350
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
351
 *
352
 * Check, if the block is bad.
L
Linus Torvalds 已提交
353
 */
354
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
355
{
356
	int page, res = 0, i = 0;
357
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
358 359
	u16 bad;

360
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
361 362
		ofs += mtd->erasesize - mtd->writesize;

363 364
	page = (int)(ofs >> chip->page_shift) & chip->pagemask;

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	do {
		if (chip->options & NAND_BUSWIDTH_16) {
			chip->cmdfunc(mtd, NAND_CMD_READOOB,
					chip->badblockpos & 0xFE, page);
			bad = cpu_to_le16(chip->read_word(mtd));
			if (chip->badblockpos & 0x1)
				bad >>= 8;
			else
				bad &= 0xFF;
		} else {
			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
					page);
			bad = chip->read_byte(mtd);
		}

		if (likely(chip->badblockbits == 8))
			res = bad != 0xFF;
382
		else
383 384 385 386 387
			res = hweight8(bad) < chip->badblockbits;
		ofs += mtd->writesize;
		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
		i++;
	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
388

L
Linus Torvalds 已提交
389 390 391 392
	return res;
}

/**
393
 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
394 395
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
396
 *
397
 * This is the default implementation, which can be overridden by a hardware
398 399 400 401 402
 * specific driver. It provides the details for writing a bad block marker to a
 * block.
 */
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
403
	struct nand_chip *chip = mtd_to_nand(mtd);
404 405 406 407
	struct mtd_oob_ops ops;
	uint8_t buf[2] = { 0, 0 };
	int ret = 0, res, i = 0;

408
	memset(&ops, 0, sizeof(ops));
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	ops.oobbuf = buf;
	ops.ooboffs = chip->badblockpos;
	if (chip->options & NAND_BUSWIDTH_16) {
		ops.ooboffs &= ~0x01;
		ops.len = ops.ooblen = 2;
	} else {
		ops.len = ops.ooblen = 1;
	}
	ops.mode = MTD_OPS_PLACE_OOB;

	/* Write to first/last page(s) if necessary */
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
		ofs += mtd->erasesize - mtd->writesize;
	do {
		res = nand_do_write_oob(mtd, ofs, &ops);
		if (!ret)
			ret = res;

		i++;
		ofs += mtd->writesize;
	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);

	return ret;
}

/**
 * nand_block_markbad_lowlevel - mark a block bad
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
 * This function performs the generic NAND bad block marking steps (i.e., bad
 * block table(s) and/or marker(s)). We only allow the hardware driver to
 * specify how to write bad block markers to OOB (chip->block_markbad).
 *
443
 * We try operations in the following order:
444
 *  (1) erase the affected block, to allow OOB marker to be written cleanly
445 446 447 448
 *  (2) write bad block marker to OOB area of affected block (unless flag
 *      NAND_BBT_NO_OOB_BBM is present)
 *  (3) update the BBT
 * Note that we retain the first error encountered in (2) or (3), finish the
449
 * procedures, and dump the error in the end.
L
Linus Torvalds 已提交
450
*/
451
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
452
{
453
	struct nand_chip *chip = mtd_to_nand(mtd);
454
	int res, ret = 0;
455

456
	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
457 458 459 460 461 462
		struct erase_info einfo;

		/* Attempt erase before marking OOB */
		memset(&einfo, 0, sizeof(einfo));
		einfo.mtd = mtd;
		einfo.addr = ofs;
463
		einfo.len = 1ULL << chip->phys_erase_shift;
464
		nand_erase_nand(mtd, &einfo, 0);
L
Linus Torvalds 已提交
465

466
		/* Write bad block marker to OOB */
467
		nand_get_device(mtd, FL_WRITING);
468
		ret = chip->block_markbad(mtd, ofs);
469
		nand_release_device(mtd);
470
	}
471

472 473 474
	/* Mark block bad in BBT */
	if (chip->bbt) {
		res = nand_markbad_bbt(mtd, ofs);
475 476 477 478
		if (!ret)
			ret = res;
	}

479 480
	if (!ret)
		mtd->ecc_stats.badblocks++;
481

482
	return ret;
L
Linus Torvalds 已提交
483 484
}

485
/**
L
Linus Torvalds 已提交
486
 * nand_check_wp - [GENERIC] check if the chip is write protected
487
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
488
 *
489 490
 * Check, if the device is write protected. The function expects, that the
 * device is already selected.
L
Linus Torvalds 已提交
491
 */
492
static int nand_check_wp(struct mtd_info *mtd)
L
Linus Torvalds 已提交
493
{
494
	struct nand_chip *chip = mtd_to_nand(mtd);
495

496
	/* Broken xD cards report WP despite being writable */
497 498 499
	if (chip->options & NAND_BROKEN_XD)
		return 0;

L
Linus Torvalds 已提交
500
	/* Check the WP bit */
501 502
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
L
Linus Torvalds 已提交
503 504
}

505
/**
506
 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
507 508 509
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
510
 * Check if the block is marked as reserved.
511 512 513
 */
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
514
	struct nand_chip *chip = mtd_to_nand(mtd);
515 516 517 518 519 520 521

	if (!chip->bbt)
		return 0;
	/* Return info from the table */
	return nand_isreserved_bbt(mtd, ofs);
}

L
Linus Torvalds 已提交
522 523
/**
 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
524 525 526
 * @mtd: MTD device structure
 * @ofs: offset from device start
 * @allowbbt: 1, if its allowed to access the bbt area
L
Linus Torvalds 已提交
527 528 529 530
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
531
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
L
Linus Torvalds 已提交
532
{
533
	struct nand_chip *chip = mtd_to_nand(mtd);
534

535
	if (!chip->bbt)
536
		return chip->block_bad(mtd, ofs);
537

L
Linus Torvalds 已提交
538
	/* Return info from the table */
539
	return nand_isbad_bbt(mtd, ofs, allowbbt);
L
Linus Torvalds 已提交
540 541
}

542 543
/**
 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
544 545
 * @mtd: MTD device structure
 * @timeo: Timeout
546 547 548 549 550 551
 *
 * Helper function for nand_wait_ready used when needing to wait in interrupt
 * context.
 */
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
{
552
	struct nand_chip *chip = mtd_to_nand(mtd);
553 554 555 556 557 558 559 560 561 562 563
	int i;

	/* Wait for the device to get ready */
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready(mtd))
			break;
		touch_softlockup_watchdog();
		mdelay(1);
	}
}

564 565 566 567 568 569
/**
 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 * @mtd: MTD device structure
 *
 * Wait for the ready pin after a command, and warn if a timeout occurs.
 */
570
void nand_wait_ready(struct mtd_info *mtd)
571
{
572
	struct nand_chip *chip = mtd_to_nand(mtd);
573
	unsigned long timeo = 400;
574

575
	if (in_interrupt() || oops_in_progress)
576
		return panic_nand_wait_ready(mtd, timeo);
577

578
	/* Wait until command is processed or timeout occurs */
579
	timeo = jiffies + msecs_to_jiffies(timeo);
580
	do {
581
		if (chip->dev_ready(mtd))
582
			return;
583
		cond_resched();
584
	} while (time_before(jiffies, timeo));
585

586 587
	if (!chip->dev_ready(mtd))
		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
588
}
589
EXPORT_SYMBOL_GPL(nand_wait_ready);
590

591 592 593 594 595 596 597 598 599
/**
 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 * @mtd: MTD device structure
 * @timeo: Timeout in ms
 *
 * Wait for status ready (i.e. command done) or timeout.
 */
static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
{
600
	register struct nand_chip *chip = mtd_to_nand(mtd);
601 602 603 604 605 606 607 608 609

	timeo = jiffies + msecs_to_jiffies(timeo);
	do {
		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
			break;
		touch_softlockup_watchdog();
	} while (time_before(jiffies, timeo));
};

L
Linus Torvalds 已提交
610 611
/**
 * nand_command - [DEFAULT] Send command to NAND device
612 613 614 615
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
616
 *
617
 * Send command to NAND device. This function is used for small page devices
618
 * (512 Bytes per page).
L
Linus Torvalds 已提交
619
 */
620 621
static void nand_command(struct mtd_info *mtd, unsigned int command,
			 int column, int page_addr)
L
Linus Torvalds 已提交
622
{
623
	register struct nand_chip *chip = mtd_to_nand(mtd);
624
	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
625

626
	/* Write out the command to the device */
L
Linus Torvalds 已提交
627 628 629
	if (command == NAND_CMD_SEQIN) {
		int readcmd;

J
Joern Engel 已提交
630
		if (column >= mtd->writesize) {
L
Linus Torvalds 已提交
631
			/* OOB area */
J
Joern Engel 已提交
632
			column -= mtd->writesize;
L
Linus Torvalds 已提交
633 634 635 636 637 638 639 640
			readcmd = NAND_CMD_READOOB;
		} else if (column < 256) {
			/* First 256 bytes --> READ0 */
			readcmd = NAND_CMD_READ0;
		} else {
			column -= 256;
			readcmd = NAND_CMD_READ1;
		}
641
		chip->cmd_ctrl(mtd, readcmd, ctrl);
642
		ctrl &= ~NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
643
	}
644
	chip->cmd_ctrl(mtd, command, ctrl);
L
Linus Torvalds 已提交
645

646
	/* Address cycle, when necessary */
647 648 649 650
	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
	/* Serially input address */
	if (column != -1) {
		/* Adjust columns for 16 bit buswidth */
651 652
		if (chip->options & NAND_BUSWIDTH_16 &&
				!nand_opcode_8bits(command))
653
			column >>= 1;
654
		chip->cmd_ctrl(mtd, column, ctrl);
655 656 657
		ctrl &= ~NAND_CTRL_CHANGE;
	}
	if (page_addr != -1) {
658
		chip->cmd_ctrl(mtd, page_addr, ctrl);
659
		ctrl &= ~NAND_CTRL_CHANGE;
660
		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
661
		/* One more address cycle for devices > 32MiB */
662 663
		if (chip->chipsize > (32 << 20))
			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
L
Linus Torvalds 已提交
664
	}
665
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666 667

	/*
668 669
	 * Program and erase have their own busy handlers status and sequential
	 * in needs no delay
670
	 */
L
Linus Torvalds 已提交
671
	switch (command) {
672

L
Linus Torvalds 已提交
673 674 675 676 677 678 679 680
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
		return;

	case NAND_CMD_RESET:
681
		if (chip->dev_ready)
L
Linus Torvalds 已提交
682
			break;
683 684
		udelay(chip->chip_delay);
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
685
			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
686 687
		chip->cmd_ctrl(mtd,
			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
688 689
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
690 691
		return;

692
		/* This applies to read commands */
L
Linus Torvalds 已提交
693
	default:
694
		/*
L
Linus Torvalds 已提交
695 696
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
697
		 */
698 699
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
700
			return;
701
		}
L
Linus Torvalds 已提交
702
	}
703 704 705 706
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
707
	ndelay(100);
708 709

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
710 711 712 713
}

/**
 * nand_command_lp - [DEFAULT] Send command to NAND large page device
714 715 716 717
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
718
 *
719
 * Send command to NAND device. This is the version for the new large page
720 721
 * devices. We don't have the separate regions as we have in the small page
 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
L
Linus Torvalds 已提交
722
 */
723 724
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
			    int column, int page_addr)
L
Linus Torvalds 已提交
725
{
726
	register struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
727 728 729

	/* Emulate NAND_CMD_READOOB */
	if (command == NAND_CMD_READOOB) {
J
Joern Engel 已提交
730
		column += mtd->writesize;
L
Linus Torvalds 已提交
731 732
		command = NAND_CMD_READ0;
	}
733

734
	/* Command latch cycle */
735
	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
736 737

	if (column != -1 || page_addr != -1) {
738
		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
L
Linus Torvalds 已提交
739 740 741 742

		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
743 744
			if (chip->options & NAND_BUSWIDTH_16 &&
					!nand_opcode_8bits(command))
L
Linus Torvalds 已提交
745
				column >>= 1;
746
			chip->cmd_ctrl(mtd, column, ctrl);
747
			ctrl &= ~NAND_CTRL_CHANGE;
748

749
			/* Only output a single addr cycle for 8bits opcodes. */
750 751
			if (!nand_opcode_8bits(command))
				chip->cmd_ctrl(mtd, column >> 8, ctrl);
752
		}
L
Linus Torvalds 已提交
753
		if (page_addr != -1) {
754 755
			chip->cmd_ctrl(mtd, page_addr, ctrl);
			chip->cmd_ctrl(mtd, page_addr >> 8,
756
				       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
757
			/* One more address cycle for devices > 128MiB */
758 759
			if (chip->chipsize > (128 << 20))
				chip->cmd_ctrl(mtd, page_addr >> 16,
760
					       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
761 762
		}
	}
763
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
764 765

	/*
766
	 * Program and erase have their own busy handlers status, sequential
767
	 * in and status need no delay.
768
	 */
L
Linus Torvalds 已提交
769
	switch (command) {
770

L
Linus Torvalds 已提交
771 772 773 774 775
	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
776
	case NAND_CMD_RNDIN:
L
Linus Torvalds 已提交
777
	case NAND_CMD_STATUS:
778
		return;
L
Linus Torvalds 已提交
779 780

	case NAND_CMD_RESET:
781
		if (chip->dev_ready)
L
Linus Torvalds 已提交
782
			break;
783
		udelay(chip->chip_delay);
784 785 786 787
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
788 789
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
790 791
		return;

792 793 794 795 796 797 798 799
	case NAND_CMD_RNDOUT:
		/* No ready / busy check necessary */
		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
		return;

L
Linus Torvalds 已提交
800
	case NAND_CMD_READ0:
801 802 803 804
		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
805

806
		/* This applies to read commands */
L
Linus Torvalds 已提交
807
	default:
808
		/*
L
Linus Torvalds 已提交
809
		 * If we don't have access to the busy pin, we apply the given
810
		 * command delay.
811
		 */
812 813
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
814
			return;
815
		}
L
Linus Torvalds 已提交
816
	}
817

818 819 820 821
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
822
	ndelay(100);
823 824

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
825 826
}

827 828
/**
 * panic_nand_get_device - [GENERIC] Get chip for selected access
829 830 831
 * @chip: the nand chip descriptor
 * @mtd: MTD device structure
 * @new_state: the state which is requested
832 833 834 835 836 837
 *
 * Used when in panic, no locks are taken.
 */
static void panic_nand_get_device(struct nand_chip *chip,
		      struct mtd_info *mtd, int new_state)
{
838
	/* Hardware controller shared among independent devices */
839 840 841 842
	chip->controller->active = chip;
	chip->state = new_state;
}

L
Linus Torvalds 已提交
843 844
/**
 * nand_get_device - [GENERIC] Get chip for selected access
845 846
 * @mtd: MTD device structure
 * @new_state: the state which is requested
L
Linus Torvalds 已提交
847 848 849
 *
 * Get the device and lock it for exclusive access
 */
850
static int
851
nand_get_device(struct mtd_info *mtd, int new_state)
L
Linus Torvalds 已提交
852
{
853
	struct nand_chip *chip = mtd_to_nand(mtd);
854 855
	spinlock_t *lock = &chip->controller->lock;
	wait_queue_head_t *wq = &chip->controller->wq;
856
	DECLARE_WAITQUEUE(wait, current);
857
retry:
858 859
	spin_lock(lock);

860
	/* Hardware controller shared among independent devices */
861 862
	if (!chip->controller->active)
		chip->controller->active = chip;
T
Thomas Gleixner 已提交
863

864 865
	if (chip->controller->active == chip && chip->state == FL_READY) {
		chip->state = new_state;
866
		spin_unlock(lock);
867 868 869
		return 0;
	}
	if (new_state == FL_PM_SUSPENDED) {
870 871 872 873 874
		if (chip->controller->active->state == FL_PM_SUSPENDED) {
			chip->state = FL_PM_SUSPENDED;
			spin_unlock(lock);
			return 0;
		}
875 876 877 878 879 880
	}
	set_current_state(TASK_UNINTERRUPTIBLE);
	add_wait_queue(wq, &wait);
	spin_unlock(lock);
	schedule();
	remove_wait_queue(wq, &wait);
L
Linus Torvalds 已提交
881 882 883
	goto retry;
}

884
/**
885 886 887 888
 * panic_nand_wait - [GENERIC] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
 * @timeo: timeout
889 890 891
 *
 * Wait for command done. This is a helper function for nand_wait used when
 * we are in interrupt context. May happen when in panic and trying to write
892
 * an oops through mtdoops.
893 894 895 896 897 898 899 900 901 902 903 904 905 906
 */
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
			    unsigned long timeo)
{
	int i;
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready) {
			if (chip->dev_ready(mtd))
				break;
		} else {
			if (chip->read_byte(mtd) & NAND_STATUS_READY)
				break;
		}
		mdelay(1);
907
	}
908 909
}

L
Linus Torvalds 已提交
910
/**
911 912 913
 * nand_wait - [DEFAULT] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
L
Linus Torvalds 已提交
914
 *
915
 * Wait for command done. This applies to erase and program only.
R
Randy Dunlap 已提交
916
 */
917
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
L
Linus Torvalds 已提交
918 919
{

920 921
	int status;
	unsigned long timeo = 400;
L
Linus Torvalds 已提交
922

923 924 925 926
	/*
	 * Apply this short delay always to ensure that we do wait tWB in any
	 * case on any machine.
	 */
927
	ndelay(100);
L
Linus Torvalds 已提交
928

929
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
L
Linus Torvalds 已提交
930

931 932 933
	if (in_interrupt() || oops_in_progress)
		panic_nand_wait(mtd, chip, timeo);
	else {
934
		timeo = jiffies + msecs_to_jiffies(timeo);
935
		do {
936 937 938 939 940 941 942 943
			if (chip->dev_ready) {
				if (chip->dev_ready(mtd))
					break;
			} else {
				if (chip->read_byte(mtd) & NAND_STATUS_READY)
					break;
			}
			cond_resched();
944
		} while (time_before(jiffies, timeo));
L
Linus Torvalds 已提交
945
	}
946

947
	status = (int)chip->read_byte(mtd);
948 949
	/* This can happen if in case of timeout or buggy dev_ready */
	WARN_ON(!(status & NAND_STATUS_READY));
L
Linus Torvalds 已提交
950 951 952
	return status;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * nand_reset_data_interface - Reset data interface and timings
 * @chip: The NAND chip
 *
 * Reset the Data interface and timings to ONFI mode 0.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_reset_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct nand_data_interface *conf;
	int ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * The ONFI specification says:
	 * "
	 * To transition from NV-DDR or NV-DDR2 to the SDR data
	 * interface, the host shall use the Reset (FFh) command
	 * using SDR timing mode 0. A device in any timing mode is
	 * required to recognize Reset (FFh) command issued in SDR
	 * timing mode 0.
	 * "
	 *
	 * Configure the data interface in SDR mode and set the
	 * timings to timing mode 0.
	 */

	conf = nand_get_default_data_interface();
	ret = chip->setup_data_interface(mtd, conf, false);
	if (ret)
		pr_err("Failed to configure data interface to SDR timing mode 0\n");

	return ret;
}

/**
 * nand_setup_data_interface - Setup the best data interface and timings
 * @chip: The NAND chip
 *
 * Find and configure the best data interface and NAND timings supported by
 * the chip and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_setup_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	if (!chip->setup_data_interface || !chip->data_interface)
		return 0;

	/*
	 * Ensure the timing mode has been changed on the chip side
	 * before changing timings on the controller side.
	 */
	if (chip->onfi_version) {
		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
			chip->onfi_timing_mode_default,
		};

		ret = chip->onfi_set_features(mtd, chip,
				ONFI_FEATURE_ADDR_TIMING_MODE,
				tmode_param);
		if (ret)
			goto err;
	}

	ret = chip->setup_data_interface(mtd, chip->data_interface, false);
err:
	return ret;
}

/**
 * nand_init_data_interface - find the best data interface and timings
 * @chip: The NAND chip
 *
 * Find the best data interface and NAND timings supported by the chip
 * and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table. After this
 * function nand_chip->data_interface is initialized with the best timing mode
 * available.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_init_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int modes, mode, ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * First try to identify the best timings from ONFI parameters and
	 * if the NAND does not support ONFI, fallback to the default ONFI
	 * timing mode.
	 */
	modes = onfi_get_async_timing_mode(chip);
	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
		if (!chip->onfi_timing_mode_default)
			return 0;

		modes = GENMASK(chip->onfi_timing_mode_default, 0);
	}

	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
				       GFP_KERNEL);
	if (!chip->data_interface)
		return -ENOMEM;

	for (mode = fls(modes) - 1; mode >= 0; mode--) {
		ret = onfi_init_data_interface(chip, chip->data_interface,
					       NAND_SDR_IFACE, mode);
		if (ret)
			continue;

		ret = chip->setup_data_interface(mtd, chip->data_interface,
						 true);
		if (!ret) {
			chip->onfi_timing_mode_default = mode;
			break;
		}
	}

	return 0;
}

static void nand_release_data_interface(struct nand_chip *chip)
{
	kfree(chip->data_interface);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103
/**
 * nand_reset - Reset and initialize a NAND device
 * @chip: The NAND chip
 *
 * Returns 0 for success or negative error code otherwise
 */
int nand_reset(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
1104 1105 1106 1107 1108
	int ret;

	ret = nand_reset_data_interface(chip);
	if (ret)
		return ret;
1109 1110 1111

	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

1112 1113 1114 1115
	ret = nand_setup_data_interface(chip);
	if (ret)
		return ret;

1116 1117 1118
	return 0;
}

1119
/**
1120 1121 1122 1123
 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1124 1125 1126 1127
 * @invert: when = 0, unlock the range of blocks within the lower and
 *                    upper boundary address
 *          when = 1, unlock the range of blocks outside the boundaries
 *                    of the lower and upper boundary address
1128
 *
1129
 * Returs unlock status.
1130 1131 1132 1133 1134 1135
 */
static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
					uint64_t len, int invert)
{
	int ret = 0;
	int status, page;
1136
	struct nand_chip *chip = mtd_to_nand(mtd);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	/* Submit address of first page to unlock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);

	/* Submit address of last page to unlock */
	page = (ofs + len) >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
				(page | invert) & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1150
	if (status & NAND_STATUS_FAIL) {
1151
		pr_debug("%s: error status = 0x%08x\n",
1152 1153 1154 1155 1156 1157 1158 1159
					__func__, status);
		ret = -EIO;
	}

	return ret;
}

/**
1160 1161 1162 1163
 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1164
 *
1165
 * Returns unlock status.
1166 1167 1168 1169 1170
 */
int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr;
1171
	struct nand_chip *chip = mtd_to_nand(mtd);
1172

1173
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1174 1175 1176
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1177
		return -EINVAL;
1178 1179 1180 1181 1182

	/* Align to last block address if size addresses end of the device */
	if (ofs + len == mtd->size)
		len -= mtd->erasesize;

1183
	nand_get_device(mtd, FL_UNLOCKING);
1184 1185 1186 1187 1188 1189

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

	chip->select_chip(mtd, chipnr);

1190 1191 1192 1193 1194 1195 1196
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1197
	nand_reset(chip);
1198

1199 1200
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1201
		pr_debug("%s: device is write protected!\n",
1202 1203 1204 1205 1206 1207 1208 1209
					__func__);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0);

out:
1210
	chip->select_chip(mtd, -1);
1211 1212 1213 1214
	nand_release_device(mtd);

	return ret;
}
1215
EXPORT_SYMBOL(nand_unlock);
1216 1217

/**
1218 1219 1220 1221
 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1222
 *
1223 1224 1225 1226
 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
 * have this feature, but it allows only to lock all blocks, not for specified
 * range for block. Implementing 'lock' feature by making use of 'unlock', for
 * now.
1227
 *
1228
 * Returns lock status.
1229 1230 1231 1232 1233
 */
int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr, status, page;
1234
	struct nand_chip *chip = mtd_to_nand(mtd);
1235

1236
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1237 1238 1239
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1240
		return -EINVAL;
1241

1242
	nand_get_device(mtd, FL_LOCKING);
1243 1244 1245 1246 1247 1248

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

	chip->select_chip(mtd, chipnr);

1249 1250 1251 1252 1253 1254 1255
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1256
	nand_reset(chip);
1257

1258 1259
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1260
		pr_debug("%s: device is write protected!\n",
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
					__func__);
		status = MTD_ERASE_FAILED;
		ret = -EIO;
		goto out;
	}

	/* Submit address of first page to lock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1274
	if (status & NAND_STATUS_FAIL) {
1275
		pr_debug("%s: error status = 0x%08x\n",
1276 1277 1278 1279 1280 1281 1282 1283
					__func__, status);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0x1);

out:
1284
	chip->select_chip(mtd, -1);
1285 1286 1287 1288
	nand_release_device(mtd);

	return ret;
}
1289
EXPORT_SYMBOL(nand_lock);
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
/**
 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
 * @buf: buffer to test
 * @len: buffer length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a buffer contains only 0xff, which means the underlying region
 * has been erased and is ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region is not erased.
 * Note: The logic of this function has been extracted from the memweight
 * implementation, except that nand_check_erased_buf function exit before
 * testing the whole buffer if the number of bitflips exceed the
 * bitflips_threshold value.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold.
 */
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
	const unsigned char *bitmap = buf;
	int bitflips = 0;
	int weight;

	for (; len && ((uintptr_t)bitmap) % sizeof(long);
	     len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len >= sizeof(long);
	     len -= sizeof(long), bitmap += sizeof(long)) {
		weight = hweight_long(*((unsigned long *)bitmap));
		bitflips += BITS_PER_LONG - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len > 0; len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	return bitflips;
}

/**
 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
 *				 0xff data
 * @data: data buffer to test
 * @datalen: data length
 * @ecc: ECC buffer
 * @ecclen: ECC length
 * @extraoob: extra OOB buffer
 * @extraooblen: extra OOB length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a data buffer and its associated ECC and OOB data contains only
 * 0xff pattern, which means the underlying region has been erased and is
 * ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region as not erased.
 *
 * Note:
 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
 *    different from the NAND page size. When fixing bitflips, ECC engines will
 *    report the number of errors per chunk, and the NAND core infrastructure
 *    expect you to return the maximum number of bitflips for the whole page.
 *    This is why you should always use this function on a single chunk and
 *    not on the whole page. After checking each chunk you should update your
 *    max_bitflips value accordingly.
 * 2/ When checking for bitflips in erased pages you should not only check
 *    the payload data but also their associated ECC data, because a user might
 *    have programmed almost all bits to 1 but a few. In this case, we
 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
 *    this case.
 * 3/ The extraoob argument is optional, and should be used if some of your OOB
 *    data are protected by the ECC engine.
 *    It could also be used if you support subpages and want to attach some
 *    extra OOB data to an ECC chunk.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold. In case of success, the passed buffers are filled with 0xff.
 */
int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int bitflips_threshold)
{
	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;

	data_bitflips = nand_check_erased_buf(data, datalen,
					      bitflips_threshold);
	if (data_bitflips < 0)
		return data_bitflips;

	bitflips_threshold -= data_bitflips;

	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
	if (ecc_bitflips < 0)
		return ecc_bitflips;

	bitflips_threshold -= ecc_bitflips;

	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
						  bitflips_threshold);
	if (extraoob_bitflips < 0)
		return extraoob_bitflips;

	if (data_bitflips)
		memset(data, 0xff, datalen);

	if (ecc_bitflips)
		memset(ecc, 0xff, ecclen);

	if (extraoob_bitflips)
		memset(extraoob, 0xff, extraooblen);

	return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);

1419
/**
1420
 * nand_read_page_raw - [INTERN] read raw page data without ecc
1421 1422 1423
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1424
 * @oob_required: caller requires OOB data read to chip->oob_poi
1425
 * @page: page number to read
1426
 *
1427
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1428 1429
 */
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1430
			      uint8_t *buf, int oob_required, int page)
1431 1432
{
	chip->read_buf(mtd, buf, mtd->writesize);
1433 1434
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1435 1436 1437
	return 0;
}

1438
/**
1439
 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1440 1441 1442
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1443
 * @oob_required: caller requires OOB data read to chip->oob_poi
1444
 * @page: page number to read
1445 1446 1447
 *
 * We need a special oob layout and handling even when OOB isn't used.
 */
1448
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1449 1450
				       struct nand_chip *chip, uint8_t *buf,
				       int oob_required, int page)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->read_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->read_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->read_buf(mtd, oob, size);

	return 0;
}

L
Linus Torvalds 已提交
1482
/**
1483
 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1484 1485 1486
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1487
 * @oob_required: caller requires OOB data read to chip->oob_poi
1488
 * @page: page number to read
1489
 */
1490
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1491
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1492
{
1493
	int i, eccsize = chip->ecc.size, ret;
1494 1495 1496
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1497 1498
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1499
	unsigned int max_bitflips = 0;
1500

1501
	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1502 1503 1504 1505

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

1506 1507 1508 1509
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1510 1511 1512 1513 1514 1515 1516 1517

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1518
		if (stat < 0) {
1519
			mtd->ecc_stats.failed++;
1520
		} else {
1521
			mtd->ecc_stats.corrected += stat;
1522 1523
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1524
	}
1525
	return max_bitflips;
1526
}
L
Linus Torvalds 已提交
1527

1528
/**
1529
 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1530 1531 1532 1533 1534
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @data_offs: offset of requested data within the page
 * @readlen: data length
 * @bufpoi: buffer to store read data
1535
 * @page: page number to read
1536
 */
1537
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1538 1539
			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
			int page)
1540
{
1541
	int start_step, end_step, num_steps, ret;
1542 1543 1544 1545
	uint8_t *p;
	int data_col_addr, i, gaps = 0;
	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1546
	int index, section = 0;
1547
	unsigned int max_bitflips = 0;
1548
	struct mtd_oob_region oobregion = { };
1549

1550
	/* Column address within the page aligned to ECC size (256bytes) */
1551 1552 1553
	start_step = data_offs / chip->ecc.size;
	end_step = (data_offs + readlen - 1) / chip->ecc.size;
	num_steps = end_step - start_step + 1;
R
Ron 已提交
1554
	index = start_step * chip->ecc.bytes;
1555

1556
	/* Data size aligned to ECC ecc.size */
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	datafrag_len = num_steps * chip->ecc.size;
	eccfrag_len = num_steps * chip->ecc.bytes;

	data_col_addr = start_step * chip->ecc.size;
	/* If we read not a page aligned data */
	if (data_col_addr != 0)
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);

	p = bufpoi + data_col_addr;
	chip->read_buf(mtd, p, datafrag_len);

1568
	/* Calculate ECC */
1569 1570 1571
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);

1572 1573
	/*
	 * The performance is faster if we position offsets according to
1574
	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1575
	 */
1576 1577 1578 1579 1580 1581 1582
	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
	if (ret)
		return ret;

	if (oobregion.length < eccfrag_len)
		gaps = 1;

1583 1584 1585 1586
	if (gaps) {
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	} else {
1587
		/*
1588
		 * Send the command to read the particular ECC bytes take care
1589 1590
		 * about buswidth alignment in read_buf.
		 */
1591
		aligned_pos = oobregion.offset & ~(busw - 1);
1592
		aligned_len = eccfrag_len;
1593
		if (oobregion.offset & (busw - 1))
1594
			aligned_len++;
1595 1596
		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
		    (busw - 1))
1597 1598
			aligned_len++;

1599
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1600
			      mtd->writesize + aligned_pos, -1);
1601 1602 1603
		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
	}

1604 1605 1606 1607
	ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
					 chip->oob_poi, index, eccfrag_len);
	if (ret)
		return ret;
1608 1609 1610 1611 1612

	p = bufpoi + data_col_addr;
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
		int stat;

1613 1614
		stat = chip->ecc.correct(mtd, p,
			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
						&chip->buffers->ecccode[i],
						chip->ecc.bytes,
						NULL, 0,
						chip->ecc.strength);
		}

1625
		if (stat < 0) {
1626
			mtd->ecc_stats.failed++;
1627
		} else {
1628
			mtd->ecc_stats.corrected += stat;
1629 1630
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1631
	}
1632
	return max_bitflips;
1633 1634
}

1635
/**
1636
 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1637 1638 1639
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1640
 * @oob_required: caller requires OOB data read to chip->oob_poi
1641
 * @page: page number to read
1642
 *
1643
 * Not for syndrome calculating ECC controllers which need a special oob layout.
1644
 */
1645
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1646
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1647
{
1648
	int i, eccsize = chip->ecc.size, ret;
1649 1650 1651
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1652 1653
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1654
	unsigned int max_bitflips = 0;
1655 1656 1657 1658 1659

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
L
Linus Torvalds 已提交
1660
	}
1661
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
L
Linus Torvalds 已提交
1662

1663 1664 1665 1666
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
1667

1668 1669
	eccsteps = chip->ecc.steps;
	p = buf;
1670

1671 1672
	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
L
Linus Torvalds 已提交
1673

1674
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1675 1676 1677 1678 1679 1680 1681 1682 1683
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1684
		if (stat < 0) {
1685
			mtd->ecc_stats.failed++;
1686
		} else {
1687
			mtd->ecc_stats.corrected += stat;
1688 1689
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1690
	}
1691
	return max_bitflips;
1692
}
L
Linus Torvalds 已提交
1693

1694
/**
1695
 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1696 1697 1698
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1699
 * @oob_required: caller requires OOB data read to chip->oob_poi
1700
 * @page: page number to read
1701
 *
1702 1703 1704 1705 1706
 * Hardware ECC for large page chips, require OOB to be read first. For this
 * ECC mode, the write_page method is re-used from ECC_HW. These methods
 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
 * the data area, by overwriting the NAND manufacturer bad block markings.
1707 1708
 */
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1709
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1710
{
1711
	int i, eccsize = chip->ecc.size, ret;
1712 1713 1714 1715 1716
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
1717
	unsigned int max_bitflips = 0;
1718 1719 1720 1721 1722 1723

	/* Read the OOB area first */
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

1724 1725 1726 1727
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1728 1729 1730 1731 1732 1733 1734 1735 1736

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1737 1738 1739 1740 1741 1742 1743 1744 1745
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1746
		if (stat < 0) {
1747
			mtd->ecc_stats.failed++;
1748
		} else {
1749
			mtd->ecc_stats.corrected += stat;
1750 1751
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1752
	}
1753
	return max_bitflips;
1754 1755
}

1756
/**
1757
 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1758 1759 1760
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1761
 * @oob_required: caller requires OOB data read to chip->oob_poi
1762
 * @page: page number to read
1763
 *
1764 1765
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
1766 1767
 */
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1768
				   uint8_t *buf, int oob_required, int page)
1769 1770 1771 1772
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
1773
	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1774
	uint8_t *p = buf;
1775
	uint8_t *oob = chip->oob_poi;
1776
	unsigned int max_bitflips = 0;
L
Linus Torvalds 已提交
1777

1778 1779
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
1780

1781 1782
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
L
Linus Torvalds 已提交
1783

1784 1785 1786 1787
		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}
L
Linus Torvalds 已提交
1788

1789 1790 1791
		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
		chip->read_buf(mtd, oob, eccbytes);
		stat = chip->ecc.correct(mtd, p, oob, NULL);
1792

1793
		oob += eccbytes;
L
Linus Torvalds 已提交
1794

1795 1796 1797
		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
1798
		}
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
							   oob - eccpadbytes,
							   eccpadbytes,
							   NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1816
	}
L
Linus Torvalds 已提交
1817

1818
	/* Calculate remaining oob bytes */
1819
	i = mtd->oobsize - (oob - chip->oob_poi);
1820 1821
	if (i)
		chip->read_buf(mtd, oob, i);
1822

1823
	return max_bitflips;
1824
}
L
Linus Torvalds 已提交
1825

1826
/**
1827
 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1828
 * @mtd: mtd info structure
1829 1830 1831
 * @oob: oob destination address
 * @ops: oob ops structure
 * @len: size of oob to transfer
1832
 */
1833
static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1834
				  struct mtd_oob_ops *ops, size_t len)
1835
{
1836 1837 1838
	struct nand_chip *chip = mtd_to_nand(mtd);
	int ret;

1839
	switch (ops->mode) {
1840

1841 1842
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
1843 1844 1845
		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
		return oob + len;

1846 1847 1848 1849 1850 1851
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

1852 1853 1854 1855 1856 1857
	default:
		BUG();
	}
	return NULL;
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
/**
 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
 * @mtd: MTD device structure
 * @retry_mode: the retry mode to use
 *
 * Some vendors supply a special command to shift the Vt threshold, to be used
 * when there are too many bitflips in a page (i.e., ECC error). After setting
 * a new threshold, the host should retry reading the page.
 */
static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
1869
	struct nand_chip *chip = mtd_to_nand(mtd);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

	pr_debug("setting READ RETRY mode %d\n", retry_mode);

	if (retry_mode >= chip->read_retries)
		return -EINVAL;

	if (!chip->setup_read_retry)
		return -EOPNOTSUPP;

	return chip->setup_read_retry(mtd, retry_mode);
}

1882
/**
1883
 * nand_do_read_ops - [INTERN] Read data with ECC
1884 1885 1886
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob ops structure
1887 1888 1889
 *
 * Internal function. Called with chip held.
 */
1890 1891
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
1892
{
1893
	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1894
	struct nand_chip *chip = mtd_to_nand(mtd);
1895
	int ret = 0;
1896
	uint32_t readlen = ops->len;
1897
	uint32_t oobreadlen = ops->ooblen;
1898
	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1899

1900
	uint8_t *bufpoi, *oob, *buf;
1901
	int use_bufpoi;
1902
	unsigned int max_bitflips = 0;
1903
	int retry_mode = 0;
1904
	bool ecc_fail = false;
L
Linus Torvalds 已提交
1905

1906 1907
	chipnr = (int)(from >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);
1908

1909 1910
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
1911

1912
	col = (int)(from & (mtd->writesize - 1));
1913

1914 1915
	buf = ops->datbuf;
	oob = ops->oobbuf;
1916
	oob_required = oob ? 1 : 0;
1917

1918
	while (1) {
1919 1920
		unsigned int ecc_failures = mtd->ecc_stats.failed;

1921 1922
		bytes = min(mtd->writesize - col, readlen);
		aligned = (bytes == mtd->writesize);
1923

1924 1925 1926 1927 1928 1929 1930
		if (!aligned)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;

1931
		/* Is the current page in the buffer? */
1932
		if (realpage != chip->pagebuf || oob) {
1933 1934 1935 1936 1937
			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;

			if (use_bufpoi && aligned)
				pr_debug("%s: using read bounce buffer for buf@%p\n",
						 __func__, buf);
1938

1939
read_retry:
1940
			chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
L
Linus Torvalds 已提交
1941

1942 1943 1944 1945
			/*
			 * Now read the page into the buffer.  Absent an error,
			 * the read methods return max bitflips per ecc step.
			 */
1946
			if (unlikely(ops->mode == MTD_OPS_RAW))
1947
				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1948 1949
							      oob_required,
							      page);
1950 1951
			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
				 !oob)
1952
				ret = chip->ecc.read_subpage(mtd, chip,
1953 1954
							col, bytes, bufpoi,
							page);
1955
			else
1956
				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1957
							  oob_required, page);
1958
			if (ret < 0) {
1959
				if (use_bufpoi)
1960 1961
					/* Invalidate page cache */
					chip->pagebuf = -1;
L
Linus Torvalds 已提交
1962
				break;
1963
			}
1964

1965 1966
			max_bitflips = max_t(unsigned int, max_bitflips, ret);

1967
			/* Transfer not aligned data */
1968
			if (use_bufpoi) {
1969
				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1970
				    !(mtd->ecc_stats.failed - ecc_failures) &&
1971
				    (ops->mode != MTD_OPS_RAW)) {
1972
					chip->pagebuf = realpage;
1973 1974
					chip->pagebuf_bitflips = ret;
				} else {
1975 1976
					/* Invalidate page cache */
					chip->pagebuf = -1;
1977
				}
1978
				memcpy(buf, chip->buffers->databuf + col, bytes);
1979 1980
			}

1981
			if (unlikely(oob)) {
1982 1983 1984
				int toread = min(oobreadlen, max_oobsize);

				if (toread) {
1985
					oob = nand_transfer_oob(mtd,
1986 1987 1988
						oob, ops, toread);
					oobreadlen -= toread;
				}
1989
			}
1990 1991 1992 1993 1994 1995 1996 1997

			if (chip->options & NAND_NEED_READRDY) {
				/* Apply delay or wait for ready/busy pin */
				if (!chip->dev_ready)
					udelay(chip->chip_delay);
				else
					nand_wait_ready(mtd);
			}
1998

1999
			if (mtd->ecc_stats.failed - ecc_failures) {
2000
				if (retry_mode + 1 < chip->read_retries) {
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
					retry_mode++;
					ret = nand_setup_read_retry(mtd,
							retry_mode);
					if (ret < 0)
						break;

					/* Reset failures; retry */
					mtd->ecc_stats.failed = ecc_failures;
					goto read_retry;
				} else {
					/* No more retry modes; real failure */
					ecc_fail = true;
				}
			}

			buf += bytes;
2017
		} else {
2018
			memcpy(buf, chip->buffers->databuf + col, bytes);
2019
			buf += bytes;
2020 2021
			max_bitflips = max_t(unsigned int, max_bitflips,
					     chip->pagebuf_bitflips);
2022
		}
L
Linus Torvalds 已提交
2023

2024
		readlen -= bytes;
2025

2026 2027 2028 2029 2030 2031 2032 2033
		/* Reset to retry mode 0 */
		if (retry_mode) {
			ret = nand_setup_read_retry(mtd, 0);
			if (ret < 0)
				break;
			retry_mode = 0;
		}

2034
		if (!readlen)
2035
			break;
L
Linus Torvalds 已提交
2036

2037
		/* For subsequent reads align to page boundary */
L
Linus Torvalds 已提交
2038 2039 2040 2041
		col = 0;
		/* Increment page address */
		realpage++;

2042
		page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2043 2044 2045
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
2046 2047
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2048 2049
		}
	}
2050
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2051

2052
	ops->retlen = ops->len - (size_t) readlen;
2053 2054
	if (oob)
		ops->oobretlen = ops->ooblen - oobreadlen;
L
Linus Torvalds 已提交
2055

2056
	if (ret < 0)
2057 2058
		return ret;

2059
	if (ecc_fail)
2060 2061
		return -EBADMSG;

2062
	return max_bitflips;
2063 2064 2065
}

/**
L
Lucas De Marchi 已提交
2066
 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2067 2068 2069 2070 2071
 * @mtd: MTD device structure
 * @from: offset to read from
 * @len: number of bytes to read
 * @retlen: pointer to variable to store the number of read bytes
 * @buf: the databuffer to put data
2072
 *
2073
 * Get hold of the chip and call nand_do_read.
2074 2075 2076 2077
 */
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
		     size_t *retlen, uint8_t *buf)
{
2078
	struct mtd_oob_ops ops;
2079 2080
	int ret;

2081
	nand_get_device(mtd, FL_READING);
2082
	memset(&ops, 0, sizeof(ops));
2083 2084
	ops.len = len;
	ops.datbuf = buf;
2085
	ops.mode = MTD_OPS_PLACE_OOB;
2086 2087
	ret = nand_do_read_ops(mtd, from, &ops);
	*retlen = ops.retlen;
2088 2089
	nand_release_device(mtd);
	return ret;
L
Linus Torvalds 已提交
2090 2091
}

2092
/**
2093
 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2094 2095 2096
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2097
 */
2098
int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2099
{
2100
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2101
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2102
	return 0;
2103
}
2104
EXPORT_SYMBOL(nand_read_oob_std);
2105 2106

/**
2107
 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2108
 *			    with syndromes
2109 2110 2111
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2112
 */
2113 2114
int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			   int page)
2115 2116 2117 2118
{
	int length = mtd->oobsize;
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size;
2119
	uint8_t *bufpoi = chip->oob_poi;
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	int i, toread, sndrnd = 0, pos;

	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
	for (i = 0; i < chip->ecc.steps; i++) {
		if (sndrnd) {
			pos = eccsize + i * (eccsize + chunk);
			if (mtd->writesize > 512)
				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
			else
				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
		} else
			sndrnd = 1;
		toread = min_t(int, length, chunk);
		chip->read_buf(mtd, bufpoi, toread);
		bufpoi += toread;
		length -= toread;
	}
	if (length > 0)
		chip->read_buf(mtd, bufpoi, length);

2140
	return 0;
2141
}
2142
EXPORT_SYMBOL(nand_read_oob_syndrome);
2143 2144

/**
2145
 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2146 2147 2148
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2149
 */
2150
int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
{
	int status = 0;
	const uint8_t *buf = chip->oob_poi;
	int length = mtd->oobsize;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, buf, length);
	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

S
Savin Zlobec 已提交
2163
	return status & NAND_STATUS_FAIL ? -EIO : 0;
2164
}
2165
EXPORT_SYMBOL(nand_write_oob_std);
2166 2167

/**
2168
 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2169 2170 2171 2172
 *			     with syndrome - only for large page flash
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2173
 */
2174 2175
int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size, length = mtd->oobsize;
	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
	const uint8_t *bufpoi = chip->oob_poi;

	/*
	 * data-ecc-data-ecc ... ecc-oob
	 * or
	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
	 */
	if (!chip->ecc.prepad && !chip->ecc.postpad) {
		pos = steps * (eccsize + chunk);
		steps = 0;
	} else
2191
		pos = eccsize;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
	for (i = 0; i < steps; i++) {
		if (sndcmd) {
			if (mtd->writesize <= 512) {
				uint32_t fill = 0xFFFFFFFF;

				len = eccsize;
				while (len > 0) {
					int num = min_t(int, len, 4);
					chip->write_buf(mtd, (uint8_t *)&fill,
							num);
					len -= num;
				}
			} else {
				pos = eccsize + i * (eccsize + chunk);
				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
			}
		} else
			sndcmd = 1;
		len = min_t(int, length, chunk);
		chip->write_buf(mtd, bufpoi, len);
		bufpoi += len;
		length -= len;
	}
	if (length > 0)
		chip->write_buf(mtd, bufpoi, length);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}
2225
EXPORT_SYMBOL(nand_write_oob_syndrome);
2226

L
Linus Torvalds 已提交
2227
/**
2228
 * nand_do_read_oob - [INTERN] NAND read out-of-band
2229 2230 2231
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2232
 *
2233
 * NAND read out-of-band data from the spare area.
L
Linus Torvalds 已提交
2234
 */
2235 2236
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2237
{
2238
	int page, realpage, chipnr;
2239
	struct nand_chip *chip = mtd_to_nand(mtd);
2240
	struct mtd_ecc_stats stats;
2241 2242
	int readlen = ops->ooblen;
	int len;
2243
	uint8_t *buf = ops->oobbuf;
2244
	int ret = 0;
2245

2246
	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2247
			__func__, (unsigned long long)from, readlen);
L
Linus Torvalds 已提交
2248

2249 2250
	stats = mtd->ecc_stats;

2251
	len = mtd_oobavail(mtd, ops);
2252 2253

	if (unlikely(ops->ooboffs >= len)) {
2254 2255
		pr_debug("%s: attempt to start read outside oob\n",
				__func__);
2256 2257 2258 2259 2260 2261 2262
		return -EINVAL;
	}

	/* Do not allow reads past end of device */
	if (unlikely(from >= mtd->size ||
		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
					(from >> chip->page_shift)) * len)) {
2263 2264
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
2265 2266
		return -EINVAL;
	}
2267

2268
	chipnr = (int)(from >> chip->chip_shift);
2269
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2270

2271 2272 2273
	/* Shift to get page */
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2274

2275
	while (1) {
2276
		if (ops->mode == MTD_OPS_RAW)
2277
			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2278
		else
2279 2280 2281 2282
			ret = chip->ecc.read_oob(mtd, chip, page);

		if (ret < 0)
			break;
2283 2284

		len = min(len, readlen);
2285
		buf = nand_transfer_oob(mtd, buf, ops, len);
2286

2287 2288 2289 2290 2291 2292 2293 2294
		if (chip->options & NAND_NEED_READRDY) {
			/* Apply delay or wait for ready/busy pin */
			if (!chip->dev_ready)
				udelay(chip->chip_delay);
			else
				nand_wait_ready(mtd);
		}

2295
		readlen -= len;
S
Savin Zlobec 已提交
2296 2297 2298
		if (!readlen)
			break;

2299 2300 2301 2302 2303 2304 2305 2306 2307
		/* Increment page address */
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2308 2309
		}
	}
2310
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2311

2312 2313 2314 2315
	ops->oobretlen = ops->ooblen - readlen;

	if (ret < 0)
		return ret;
2316 2317 2318 2319 2320

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
L
Linus Torvalds 已提交
2321 2322 2323
}

/**
2324
 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2325 2326 2327
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2328
 *
2329
 * NAND read data and/or out-of-band data.
L
Linus Torvalds 已提交
2330
 */
2331 2332
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
			 struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2333
{
2334
	int ret;
2335 2336

	ops->retlen = 0;
L
Linus Torvalds 已提交
2337 2338

	/* Do not allow reads past end of device */
2339
	if (ops->datbuf && (from + ops->len) > mtd->size) {
2340 2341
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
L
Linus Torvalds 已提交
2342 2343 2344
		return -EINVAL;
	}

2345 2346 2347 2348
	if (ops->mode != MTD_OPS_PLACE_OOB &&
	    ops->mode != MTD_OPS_AUTO_OOB &&
	    ops->mode != MTD_OPS_RAW)
		return -ENOTSUPP;
L
Linus Torvalds 已提交
2349

2350
	nand_get_device(mtd, FL_READING);
L
Linus Torvalds 已提交
2351

2352 2353 2354 2355
	if (!ops->datbuf)
		ret = nand_do_read_oob(mtd, from, ops);
	else
		ret = nand_do_read_ops(mtd, from, ops);
2356

2357 2358 2359
	nand_release_device(mtd);
	return ret;
}
2360

L
Linus Torvalds 已提交
2361

2362
/**
2363
 * nand_write_page_raw - [INTERN] raw page write function
2364 2365 2366
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2367
 * @oob_required: must write chip->oob_poi to OOB
2368
 * @page: page number to write
2369
 *
2370
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2371
 */
2372
static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2373
			       const uint8_t *buf, int oob_required, int page)
2374 2375
{
	chip->write_buf(mtd, buf, mtd->writesize);
2376 2377
	if (oob_required)
		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2378 2379

	return 0;
L
Linus Torvalds 已提交
2380 2381
}

2382
/**
2383
 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2384 2385 2386
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2387
 * @oob_required: must write chip->oob_poi to OOB
2388
 * @page: page number to write
2389 2390 2391
 *
 * We need a special oob layout and handling even when ECC isn't checked.
 */
2392
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2393
					struct nand_chip *chip,
2394 2395
					const uint8_t *buf, int oob_required,
					int page)
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->write_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

2411
		chip->write_buf(mtd, oob, eccbytes);
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->write_buf(mtd, oob, size);
2423 2424

	return 0;
2425
}
2426
/**
2427
 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2428 2429 2430
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2431
 * @oob_required: must write chip->oob_poi to OOB
2432
 * @page: page number to write
2433
 */
2434
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2435 2436
				 const uint8_t *buf, int oob_required,
				 int page)
2437
{
2438
	int i, eccsize = chip->ecc.size, ret;
2439 2440
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2441
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2442
	const uint8_t *p = buf;
2443

2444
	/* Software ECC calculation */
2445 2446
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2447

2448 2449 2450 2451
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2452

2453
	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2454
}
2455

2456
/**
2457
 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2458 2459 2460
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2461
 * @oob_required: must write chip->oob_poi to OOB
2462
 * @page: page number to write
2463
 */
2464
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2465 2466
				  const uint8_t *buf, int oob_required,
				  int page)
2467
{
2468
	int i, eccsize = chip->ecc.size, ret;
2469 2470
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2471
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2472
	const uint8_t *p = buf;
2473

2474 2475
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2476
		chip->write_buf(mtd, p, eccsize);
2477
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2478 2479
	}

2480 2481 2482 2483
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2484 2485

	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2486 2487

	return 0;
2488 2489
}

2490 2491

/**
2492
 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2493 2494
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
2495
 * @offset:	column address of subpage within the page
2496
 * @data_len:	data length
2497
 * @buf:	data buffer
2498
 * @oob_required: must write chip->oob_poi to OOB
2499
 * @page: page number to write
2500 2501 2502
 */
static int nand_write_subpage_hwecc(struct mtd_info *mtd,
				struct nand_chip *chip, uint32_t offset,
2503
				uint32_t data_len, const uint8_t *buf,
2504
				int oob_required, int page)
2505 2506 2507 2508 2509 2510 2511 2512 2513
{
	uint8_t *oob_buf  = chip->oob_poi;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	int ecc_size      = chip->ecc.size;
	int ecc_bytes     = chip->ecc.bytes;
	int ecc_steps     = chip->ecc.steps;
	uint32_t start_step = offset / ecc_size;
	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
	int oob_bytes       = mtd->oobsize / ecc_steps;
2514
	int step, ret;
2515 2516 2517 2518 2519 2520

	for (step = 0; step < ecc_steps; step++) {
		/* configure controller for WRITE access */
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

		/* write data (untouched subpages already masked by 0xFF) */
2521
		chip->write_buf(mtd, buf, ecc_size);
2522 2523 2524 2525 2526

		/* mask ECC of un-touched subpages by padding 0xFF */
		if ((step < start_step) || (step > end_step))
			memset(ecc_calc, 0xff, ecc_bytes);
		else
2527
			chip->ecc.calculate(mtd, buf, ecc_calc);
2528 2529 2530 2531 2532 2533

		/* mask OOB of un-touched subpages by padding 0xFF */
		/* if oob_required, preserve OOB metadata of written subpage */
		if (!oob_required || (step < start_step) || (step > end_step))
			memset(oob_buf, 0xff, oob_bytes);

2534
		buf += ecc_size;
2535 2536 2537 2538 2539 2540 2541
		ecc_calc += ecc_bytes;
		oob_buf  += oob_bytes;
	}

	/* copy calculated ECC for whole page to chip->buffer->oob */
	/* this include masked-value(0xFF) for unwritten subpages */
	ecc_calc = chip->buffers->ecccalc;
2542 2543 2544 2545
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2546 2547 2548 2549 2550 2551 2552 2553

	/* write OOB buffer to NAND device */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}


2554
/**
2555
 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2556 2557 2558
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2559
 * @oob_required: must write chip->oob_poi to OOB
2560
 * @page: page number to write
L
Linus Torvalds 已提交
2561
 *
2562 2563
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
2564
 */
2565
static int nand_write_page_syndrome(struct mtd_info *mtd,
2566
				    struct nand_chip *chip,
2567 2568
				    const uint8_t *buf, int oob_required,
				    int page)
L
Linus Torvalds 已提交
2569
{
2570 2571 2572 2573 2574
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
L
Linus Torvalds 已提交
2575

2576
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
L
Linus Torvalds 已提交
2577

2578 2579
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
		chip->write_buf(mtd, p, eccsize);
2580

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->ecc.calculate(mtd, p, oob);
		chip->write_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
L
Linus Torvalds 已提交
2593 2594
		}
	}
2595 2596

	/* Calculate remaining oob bytes */
2597
	i = mtd->oobsize - (oob - chip->oob_poi);
2598 2599
	if (i)
		chip->write_buf(mtd, oob, i);
2600 2601

	return 0;
2602 2603 2604
}

/**
2605
 * nand_write_page - [REPLACEABLE] write one page
2606 2607
 * @mtd: MTD device structure
 * @chip: NAND chip descriptor
2608 2609
 * @offset: address offset within the page
 * @data_len: length of actual data to be written
2610
 * @buf: the data to write
2611
 * @oob_required: must write chip->oob_poi to OOB
2612 2613 2614
 * @page: page number to write
 * @cached: cached programming
 * @raw: use _raw version of write_page
2615 2616
 */
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2617 2618
		uint32_t offset, int data_len, const uint8_t *buf,
		int oob_required, int page, int cached, int raw)
2619
{
2620 2621 2622 2623 2624 2625 2626
	int status, subpage;

	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
		chip->ecc.write_subpage)
		subpage = offset || (data_len < mtd->writesize);
	else
		subpage = 0;
2627 2628 2629

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

2630
	if (unlikely(raw))
2631
		status = chip->ecc.write_page_raw(mtd, chip, buf,
2632
						  oob_required, page);
2633 2634
	else if (subpage)
		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2635
						 buf, oob_required, page);
2636
	else
2637 2638
		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
					      page);
2639 2640 2641

	if (status < 0)
		return status;
2642 2643

	/*
2644
	 * Cached progamming disabled for now. Not sure if it's worth the
2645
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2646 2647 2648
	 */
	cached = 0;

2649
	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2650 2651

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2652
		status = chip->waitfunc(mtd, chip);
2653 2654
		/*
		 * See if operation failed and additional status checks are
2655
		 * available.
2656 2657 2658 2659 2660 2661 2662 2663 2664
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2665
		status = chip->waitfunc(mtd, chip);
2666 2667 2668
	}

	return 0;
L
Linus Torvalds 已提交
2669 2670
}

2671
/**
2672
 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2673
 * @mtd: MTD device structure
2674 2675 2676
 * @oob: oob data buffer
 * @len: oob data write length
 * @ops: oob ops structure
2677
 */
2678 2679
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
			      struct mtd_oob_ops *ops)
2680
{
2681
	struct nand_chip *chip = mtd_to_nand(mtd);
2682
	int ret;
2683 2684 2685 2686 2687 2688 2689

	/*
	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
	 * data from a previous OOB read.
	 */
	memset(chip->oob_poi, 0xff, mtd->oobsize);

2690
	switch (ops->mode) {
2691

2692 2693
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
2694 2695 2696
		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
		return oob + len;

2697 2698 2699 2700 2701 2702
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

2703 2704 2705 2706 2707 2708
	default:
		BUG();
	}
	return NULL;
}

2709
#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
L
Linus Torvalds 已提交
2710 2711

/**
2712
 * nand_do_write_ops - [INTERN] NAND write with ECC
2713 2714 2715
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2716
 *
2717
 * NAND write with ECC.
L
Linus Torvalds 已提交
2718
 */
2719 2720
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2721
{
2722
	int chipnr, realpage, page, blockmask, column;
2723
	struct nand_chip *chip = mtd_to_nand(mtd);
2724
	uint32_t writelen = ops->len;
2725 2726

	uint32_t oobwritelen = ops->ooblen;
2727
	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2728

2729 2730
	uint8_t *oob = ops->oobbuf;
	uint8_t *buf = ops->datbuf;
2731
	int ret;
2732
	int oob_required = oob ? 1 : 0;
L
Linus Torvalds 已提交
2733

2734
	ops->retlen = 0;
2735 2736
	if (!writelen)
		return 0;
L
Linus Torvalds 已提交
2737

2738
	/* Reject writes, which are not page aligned */
2739
	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2740 2741
		pr_notice("%s: attempt to write non page aligned data\n",
			   __func__);
L
Linus Torvalds 已提交
2742 2743 2744
		return -EINVAL;
	}

2745
	column = to & (mtd->writesize - 1);
L
Linus Torvalds 已提交
2746

2747 2748 2749
	chipnr = (int)(to >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);

L
Linus Torvalds 已提交
2750
	/* Check, if it is write protected */
2751 2752 2753 2754
	if (nand_check_wp(mtd)) {
		ret = -EIO;
		goto err_out;
	}
L
Linus Torvalds 已提交
2755

2756 2757 2758 2759 2760
	realpage = (int)(to >> chip->page_shift);
	page = realpage & chip->pagemask;
	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;

	/* Invalidate the page cache, when we write to the cached page */
2761 2762
	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2763
		chip->pagebuf = -1;
2764

2765
	/* Don't allow multipage oob writes with offset */
2766 2767 2768 2769
	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
		ret = -EINVAL;
		goto err_out;
	}
2770

2771
	while (1) {
2772
		int bytes = mtd->writesize;
2773
		int cached = writelen > bytes && page != blockmask;
2774
		uint8_t *wbuf = buf;
2775
		int use_bufpoi;
2776
		int part_pagewr = (column || writelen < mtd->writesize);
2777 2778 2779 2780 2781 2782 2783

		if (part_pagewr)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;
2784

2785 2786 2787 2788
		/* Partial page write?, or need to use bounce buffer */
		if (use_bufpoi) {
			pr_debug("%s: using write bounce buffer for buf@%p\n",
					 __func__, buf);
2789
			cached = 0;
2790 2791
			if (part_pagewr)
				bytes = min_t(int, bytes - column, writelen);
2792 2793 2794 2795 2796
			chip->pagebuf = -1;
			memset(chip->buffers->databuf, 0xff, mtd->writesize);
			memcpy(&chip->buffers->databuf[column], buf, bytes);
			wbuf = chip->buffers->databuf;
		}
L
Linus Torvalds 已提交
2797

2798 2799
		if (unlikely(oob)) {
			size_t len = min(oobwritelen, oobmaxlen);
2800
			oob = nand_fill_oob(mtd, oob, len, ops);
2801
			oobwritelen -= len;
2802 2803 2804
		} else {
			/* We still need to erase leftover OOB data */
			memset(chip->oob_poi, 0xff, mtd->oobsize);
2805
		}
2806 2807 2808
		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
					oob_required, page, cached,
					(ops->mode == MTD_OPS_RAW));
2809 2810 2811 2812 2813 2814 2815
		if (ret)
			break;

		writelen -= bytes;
		if (!writelen)
			break;

2816
		column = 0;
2817 2818 2819 2820 2821 2822 2823 2824 2825
		buf += bytes;
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2826 2827
		}
	}
2828 2829

	ops->retlen = ops->len - writelen;
2830 2831
	if (unlikely(oob))
		ops->oobretlen = ops->ooblen;
2832 2833 2834

err_out:
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2835 2836 2837
	return ret;
}

2838 2839
/**
 * panic_nand_write - [MTD Interface] NAND write with ECC
2840 2841 2842 2843 2844
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2845 2846 2847 2848 2849 2850 2851
 *
 * NAND write with ECC. Used when performing writes in interrupt context, this
 * may for example be called by mtdoops when writing an oops while in panic.
 */
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, const uint8_t *buf)
{
2852
	struct nand_chip *chip = mtd_to_nand(mtd);
2853
	struct mtd_oob_ops ops;
2854 2855
	int ret;

2856
	/* Wait for the device to get ready */
2857 2858
	panic_nand_wait(mtd, chip, 400);

2859
	/* Grab the device */
2860 2861
	panic_nand_get_device(chip, mtd, FL_WRITING);

2862
	memset(&ops, 0, sizeof(ops));
2863 2864
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2865
	ops.mode = MTD_OPS_PLACE_OOB;
2866

2867
	ret = nand_do_write_ops(mtd, to, &ops);
2868

2869
	*retlen = ops.retlen;
2870 2871 2872
	return ret;
}

2873
/**
2874
 * nand_write - [MTD Interface] NAND write with ECC
2875 2876 2877 2878 2879
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2880
 *
2881
 * NAND write with ECC.
2882
 */
2883 2884
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			  size_t *retlen, const uint8_t *buf)
2885
{
2886
	struct mtd_oob_ops ops;
2887 2888
	int ret;

2889
	nand_get_device(mtd, FL_WRITING);
2890
	memset(&ops, 0, sizeof(ops));
2891 2892
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2893
	ops.mode = MTD_OPS_PLACE_OOB;
2894 2895
	ret = nand_do_write_ops(mtd, to, &ops);
	*retlen = ops.retlen;
2896
	nand_release_device(mtd);
2897
	return ret;
2898
}
2899

L
Linus Torvalds 已提交
2900
/**
2901
 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2902 2903 2904
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2905
 *
2906
 * NAND write out-of-band.
L
Linus Torvalds 已提交
2907
 */
2908 2909
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2910
{
2911
	int chipnr, page, status, len;
2912
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
2913

2914
	pr_debug("%s: to = 0x%08x, len = %i\n",
2915
			 __func__, (unsigned int)to, (int)ops->ooblen);
L
Linus Torvalds 已提交
2916

2917
	len = mtd_oobavail(mtd, ops);
2918

L
Linus Torvalds 已提交
2919
	/* Do not allow write past end of page */
2920
	if ((ops->ooboffs + ops->ooblen) > len) {
2921 2922
		pr_debug("%s: attempt to write past end of page\n",
				__func__);
L
Linus Torvalds 已提交
2923 2924 2925
		return -EINVAL;
	}

2926
	if (unlikely(ops->ooboffs >= len)) {
2927 2928
		pr_debug("%s: attempt to start write outside oob\n",
				__func__);
2929 2930 2931
		return -EINVAL;
	}

2932
	/* Do not allow write past end of device */
2933 2934 2935 2936
	if (unlikely(to >= mtd->size ||
		     ops->ooboffs + ops->ooblen >
			((mtd->size >> chip->page_shift) -
			 (to >> chip->page_shift)) * len)) {
2937 2938
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
2939 2940 2941
		return -EINVAL;
	}

2942
	chipnr = (int)(to >> chip->chip_shift);
2943
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2944

2945 2946 2947 2948 2949 2950 2951 2952 2953
	/* Shift to get page */
	page = (int)(to >> chip->page_shift);

	/*
	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
	 * of my DiskOnChip 2000 test units) will clear the whole data page too
	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
	 * it in the doc2000 driver in August 1999.  dwmw2.
	 */
2954
	nand_reset(chip);
L
Linus Torvalds 已提交
2955 2956

	/* Check, if it is write protected */
2957 2958
	if (nand_check_wp(mtd)) {
		chip->select_chip(mtd, -1);
2959
		return -EROFS;
2960
	}
2961

L
Linus Torvalds 已提交
2962
	/* Invalidate the page cache, if we write to the cached page */
2963 2964
	if (page == chip->pagebuf)
		chip->pagebuf = -1;
L
Linus Torvalds 已提交
2965

2966
	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2967

2968
	if (ops->mode == MTD_OPS_RAW)
2969 2970 2971
		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
	else
		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
L
Linus Torvalds 已提交
2972

2973 2974
	chip->select_chip(mtd, -1);

2975 2976
	if (status)
		return status;
L
Linus Torvalds 已提交
2977

2978
	ops->oobretlen = ops->ooblen;
L
Linus Torvalds 已提交
2979

2980
	return 0;
2981 2982 2983 2984
}

/**
 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2985 2986 2987
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
2988 2989 2990 2991 2992 2993 2994 2995 2996
 */
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
			  struct mtd_oob_ops *ops)
{
	int ret = -ENOTSUPP;

	ops->retlen = 0;

	/* Do not allow writes past end of device */
2997
	if (ops->datbuf && (to + ops->len) > mtd->size) {
2998 2999
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
3000 3001 3002
		return -EINVAL;
	}

3003
	nand_get_device(mtd, FL_WRITING);
3004

3005
	switch (ops->mode) {
3006 3007 3008
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_AUTO_OOB:
	case MTD_OPS_RAW:
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		break;

	default:
		goto out;
	}

	if (!ops->datbuf)
		ret = nand_do_write_oob(mtd, to, ops);
	else
		ret = nand_do_write_ops(mtd, to, ops);

3020
out:
L
Linus Torvalds 已提交
3021 3022 3023 3024 3025
	nand_release_device(mtd);
	return ret;
}

/**
3026
 * single_erase - [GENERIC] NAND standard block erase command function
3027 3028
 * @mtd: MTD device structure
 * @page: the page address of the block which will be erased
L
Linus Torvalds 已提交
3029
 *
3030
 * Standard erase command for NAND chips. Returns NAND status.
L
Linus Torvalds 已提交
3031
 */
3032
static int single_erase(struct mtd_info *mtd, int page)
L
Linus Torvalds 已提交
3033
{
3034
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
3035
	/* Send commands to erase a block */
3036 3037
	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
3038 3039

	return chip->waitfunc(mtd, chip);
L
Linus Torvalds 已提交
3040 3041 3042 3043
}

/**
 * nand_erase - [MTD Interface] erase block(s)
3044 3045
 * @mtd: MTD device structure
 * @instr: erase instruction
L
Linus Torvalds 已提交
3046
 *
3047
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3048
 */
3049
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
L
Linus Torvalds 已提交
3050
{
3051
	return nand_erase_nand(mtd, instr, 0);
L
Linus Torvalds 已提交
3052
}
3053

L
Linus Torvalds 已提交
3054
/**
3055
 * nand_erase_nand - [INTERN] erase block(s)
3056 3057 3058
 * @mtd: MTD device structure
 * @instr: erase instruction
 * @allowbbt: allow erasing the bbt area
L
Linus Torvalds 已提交
3059
 *
3060
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3061
 */
3062 3063
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
		    int allowbbt)
L
Linus Torvalds 已提交
3064
{
3065
	int page, status, pages_per_block, ret, chipnr;
3066
	struct nand_chip *chip = mtd_to_nand(mtd);
3067
	loff_t len;
L
Linus Torvalds 已提交
3068

3069 3070 3071
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
			__func__, (unsigned long long)instr->addr,
			(unsigned long long)instr->len);
L
Linus Torvalds 已提交
3072

3073
	if (check_offs_len(mtd, instr->addr, instr->len))
L
Linus Torvalds 已提交
3074 3075 3076
		return -EINVAL;

	/* Grab the lock and see if the device is available */
3077
	nand_get_device(mtd, FL_ERASING);
L
Linus Torvalds 已提交
3078 3079

	/* Shift to get first page */
3080 3081
	page = (int)(instr->addr >> chip->page_shift);
	chipnr = (int)(instr->addr >> chip->chip_shift);
L
Linus Torvalds 已提交
3082 3083

	/* Calculate pages in each block */
3084
	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
L
Linus Torvalds 已提交
3085 3086

	/* Select the NAND device */
3087
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3088 3089 3090

	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
3091 3092
		pr_debug("%s: device is write protected!\n",
				__func__);
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
		instr->state = MTD_ERASE_FAILED;
		goto erase_exit;
	}

	/* Loop through the pages */
	len = instr->len;

	instr->state = MTD_ERASING;

	while (len) {
W
Wolfram Sang 已提交
3103
		/* Check if we have a bad block, we do not erase bad blocks! */
3104
		if (nand_block_checkbad(mtd, ((loff_t) page) <<
3105
					chip->page_shift, allowbbt)) {
3106 3107
			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
				    __func__, page);
L
Linus Torvalds 已提交
3108 3109 3110
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
3111

3112 3113
		/*
		 * Invalidate the page cache, if we erase the block which
3114
		 * contains the current cached page.
3115 3116 3117 3118
		 */
		if (page <= chip->pagebuf && chip->pagebuf <
		    (page + pages_per_block))
			chip->pagebuf = -1;
L
Linus Torvalds 已提交
3119

3120
		status = chip->erase(mtd, page & chip->pagemask);
L
Linus Torvalds 已提交
3121

3122 3123 3124 3125 3126 3127 3128
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_ERASING,
					       status, page);
3129

L
Linus Torvalds 已提交
3130
		/* See if block erase succeeded */
3131
		if (status & NAND_STATUS_FAIL) {
3132 3133
			pr_debug("%s: failed erase, page 0x%08x\n",
					__func__, page);
L
Linus Torvalds 已提交
3134
			instr->state = MTD_ERASE_FAILED;
3135 3136
			instr->fail_addr =
				((loff_t)page << chip->page_shift);
L
Linus Torvalds 已提交
3137 3138
			goto erase_exit;
		}
3139

L
Linus Torvalds 已提交
3140
		/* Increment page address and decrement length */
3141
		len -= (1ULL << chip->phys_erase_shift);
L
Linus Torvalds 已提交
3142 3143 3144
		page += pages_per_block;

		/* Check, if we cross a chip boundary */
3145
		if (len && !(page & chip->pagemask)) {
L
Linus Torvalds 已提交
3146
			chipnr++;
3147 3148
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3149 3150 3151 3152
		}
	}
	instr->state = MTD_ERASE_DONE;

3153
erase_exit:
L
Linus Torvalds 已提交
3154 3155 3156 3157

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;

	/* Deselect and wake up anyone waiting on the device */
3158
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
3159 3160
	nand_release_device(mtd);

3161 3162 3163 3164
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

L
Linus Torvalds 已提交
3165 3166 3167 3168 3169 3170
	/* Return more or less happy */
	return ret;
}

/**
 * nand_sync - [MTD Interface] sync
3171
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
3172
 *
3173
 * Sync is actually a wait for chip ready function.
L
Linus Torvalds 已提交
3174
 */
3175
static void nand_sync(struct mtd_info *mtd)
L
Linus Torvalds 已提交
3176
{
3177
	pr_debug("%s: called\n", __func__);
L
Linus Torvalds 已提交
3178 3179

	/* Grab the lock and see if the device is available */
3180
	nand_get_device(mtd, FL_SYNCING);
L
Linus Torvalds 已提交
3181
	/* Release it and go back */
3182
	nand_release_device(mtd);
L
Linus Torvalds 已提交
3183 3184 3185
}

/**
3186
 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3187 3188
 * @mtd: MTD device structure
 * @offs: offset relative to mtd start
L
Linus Torvalds 已提交
3189
 */
3190
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
L
Linus Torvalds 已提交
3191
{
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	struct nand_chip *chip = mtd_to_nand(mtd);
	int chipnr = (int)(offs >> chip->chip_shift);
	int ret;

	/* Select the NAND device */
	nand_get_device(mtd, FL_READING);
	chip->select_chip(mtd, chipnr);

	ret = nand_block_checkbad(mtd, offs, 0);

	chip->select_chip(mtd, -1);
	nand_release_device(mtd);

	return ret;
L
Linus Torvalds 已提交
3206 3207 3208
}

/**
3209
 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3210 3211
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
L
Linus Torvalds 已提交
3212
 */
3213
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
3214 3215 3216
{
	int ret;

3217 3218
	ret = nand_block_isbad(mtd, ofs);
	if (ret) {
3219
		/* If it was bad already, return success and do nothing */
L
Linus Torvalds 已提交
3220 3221
		if (ret > 0)
			return 0;
3222 3223
		return ret;
	}
L
Linus Torvalds 已提交
3224

3225
	return nand_block_markbad_lowlevel(mtd, ofs);
L
Linus Torvalds 已提交
3226 3227
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
/**
 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
	int status;
3239
	int i;
3240

3241 3242 3243
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3244 3245 3246
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3247 3248 3249
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		chip->write_byte(mtd, subfeature_param[i]);

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	status = chip->waitfunc(mtd, chip);
	if (status & NAND_STATUS_FAIL)
		return -EIO;
	return 0;
}

/**
 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
3266 3267
	int i;

3268 3269 3270
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3271 3272 3273
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3274 3275
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		*subfeature_param++ = chip->read_byte(mtd);
3276 3277 3278
	return 0;
}

3279 3280
/**
 * nand_suspend - [MTD Interface] Suspend the NAND flash
3281
 * @mtd: MTD device structure
3282 3283 3284
 */
static int nand_suspend(struct mtd_info *mtd)
{
3285
	return nand_get_device(mtd, FL_PM_SUSPENDED);
3286 3287 3288 3289
}

/**
 * nand_resume - [MTD Interface] Resume the NAND flash
3290
 * @mtd: MTD device structure
3291 3292 3293
 */
static void nand_resume(struct mtd_info *mtd)
{
3294
	struct nand_chip *chip = mtd_to_nand(mtd);
3295

3296
	if (chip->state == FL_PM_SUSPENDED)
3297 3298
		nand_release_device(mtd);
	else
3299 3300
		pr_err("%s called for a chip which is not in suspended state\n",
			__func__);
3301 3302
}

S
Scott Branden 已提交
3303 3304 3305 3306 3307 3308 3309
/**
 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
 *                 prevent further operations
 * @mtd: MTD device structure
 */
static void nand_shutdown(struct mtd_info *mtd)
{
3310
	nand_get_device(mtd, FL_PM_SUSPENDED);
S
Scott Branden 已提交
3311 3312
}

3313
/* Set default functions */
3314
static void nand_set_defaults(struct nand_chip *chip, int busw)
T
Thomas Gleixner 已提交
3315
{
L
Linus Torvalds 已提交
3316
	/* check for proper chip_delay setup, set 20us if not */
3317 3318
	if (!chip->chip_delay)
		chip->chip_delay = 20;
L
Linus Torvalds 已提交
3319 3320

	/* check, if a user supplied command function given */
3321 3322
	if (chip->cmdfunc == NULL)
		chip->cmdfunc = nand_command;
L
Linus Torvalds 已提交
3323 3324

	/* check, if a user supplied wait function given */
3325 3326 3327 3328 3329
	if (chip->waitfunc == NULL)
		chip->waitfunc = nand_wait;

	if (!chip->select_chip)
		chip->select_chip = nand_select_chip;
3330

3331 3332 3333 3334 3335 3336
	/* set for ONFI nand */
	if (!chip->onfi_set_features)
		chip->onfi_set_features = nand_onfi_set_features;
	if (!chip->onfi_get_features)
		chip->onfi_get_features = nand_onfi_get_features;

3337 3338
	/* If called twice, pointers that depend on busw may need to be reset */
	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3339 3340 3341 3342 3343 3344 3345
		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
	if (!chip->read_word)
		chip->read_word = nand_read_word;
	if (!chip->block_bad)
		chip->block_bad = nand_block_bad;
	if (!chip->block_markbad)
		chip->block_markbad = nand_default_block_markbad;
3346
	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3347
		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3348 3349
	if (!chip->write_byte || chip->write_byte == nand_write_byte)
		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3350
	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3351 3352 3353
		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
	if (!chip->scan_bbt)
		chip->scan_bbt = nand_default_bbt;
3354 3355 3356

	if (!chip->controller) {
		chip->controller = &chip->hwcontrol;
3357
		nand_hw_control_init(chip->controller);
3358 3359
	}

T
Thomas Gleixner 已提交
3360 3361
}

3362
/* Sanitize ONFI strings so we can safely print them */
3363 3364 3365 3366
static void sanitize_string(uint8_t *s, size_t len)
{
	ssize_t i;

3367
	/* Null terminate */
3368 3369
	s[len - 1] = 0;

3370
	/* Remove non printable chars */
3371 3372 3373 3374 3375
	for (i = 0; i < len - 1; i++) {
		if (s[i] < ' ' || s[i] > 127)
			s[i] = '?';
	}

3376
	/* Remove trailing spaces */
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	strim(s);
}

static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
	int i;
	while (len--) {
		crc ^= *p++ << 8;
		for (i = 0; i < 8; i++)
			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
	}

	return crc;
}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
/* Parse the Extended Parameter Page. */
static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
		struct nand_chip *chip, struct nand_onfi_params *p)
{
	struct onfi_ext_param_page *ep;
	struct onfi_ext_section *s;
	struct onfi_ext_ecc_info *ecc;
	uint8_t *cursor;
	int ret = -EINVAL;
	int len;
	int i;

	len = le16_to_cpu(p->ext_param_page_length) * 16;
	ep = kmalloc(len, GFP_KERNEL);
3406 3407
	if (!ep)
		return -ENOMEM;
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

	/* Send our own NAND_CMD_PARAM. */
	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);

	/* Use the Change Read Column command to skip the ONFI param pages. */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
			sizeof(*p) * p->num_of_param_pages , -1);

	/* Read out the Extended Parameter Page. */
	chip->read_buf(mtd, (uint8_t *)ep, len);
	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
		!= le16_to_cpu(ep->crc))) {
		pr_debug("fail in the CRC.\n");
		goto ext_out;
	}

	/*
	 * Check the signature.
	 * Do not strictly follow the ONFI spec, maybe changed in future.
	 */
	if (strncmp(ep->sig, "EPPS", 4)) {
		pr_debug("The signature is invalid.\n");
		goto ext_out;
	}

	/* find the ECC section. */
	cursor = (uint8_t *)(ep + 1);
	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
		s = ep->sections + i;
		if (s->type == ONFI_SECTION_TYPE_2)
			break;
		cursor += s->length * 16;
	}
	if (i == ONFI_EXT_SECTION_MAX) {
		pr_debug("We can not find the ECC section.\n");
		goto ext_out;
	}

	/* get the info we want. */
	ecc = (struct onfi_ext_ecc_info *)cursor;

3449 3450 3451
	if (!ecc->codeword_size) {
		pr_debug("Invalid codeword size\n");
		goto ext_out;
3452 3453
	}

3454 3455
	chip->ecc_strength_ds = ecc->ecc_bits;
	chip->ecc_step_ds = 1 << ecc->codeword_size;
3456
	ret = 0;
3457 3458 3459 3460 3461 3462

ext_out:
	kfree(ep);
	return ret;
}

3463 3464
static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
{
3465
	struct nand_chip *chip = mtd_to_nand(mtd);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
			feature);
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static void nand_onfi_detect_micron(struct nand_chip *chip,
		struct nand_onfi_params *p)
{
	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;

	if (le16_to_cpu(p->vendor_revision) < 1)
		return;

	chip->read_retries = micron->read_retry_options;
	chip->setup_read_retry = nand_setup_read_retry_micron;
}

3487
/*
3488
 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3489 3490
 */
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3491
					int *busw)
3492 3493
{
	struct nand_onfi_params *p = &chip->onfi_params;
3494
	int i, j;
3495 3496
	int val;

3497
	/* Try ONFI for unknown chip or LP */
3498 3499 3500 3501 3502 3503 3504
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
	for (i = 0; i < 3; i++) {
3505 3506
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);
3507 3508 3509 3510 3511 3512
		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
				le16_to_cpu(p->crc)) {
			break;
		}
	}

3513 3514
	if (i == 3) {
		pr_err("Could not find valid ONFI parameter page; aborting\n");
3515
		return 0;
3516
	}
3517

3518
	/* Check version */
3519
	val = le16_to_cpu(p->revision);
3520 3521 3522
	if (val & (1 << 5))
		chip->onfi_version = 23;
	else if (val & (1 << 4))
3523 3524 3525 3526 3527
		chip->onfi_version = 22;
	else if (val & (1 << 3))
		chip->onfi_version = 21;
	else if (val & (1 << 2))
		chip->onfi_version = 20;
3528
	else if (val & (1 << 1))
3529
		chip->onfi_version = 10;
3530 3531

	if (!chip->onfi_version) {
3532
		pr_info("unsupported ONFI version: %d\n", val);
3533 3534
		return 0;
	}
3535 3536 3537 3538 3539

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;
3540

3541
	mtd->writesize = le32_to_cpu(p->byte_per_page);
3542 3543 3544 3545 3546 3547 3548 3549 3550

	/*
	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
	 * (don't ask me who thought of this...). MTD assumes that these
	 * dimensions will be power-of-2, so just truncate the remaining area.
	 */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

3551
	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3552 3553 3554

	/* See erasesize comment */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3555
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3556
	chip->bits_per_cell = p->bits_per_cell;
3557 3558

	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3559
		*busw = NAND_BUSWIDTH_16;
3560 3561
	else
		*busw = 0;
3562

3563 3564 3565
	if (p->ecc_bits != 0xff) {
		chip->ecc_strength_ds = p->ecc_bits;
		chip->ecc_step_ds = 512;
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	} else if (chip->onfi_version >= 21 &&
		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {

		/*
		 * The nand_flash_detect_ext_param_page() uses the
		 * Change Read Column command which maybe not supported
		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
		 * now. We do not replace user supplied command function.
		 */
		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
			chip->cmdfunc = nand_command_lp;

		/* The Extended Parameter Page is supported since ONFI 2.1. */
		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3580 3581 3582
			pr_warn("Failed to detect ONFI extended param page\n");
	} else {
		pr_warn("Could not retrieve ONFI ECC requirements\n");
3583 3584
	}

3585 3586 3587
	if (p->jedec_id == NAND_MFR_MICRON)
		nand_onfi_detect_micron(chip, p);

3588 3589 3590
	return 1;
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
/*
 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
 */
static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
					int *busw)
{
	struct nand_jedec_params *p = &chip->jedec_params;
	struct jedec_ecc_info *ecc;
	int val;
	int i, j;

	/* Try JEDEC for unknown chip or LP */
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'C')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
	for (i = 0; i < 3; i++) {
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);

		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
				le16_to_cpu(p->crc))
			break;
	}

	if (i == 3) {
		pr_err("Could not find valid JEDEC parameter page; aborting\n");
		return 0;
	}

	/* Check version */
	val = le16_to_cpu(p->revision);
	if (val & (1 << 2))
		chip->jedec_version = 10;
	else if (val & (1 << 1))
		chip->jedec_version = 1; /* vendor specific version */

	if (!chip->jedec_version) {
		pr_info("unsupported JEDEC version: %d\n", val);
		return 0;
	}

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;

	mtd->writesize = le32_to_cpu(p->byte_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
	chip->bits_per_cell = p->bits_per_cell;

	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
		*busw = NAND_BUSWIDTH_16;
	else
		*busw = 0;

	/* ECC info */
	ecc = &p->ecc_info[0];

	if (ecc->codeword_size >= 9) {
		chip->ecc_strength_ds = ecc->ecc_bits;
		chip->ecc_step_ds = 1 << ecc->codeword_size;
	} else {
		pr_warn("Invalid codeword size\n");
	}

	return 1;
}

3672 3673 3674 3675 3676 3677 3678 3679
/*
 * nand_id_has_period - Check if an ID string has a given wraparound period
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array
 * @period: the period of repitition
 *
 * Check if an ID string is repeated within a given sequence of bytes at
 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3680
 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
 * if the repetition has a period of @period; otherwise, returns zero.
 */
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
	int i, j;
	for (i = 0; i < period; i++)
		for (j = i + period; j < arrlen; j += period)
			if (id_data[i] != id_data[j])
				return 0;
	return 1;
}

/*
 * nand_id_len - Get the length of an ID string returned by CMD_READID
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array

 * Returns the length of the ID string, according to known wraparound/trailing
 * zero patterns. If no pattern exists, returns the length of the array.
 */
static int nand_id_len(u8 *id_data, int arrlen)
{
	int last_nonzero, period;

	/* Find last non-zero byte */
	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
		if (id_data[last_nonzero])
			break;

	/* All zeros */
	if (last_nonzero < 0)
		return 0;

	/* Calculate wraparound period */
	for (period = 1; period < arrlen; period++)
		if (nand_id_has_period(id_data, arrlen, period))
			break;

	/* There's a repeated pattern */
	if (period < arrlen)
		return period;

	/* There are trailing zeros */
	if (last_nonzero < arrlen - 1)
		return last_nonzero + 1;

	/* No pattern detected */
	return arrlen;
}

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
	int bits;

	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
	bits >>= NAND_CI_CELLTYPE_SHIFT;
	return bits + 1;
}

3741 3742 3743 3744 3745 3746 3747 3748
/*
 * Many new NAND share similar device ID codes, which represent the size of the
 * chip. The rest of the parameters must be decoded according to generic or
 * manufacturer-specific "extended ID" decoding patterns.
 */
static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
				u8 id_data[8], int *busw)
{
3749
	int extid, id_len;
3750
	/* The 3rd id byte holds MLC / multichip data */
3751
	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3752 3753 3754
	/* The 4th id byte is the important one */
	extid = id_data[3];

3755 3756
	id_len = nand_id_len(id_data, 8);

3757 3758 3759
	/*
	 * Field definitions are in the following datasheets:
	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3760
	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3761
	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3762
	 *
3763 3764
	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
	 * ID to decide what to do.
3765
	 */
3766
	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3767
			!nand_is_slc(chip) && id_data[5] != 0x00) {
3768 3769 3770 3771
		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
3772
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3773 3774 3775 3776 3777 3778 3779 3780 3781
		case 1:
			mtd->oobsize = 128;
			break;
		case 2:
			mtd->oobsize = 218;
			break;
		case 3:
			mtd->oobsize = 400;
			break;
3782
		case 4:
3783 3784
			mtd->oobsize = 436;
			break;
3785 3786 3787 3788 3789 3790
		case 5:
			mtd->oobsize = 512;
			break;
		case 6:
			mtd->oobsize = 640;
			break;
3791 3792 3793 3794
		case 7:
		default: /* Other cases are "reserved" (unknown) */
			mtd->oobsize = 1024;
			break;
3795 3796 3797 3798 3799 3800
		}
		extid >>= 2;
		/* Calc blocksize */
		mtd->erasesize = (128 * 1024) <<
			(((extid >> 1) & 0x04) | (extid & 0x03));
		*busw = 0;
3801
	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3802
			!nand_is_slc(chip)) {
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
		unsigned int tmp;

		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
		case 0:
			mtd->oobsize = 128;
			break;
		case 1:
			mtd->oobsize = 224;
			break;
		case 2:
			mtd->oobsize = 448;
			break;
		case 3:
			mtd->oobsize = 64;
			break;
		case 4:
			mtd->oobsize = 32;
			break;
		case 5:
			mtd->oobsize = 16;
			break;
		default:
			mtd->oobsize = 640;
			break;
		}
		extid >>= 2;
		/* Calc blocksize */
		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
		if (tmp < 0x03)
			mtd->erasesize = (128 * 1024) << tmp;
		else if (tmp == 0x03)
			mtd->erasesize = 768 * 1024;
		else
			mtd->erasesize = (64 * 1024) << tmp;
		*busw = 0;
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	} else {
		/* Calc pagesize */
		mtd->writesize = 1024 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		mtd->oobsize = (8 << (extid & 0x01)) *
			(mtd->writesize >> 9);
		extid >>= 2;
		/* Calc blocksize. Blocksize is multiples of 64KiB */
		mtd->erasesize = (64 * 1024) << (extid & 0x03);
		extid >>= 2;
		/* Get buswidth information */
		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864

		/*
		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
		 * follows:
		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
		 *                         110b -> 24nm
		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
		 */
		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3865
				nand_is_slc(chip) &&
3866 3867 3868 3869 3870
				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
				!(id_data[4] & 0x80) /* !BENAND */) {
			mtd->oobsize = 32 * mtd->writesize >> 9;
		}

3871 3872 3873
	}
}

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
/*
 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
 * decodes a matching ID table entry and assigns the MTD size parameters for
 * the chip.
 */
static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
				struct nand_flash_dev *type, u8 id_data[8],
				int *busw)
{
	int maf_id = id_data[0];

	mtd->erasesize = type->erasesize;
	mtd->writesize = type->pagesize;
	mtd->oobsize = mtd->writesize / 32;
	*busw = type->options & NAND_BUSWIDTH_16;

3890 3891 3892
	/* All legacy ID NAND are small-page, SLC */
	chip->bits_per_cell = 1;

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
	/*
	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
	 * some Spansion chips have erasesize that conflicts with size
	 * listed in nand_ids table.
	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
	 */
	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
			&& id_data[6] == 0x00 && id_data[7] == 0x00
			&& mtd->writesize == 512) {
		mtd->erasesize = 128 * 1024;
		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
	}
}

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
/*
 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
 * heuristic patterns using various detected parameters (e.g., manufacturer,
 * page size, cell-type information).
 */
static void nand_decode_bbm_options(struct mtd_info *mtd,
				    struct nand_chip *chip, u8 id_data[8])
{
	int maf_id = id_data[0];

	/* Set the bad block position */
	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
	else
		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;

	/*
	 * Bad block marker is stored in the last page of each block on Samsung
	 * and Hynix MLC devices; stored in first two pages of each block on
	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
	 * AMD/Spansion, and Macronix.  All others scan only the first page.
	 */
3929
	if (!nand_is_slc(chip) &&
3930 3931 3932
			(maf_id == NAND_MFR_SAMSUNG ||
			 maf_id == NAND_MFR_HYNIX))
		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3933
	else if ((nand_is_slc(chip) &&
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
				(maf_id == NAND_MFR_SAMSUNG ||
				 maf_id == NAND_MFR_HYNIX ||
				 maf_id == NAND_MFR_TOSHIBA ||
				 maf_id == NAND_MFR_AMD ||
				 maf_id == NAND_MFR_MACRONIX)) ||
			(mtd->writesize == 2048 &&
			 maf_id == NAND_MFR_MICRON))
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
	return type->id_len;
}

static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
		   struct nand_flash_dev *type, u8 *id_data, int *busw)
{
	if (!strncmp(type->id, id_data, type->id_len)) {
		mtd->writesize = type->pagesize;
		mtd->erasesize = type->erasesize;
		mtd->oobsize = type->oobsize;

3957
		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3958 3959
		chip->chipsize = (uint64_t)type->chipsize << 20;
		chip->options |= type->options;
3960 3961
		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
		chip->ecc_step_ds = NAND_ECC_STEP(type);
3962 3963
		chip->onfi_timing_mode_default =
					type->onfi_timing_mode_default;
3964 3965 3966

		*busw = type->options & NAND_BUSWIDTH_16;

3967 3968 3969
		if (!mtd->name)
			mtd->name = type->name;

3970 3971 3972 3973 3974
		return true;
	}
	return false;
}

T
Thomas Gleixner 已提交
3975
/*
3976
 * Get the flash and manufacturer id and lookup if the type is supported.
T
Thomas Gleixner 已提交
3977 3978
 */
static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3979
						  struct nand_chip *chip,
3980
						  int *maf_id, int *dev_id,
3981
						  struct nand_flash_dev *type)
T
Thomas Gleixner 已提交
3982
{
3983
	int busw;
3984
	int i, maf_idx;
3985
	u8 id_data[8];
L
Linus Torvalds 已提交
3986 3987

	/* Select the device */
3988
	chip->select_chip(mtd, 0);
L
Linus Torvalds 已提交
3989

3990 3991
	/*
	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3992
	 * after power-up.
3993
	 */
3994
	nand_reset(chip);
3995

L
Linus Torvalds 已提交
3996
	/* Send the command for reading device ID */
3997
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
3998 3999

	/* Read manufacturer and device IDs */
4000
	*maf_id = chip->read_byte(mtd);
4001
	*dev_id = chip->read_byte(mtd);
L
Linus Torvalds 已提交
4002

4003 4004
	/*
	 * Try again to make sure, as some systems the bus-hold or other
4005 4006 4007 4008 4009 4010 4011
	 * interface concerns can cause random data which looks like a
	 * possibly credible NAND flash to appear. If the two results do
	 * not match, ignore the device completely.
	 */

	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

4012 4013
	/* Read entire ID string */
	for (i = 0; i < 8; i++)
4014
		id_data[i] = chip->read_byte(mtd);
4015

4016
	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
4017
		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4018
			*maf_id, *dev_id, id_data[0], id_data[1]);
4019 4020 4021
		return ERR_PTR(-ENODEV);
	}

T
Thomas Gleixner 已提交
4022
	if (!type)
4023 4024
		type = nand_flash_ids;

4025 4026 4027 4028 4029
	for (; type->name != NULL; type++) {
		if (is_full_id_nand(type)) {
			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
				goto ident_done;
		} else if (*dev_id == type->dev_id) {
4030
			break;
4031 4032
		}
	}
4033

4034 4035
	chip->onfi_version = 0;
	if (!type->name || !type->pagesize) {
4036
		/* Check if the chip is ONFI compliant */
4037
		if (nand_flash_detect_onfi(mtd, chip, &busw))
4038
			goto ident_done;
4039 4040 4041 4042

		/* Check if the chip is JEDEC compliant */
		if (nand_flash_detect_jedec(mtd, chip, &busw))
			goto ident_done;
4043 4044
	}

4045
	if (!type->name)
T
Thomas Gleixner 已提交
4046 4047
		return ERR_PTR(-ENODEV);

4048 4049 4050
	if (!mtd->name)
		mtd->name = type->name;

4051
	chip->chipsize = (uint64_t)type->chipsize << 20;
T
Thomas Gleixner 已提交
4052

4053
	if (!type->pagesize) {
4054 4055
		/* Decode parameters from extended ID */
		nand_decode_ext_id(mtd, chip, id_data, &busw);
T
Thomas Gleixner 已提交
4056
	} else {
4057
		nand_decode_id(mtd, chip, type, id_data, &busw);
T
Thomas Gleixner 已提交
4058
	}
4059 4060
	/* Get chip options */
	chip->options |= type->options;
4061

4062 4063 4064
	/*
	 * Check if chip is not a Samsung device. Do not clear the
	 * options for chips which do not have an extended id.
4065 4066 4067 4068 4069
	 */
	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:

T
Thomas Gleixner 已提交
4070
	/* Try to identify manufacturer */
4071
	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
T
Thomas Gleixner 已提交
4072 4073 4074
		if (nand_manuf_ids[maf_idx].id == *maf_id)
			break;
	}
4075

4076 4077 4078 4079 4080 4081 4082 4083 4084
	if (chip->options & NAND_BUSWIDTH_AUTO) {
		WARN_ON(chip->options & NAND_BUSWIDTH_16);
		chip->options |= busw;
		nand_set_defaults(chip, busw);
	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
		/*
		 * Check, if buswidth is correct. Hardware drivers should set
		 * chip correct!
		 */
4085 4086 4087 4088
		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
			*maf_id, *dev_id);
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
		pr_warn("bus width %d instead %d bit\n",
4089 4090
			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
			   busw ? 16 : 8);
T
Thomas Gleixner 已提交
4091 4092
		return ERR_PTR(-EINVAL);
	}
4093

4094 4095
	nand_decode_bbm_options(mtd, chip, id_data);

T
Thomas Gleixner 已提交
4096
	/* Calculate the address shift from the page size */
4097
	chip->page_shift = ffs(mtd->writesize) - 1;
4098
	/* Convert chipsize to number of pages per chip -1 */
4099
	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4100

4101
	chip->bbt_erase_shift = chip->phys_erase_shift =
T
Thomas Gleixner 已提交
4102
		ffs(mtd->erasesize) - 1;
4103 4104
	if (chip->chipsize & 0xffffffff)
		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4105 4106 4107 4108
	else {
		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
		chip->chip_shift += 32 - 1;
	}
L
Linus Torvalds 已提交
4109

A
Artem Bityutskiy 已提交
4110
	chip->badblockbits = 8;
4111
	chip->erase = single_erase;
T
Thomas Gleixner 已提交
4112

4113
	/* Do not replace user supplied command function! */
4114 4115
	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
		chip->cmdfunc = nand_command_lp;
T
Thomas Gleixner 已提交
4116

4117 4118
	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
		*maf_id, *dev_id);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129

	if (chip->onfi_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->onfi_params.model);
	else if (chip->jedec_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->jedec_params.model);
	else
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				type->name);

4130
	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4131
		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4132
		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
T
Thomas Gleixner 已提交
4133 4134 4135
	return type;
}

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static const char * const nand_ecc_modes[] = {
	[NAND_ECC_NONE]		= "none",
	[NAND_ECC_SOFT]		= "soft",
	[NAND_ECC_HW]		= "hw",
	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
};

static int of_get_nand_ecc_mode(struct device_node *np)
{
	const char *pm;
	int err, i;

	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
		if (!strcasecmp(pm, nand_ecc_modes[i]))
			return i;

4157 4158 4159 4160 4161 4162 4163 4164
	/*
	 * For backward compatibility we support few obsoleted values that don't
	 * have their mappings into nand_ecc_modes_t anymore (they were merged
	 * with other enums).
	 */
	if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_SOFT;

4165 4166 4167
	return -ENODEV;
}

4168 4169 4170 4171 4172
static const char * const nand_ecc_algos[] = {
	[NAND_ECC_HAMMING]	= "hamming",
	[NAND_ECC_BCH]		= "bch",
};

4173 4174 4175
static int of_get_nand_ecc_algo(struct device_node *np)
{
	const char *pm;
4176
	int err, i;
4177

4178 4179 4180 4181 4182 4183 4184
	err = of_property_read_string(np, "nand-ecc-algo", &pm);
	if (!err) {
		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
			if (!strcasecmp(pm, nand_ecc_algos[i]))
				return i;
		return -ENODEV;
	}
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

	/*
	 * For backward compatibility we also read "nand-ecc-mode" checking
	 * for some obsoleted values that were specifying ECC algorithm.
	 */
	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	if (!strcasecmp(pm, "soft"))
		return NAND_ECC_HAMMING;
	else if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_BCH;

	return -ENODEV;
}

static int of_get_nand_ecc_step_size(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
	return ret ? ret : val;
}

static int of_get_nand_ecc_strength(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
	return ret ? ret : val;
}

static int of_get_nand_bus_width(struct device_node *np)
{
	u32 val;

	if (of_property_read_u32(np, "nand-bus-width", &val))
		return 8;

	switch (val) {
	case 8:
	case 16:
		return val;
	default:
		return -EIO;
	}
}

static bool of_get_nand_on_flash_bbt(struct device_node *np)
{
	return of_property_read_bool(np, "nand-on-flash-bbt");
}

4241
static int nand_dt_init(struct nand_chip *chip)
4242
{
4243
	struct device_node *dn = nand_get_flash_node(chip);
4244
	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4245

4246 4247 4248
	if (!dn)
		return 0;

4249 4250 4251 4252 4253 4254 4255
	if (of_get_nand_bus_width(dn) == 16)
		chip->options |= NAND_BUSWIDTH_16;

	if (of_get_nand_on_flash_bbt(dn))
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	ecc_mode = of_get_nand_ecc_mode(dn);
4256
	ecc_algo = of_get_nand_ecc_algo(dn);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
	ecc_strength = of_get_nand_ecc_strength(dn);
	ecc_step = of_get_nand_ecc_step_size(dn);

	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
		pr_err("must set both strength and step size in DT\n");
		return -EINVAL;
	}

	if (ecc_mode >= 0)
		chip->ecc.mode = ecc_mode;

4269 4270 4271
	if (ecc_algo >= 0)
		chip->ecc.algo = ecc_algo;

4272 4273 4274 4275 4276 4277
	if (ecc_strength >= 0)
		chip->ecc.strength = ecc_strength;

	if (ecc_step > 0)
		chip->ecc.size = ecc_step;

4278 4279 4280
	if (of_property_read_bool(dn, "nand-ecc-maximize"))
		chip->ecc.options |= NAND_ECC_MAXIMIZE;

4281 4282 4283
	return 0;
}

T
Thomas Gleixner 已提交
4284
/**
4285
 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4286 4287 4288
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
 * @table: alternative NAND ID table
T
Thomas Gleixner 已提交
4289
 *
4290 4291
 * This is the first phase of the normal nand_scan() function. It reads the
 * flash ID and sets up MTD fields accordingly.
T
Thomas Gleixner 已提交
4292 4293
 *
 */
4294 4295
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
		    struct nand_flash_dev *table)
T
Thomas Gleixner 已提交
4296
{
4297
	int i, nand_maf_id, nand_dev_id;
4298
	struct nand_chip *chip = mtd_to_nand(mtd);
T
Thomas Gleixner 已提交
4299
	struct nand_flash_dev *type;
4300 4301
	int ret;

4302 4303 4304
	ret = nand_dt_init(chip);
	if (ret)
		return ret;
T
Thomas Gleixner 已提交
4305

4306 4307 4308
	if (!mtd->name && mtd->dev.parent)
		mtd->name = dev_name(mtd->dev.parent);

4309 4310 4311 4312 4313 4314 4315 4316 4317
	if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
		/*
		 * Default functions assigned for chip_select() and
		 * cmdfunc() both expect cmd_ctrl() to be populated,
		 * so we need to check that that's the case
		 */
		pr_err("chip.cmd_ctrl() callback is not provided");
		return -EINVAL;
	}
T
Thomas Gleixner 已提交
4318
	/* Set the default functions */
4319
	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
T
Thomas Gleixner 已提交
4320 4321

	/* Read the flash type */
4322 4323
	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
				   &nand_dev_id, table);
T
Thomas Gleixner 已提交
4324 4325

	if (IS_ERR(type)) {
4326
		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4327
			pr_warn("No NAND device found\n");
4328
		chip->select_chip(mtd, -1);
T
Thomas Gleixner 已提交
4329
		return PTR_ERR(type);
L
Linus Torvalds 已提交
4330 4331
	}

4332 4333 4334 4335
	ret = nand_init_data_interface(chip);
	if (ret)
		return ret;

4336 4337
	chip->select_chip(mtd, -1);

T
Thomas Gleixner 已提交
4338
	/* Check for a chip array */
4339
	for (i = 1; i < maxchips; i++) {
4340
		chip->select_chip(mtd, i);
4341
		/* See comment in nand_get_flash_type for reset */
4342
		nand_reset(chip);
L
Linus Torvalds 已提交
4343
		/* Send the command for reading device ID */
4344
		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4345
		/* Read manufacturer and device IDs */
4346
		if (nand_maf_id != chip->read_byte(mtd) ||
4347 4348
		    nand_dev_id != chip->read_byte(mtd)) {
			chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4349
			break;
4350 4351
		}
		chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4352 4353
	}
	if (i > 1)
4354
		pr_info("%d chips detected\n", i);
4355

L
Linus Torvalds 已提交
4356
	/* Store the number of chips and calc total size for mtd */
4357 4358
	chip->numchips = i;
	mtd->size = i * chip->chipsize;
T
Thomas Gleixner 已提交
4359

4360 4361
	return 0;
}
4362
EXPORT_SYMBOL(nand_scan_ident);
4363

4364 4365 4366 4367 4368
static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

4369
	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
		return -EINVAL;

	switch (ecc->algo) {
	case NAND_ECC_HAMMING:
		ecc->calculate = nand_calculate_ecc;
		ecc->correct = nand_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
		if (!ecc->size)
			ecc->size = 256;
		ecc->bytes = 3;
		ecc->strength = 1;
		return 0;
	case NAND_ECC_BCH:
		if (!mtd_nand_has_bch()) {
			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
			return -EINVAL;
		}
		ecc->calculate = nand_bch_calculate_ecc;
		ecc->correct = nand_bch_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
4402

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
		/*
		* Board driver should supply ecc.size and ecc.strength
		* values to select how many bits are correctable.
		* Otherwise, default to 4 bits for large page devices.
		*/
		if (!ecc->size && (mtd->oobsize >= 64)) {
			ecc->size = 512;
			ecc->strength = 4;
		}

		/*
		 * if no ecc placement scheme was provided pickup the default
		 * large page one.
		 */
		if (!mtd->ooblayout) {
			/* handle large page devices only */
			if (mtd->oobsize < 64) {
				WARN(1, "OOB layout is required when using software BCH on small pages\n");
				return -EINVAL;
			}

			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443

		}

		/*
		 * We can only maximize ECC config when the default layout is
		 * used, otherwise we don't know how many bytes can really be
		 * used.
		 */
		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
		    ecc->options & NAND_ECC_MAXIMIZE) {
			int steps, bytes;

			/* Always prefer 1k blocks over 512bytes ones */
			ecc->size = 1024;
			steps = mtd->writesize / ecc->size;

			/* Reserve 2 bytes for the BBM */
			bytes = (mtd->oobsize - 2) / steps;
			ecc->strength = bytes * 8 / fls(8 * ecc->size);
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
		}

		/* See nand_bch_init() for details. */
		ecc->bytes = 0;
		ecc->priv = nand_bch_init(mtd);
		if (!ecc->priv) {
			WARN(1, "BCH ECC initialization failed!\n");
			return -EINVAL;
		}
		return 0;
	default:
		WARN(1, "Unsupported ECC algorithm!\n");
		return -EINVAL;
	}
}

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
/*
 * Check if the chip configuration meet the datasheet requirements.

 * If our configuration corrects A bits per B bytes and the minimum
 * required correction level is X bits per Y bytes, then we must ensure
 * both of the following are true:
 *
 * (1) A / B >= X / Y
 * (2) A >= X
 *
 * Requirement (1) ensures we can correct for the required bitflip density.
 * Requirement (2) ensures we can correct even when all bitflips are clumped
 * in the same sector.
 */
static bool nand_ecc_strength_good(struct mtd_info *mtd)
{
4476
	struct nand_chip *chip = mtd_to_nand(mtd);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int corr, ds_corr;

	if (ecc->size == 0 || chip->ecc_step_ds == 0)
		/* Not enough information */
		return true;

	/*
	 * We get the number of corrected bits per page to compare
	 * the correction density.
	 */
	corr = (mtd->writesize * ecc->strength) / ecc->size;
	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;

	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
}
4493 4494 4495

/**
 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4496
 * @mtd: MTD device structure
4497
 *
4498 4499 4500
 * This is the second phase of the normal nand_scan() function. It fills out
 * all the uninitialized function pointers with the defaults and scans for a
 * bad block table if appropriate.
4501 4502 4503
 */
int nand_scan_tail(struct mtd_info *mtd)
{
4504
	struct nand_chip *chip = mtd_to_nand(mtd);
4505
	struct nand_ecc_ctrl *ecc = &chip->ecc;
4506
	struct nand_buffers *nbuf;
4507
	int ret;
4508

4509
	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
4510 4511 4512
	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
		   !(chip->bbt_options & NAND_BBT_USE_FLASH)))
		return -EINVAL;
4513

4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	if (!(chip->options & NAND_OWN_BUFFERS)) {
		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
				+ mtd->oobsize * 3, GFP_KERNEL);
		if (!nbuf)
			return -ENOMEM;
		nbuf->ecccalc = (uint8_t *)(nbuf + 1);
		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
		nbuf->databuf = nbuf->ecccode + mtd->oobsize;

		chip->buffers = nbuf;
	} else {
		if (!chip->buffers)
			return -ENOMEM;
	}
4528

4529
	/* Set the internal oob buffer location, just after the page data */
4530
	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
L
Linus Torvalds 已提交
4531

T
Thomas Gleixner 已提交
4532
	/*
4533
	 * If no default placement scheme is given, select an appropriate one.
T
Thomas Gleixner 已提交
4534
	 */
4535
	if (!mtd->ooblayout &&
4536
	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4537
		switch (mtd->oobsize) {
L
Linus Torvalds 已提交
4538 4539
		case 8:
		case 16:
4540
			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
L
Linus Torvalds 已提交
4541 4542
			break;
		case 64:
4543
		case 128:
4544
			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4545
			break;
L
Linus Torvalds 已提交
4546
		default:
4547 4548 4549 4550
			WARN(1, "No oob scheme defined for oobsize %d\n",
				mtd->oobsize);
			ret = -EINVAL;
			goto err_free;
L
Linus Torvalds 已提交
4551 4552
		}
	}
4553

4554 4555 4556
	if (!chip->write_page)
		chip->write_page = nand_write_page;

4557
	/*
4558
	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
T
Thomas Gleixner 已提交
4559
	 * selected and we have 256 byte pagesize fallback to software ECC
4560
	 */
4561

4562
	switch (ecc->mode) {
4563 4564
	case NAND_ECC_HW_OOB_FIRST:
		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4565
		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4566 4567 4568
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
4569
		}
4570 4571
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc_oob_first;
4572

T
Thomas Gleixner 已提交
4573
	case NAND_ECC_HW:
4574
		/* Use standard hwecc read page function? */
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_hwecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_std;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_std;
		if (!ecc->read_subpage)
			ecc->read_subpage = nand_read_subpage;
4589
		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4590
			ecc->write_subpage = nand_write_subpage_hwecc;
4591

T
Thomas Gleixner 已提交
4592
	case NAND_ECC_HW_SYNDROME:
4593 4594 4595 4596 4597
		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
		    (!ecc->read_page ||
		     ecc->read_page == nand_read_page_hwecc ||
		     !ecc->write_page ||
		     ecc->write_page == nand_write_page_hwecc)) {
4598 4599 4600
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
T
Thomas Gleixner 已提交
4601
		}
4602
		/* Use standard syndrome read/write page function? */
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_syndrome;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_syndrome;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw_syndrome;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw_syndrome;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_syndrome;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_syndrome;

		if (mtd->writesize >= ecc->size) {
			if (!ecc->strength) {
4618 4619 4620
				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
				ret = -EINVAL;
				goto err_free;
4621
			}
T
Thomas Gleixner 已提交
4622
			break;
4623
		}
4624 4625
		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
			ecc->size, mtd->writesize);
4626
		ecc->mode = NAND_ECC_SOFT;
4627
		ecc->algo = NAND_ECC_HAMMING;
4628

T
Thomas Gleixner 已提交
4629
	case NAND_ECC_SOFT:
4630 4631
		ret = nand_set_ecc_soft_ops(mtd);
		if (ret) {
4632 4633
			ret = -EINVAL;
			goto err_free;
4634 4635 4636
		}
		break;

4637
	case NAND_ECC_NONE:
4638
		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4639 4640 4641 4642 4643 4644 4645 4646 4647
		ecc->read_page = nand_read_page_raw;
		ecc->write_page = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->write_oob = nand_write_oob_std;
		ecc->size = mtd->writesize;
		ecc->bytes = 0;
		ecc->strength = 0;
L
Linus Torvalds 已提交
4648
		break;
4649

L
Linus Torvalds 已提交
4650
	default:
4651 4652 4653
		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4654
	}
4655

4656
	/* For many systems, the standard OOB write also works for raw */
4657 4658 4659 4660
	if (!ecc->read_oob_raw)
		ecc->read_oob_raw = ecc->read_oob;
	if (!ecc->write_oob_raw)
		ecc->write_oob_raw = ecc->write_oob;
4661

4662 4663 4664
	/* propagate ecc info to mtd_info */
	mtd->ecc_strength = ecc->strength;
	mtd->ecc_step_size = ecc->size;
4665

T
Thomas Gleixner 已提交
4666 4667
	/*
	 * Set the number of read / write steps for one page depending on ECC
4668
	 * mode.
T
Thomas Gleixner 已提交
4669
	 */
4670 4671
	ecc->steps = mtd->writesize / ecc->size;
	if (ecc->steps * ecc->size != mtd->writesize) {
4672 4673 4674
		WARN(1, "Invalid ECC parameters\n");
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4675
	}
4676
	ecc->total = ecc->steps * ecc->bytes;
4677

4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area.
	 */
	ret = mtd_ooblayout_count_freebytes(mtd);
	if (ret < 0)
		ret = 0;

	mtd->oobavail = ret;

	/* ECC sanity check: warn if it's too weak */
	if (!nand_ecc_strength_good(mtd))
		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
			mtd->name);

4693
	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4694
	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4695
		switch (ecc->steps) {
4696 4697 4698 4699 4700
		case 2:
			mtd->subpage_sft = 1;
			break;
		case 4:
		case 8:
4701
		case 16:
4702 4703 4704 4705 4706 4707
			mtd->subpage_sft = 2;
			break;
		}
	}
	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;

4708
	/* Initialize state */
4709
	chip->state = FL_READY;
L
Linus Torvalds 已提交
4710 4711

	/* Invalidate the pagebuffer reference */
4712
	chip->pagebuf = -1;
L
Linus Torvalds 已提交
4713

4714
	/* Large page NAND with SOFT_ECC should support subpage reads */
4715 4716 4717 4718 4719 4720 4721 4722 4723
	switch (ecc->mode) {
	case NAND_ECC_SOFT:
		if (chip->page_shift > 9)
			chip->options |= NAND_SUBPAGE_READ;
		break;

	default:
		break;
	}
4724

L
Linus Torvalds 已提交
4725
	/* Fill in remaining MTD driver data */
4726
	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4727 4728
	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
						MTD_CAP_NANDFLASH;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	mtd->_erase = nand_erase;
	mtd->_point = NULL;
	mtd->_unpoint = NULL;
	mtd->_read = nand_read;
	mtd->_write = nand_write;
	mtd->_panic_write = panic_nand_write;
	mtd->_read_oob = nand_read_oob;
	mtd->_write_oob = nand_write_oob;
	mtd->_sync = nand_sync;
	mtd->_lock = NULL;
	mtd->_unlock = NULL;
	mtd->_suspend = nand_suspend;
	mtd->_resume = nand_resume;
S
Scott Branden 已提交
4742
	mtd->_reboot = nand_shutdown;
4743
	mtd->_block_isreserved = nand_block_isreserved;
4744 4745
	mtd->_block_isbad = nand_block_isbad;
	mtd->_block_markbad = nand_block_markbad;
4746
	mtd->writebufsize = mtd->writesize;
L
Linus Torvalds 已提交
4747

4748 4749 4750 4751 4752 4753
	/*
	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
	 * properly set.
	 */
	if (!mtd->bitflip_threshold)
4754
		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
L
Linus Torvalds 已提交
4755

4756
	/* Check, if we should skip the bad block table scan */
4757
	if (chip->options & NAND_SKIP_BBTSCAN)
4758
		return 0;
L
Linus Torvalds 已提交
4759 4760

	/* Build bad block table */
4761
	return chip->scan_bbt(mtd);
4762 4763 4764 4765
err_free:
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
	return ret;
L
Linus Torvalds 已提交
4766
}
4767
EXPORT_SYMBOL(nand_scan_tail);
L
Linus Torvalds 已提交
4768

4769 4770
/*
 * is_module_text_address() isn't exported, and it's mostly a pointless
4771
 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4772 4773
 * to call us from in-kernel code if the core NAND support is modular.
 */
4774 4775 4776 4777
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() \
4778
	is_module_text_address((unsigned long)__builtin_return_address(0))
4779 4780 4781 4782
#endif

/**
 * nand_scan - [NAND Interface] Scan for the NAND device
4783 4784
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
4785
 *
4786 4787
 * This fills out all the uninitialized function pointers with the defaults.
 * The flash ID is read and the mtd/chip structures are filled with the
4788
 * appropriate values.
4789 4790 4791 4792 4793
 */
int nand_scan(struct mtd_info *mtd, int maxchips)
{
	int ret;

4794
	ret = nand_scan_ident(mtd, maxchips, NULL);
4795 4796 4797 4798
	if (!ret)
		ret = nand_scan_tail(mtd);
	return ret;
}
4799
EXPORT_SYMBOL(nand_scan);
4800

L
Linus Torvalds 已提交
4801
/**
4802 4803
 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
 * @chip: NAND chip object
4804
 */
4805
void nand_cleanup(struct nand_chip *chip)
L
Linus Torvalds 已提交
4806
{
4807
	if (chip->ecc.mode == NAND_ECC_SOFT &&
4808
	    chip->ecc.algo == NAND_ECC_BCH)
4809 4810
		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);

4811 4812
	nand_release_data_interface(chip);

J
Jesper Juhl 已提交
4813
	/* Free bad block table memory */
4814
	kfree(chip->bbt);
4815 4816
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
4817 4818 4819 4820 4821

	/* Free bad block descriptor memory */
	if (chip->badblock_pattern && chip->badblock_pattern->options
			& NAND_BBT_DYNAMICSTRUCT)
		kfree(chip->badblock_pattern);
L
Linus Torvalds 已提交
4822
}
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
EXPORT_SYMBOL_GPL(nand_cleanup);

/**
 * nand_release - [NAND Interface] Unregister the MTD device and free resources
 *		  held by the NAND device
 * @mtd: MTD device structure
 */
void nand_release(struct mtd_info *mtd)
{
	mtd_device_unregister(mtd);
	nand_cleanup(mtd_to_nand(mtd));
}
4835
EXPORT_SYMBOL_GPL(nand_release);
4836

4837
MODULE_LICENSE("GPL");
4838 4839
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4840
MODULE_DESCRIPTION("Generic NAND flash driver code");