nand_base.c 117.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 *  Overview:
 *   This is the generic MTD driver for NAND flash devices. It should be
 *   capable of working with almost all NAND chips currently available.
5
 *
L
Linus Torvalds 已提交
6
 *	Additional technical information is available on
7
 *	http://www.linux-mtd.infradead.org/doc/nand.html
8
 *
L
Linus Torvalds 已提交
9
 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10
 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
L
Linus Torvalds 已提交
11
 *
12
 *  Credits:
13 14
 *	David Woodhouse for adding multichip support
 *
L
Linus Torvalds 已提交
15 16 17
 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
 *	rework for 2K page size chips
 *
18
 *  TODO:
L
Linus Torvalds 已提交
19 20
 *	Enable cached programming for 2k page size chips
 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21
 *	if we have HW ECC support.
22
 *	BBT table is not serialized, has to be fixed
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

30 31
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

32
#include <linux/module.h>
L
Linus Torvalds 已提交
33 34
#include <linux/delay.h>
#include <linux/errno.h>
T
Thomas Gleixner 已提交
35
#include <linux/err.h>
L
Linus Torvalds 已提交
36 37
#include <linux/sched.h>
#include <linux/slab.h>
38
#include <linux/mm.h>
L
Linus Torvalds 已提交
39 40 41 42
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
43
#include <linux/mtd/nand_bch.h>
L
Linus Torvalds 已提交
44 45
#include <linux/interrupt.h>
#include <linux/bitops.h>
46
#include <linux/io.h>
L
Linus Torvalds 已提交
47
#include <linux/mtd/partitions.h>
48
#include <linux/of_mtd.h>
L
Linus Torvalds 已提交
49 50

/* Define default oob placement schemes for large and small page devices */
51
static struct nand_ecclayout nand_oob_8 = {
L
Linus Torvalds 已提交
52 53
	.eccbytes = 3,
	.eccpos = {0, 1, 2},
54 55 56 57
	.oobfree = {
		{.offset = 3,
		 .length = 2},
		{.offset = 6,
58
		 .length = 2} }
L
Linus Torvalds 已提交
59 60
};

61
static struct nand_ecclayout nand_oob_16 = {
L
Linus Torvalds 已提交
62 63
	.eccbytes = 6,
	.eccpos = {0, 1, 2, 3, 6, 7},
64 65
	.oobfree = {
		{.offset = 8,
66
		 . length = 8} }
L
Linus Torvalds 已提交
67 68
};

69
static struct nand_ecclayout nand_oob_64 = {
L
Linus Torvalds 已提交
70 71
	.eccbytes = 24,
	.eccpos = {
72 73 74
		   40, 41, 42, 43, 44, 45, 46, 47,
		   48, 49, 50, 51, 52, 53, 54, 55,
		   56, 57, 58, 59, 60, 61, 62, 63},
75 76
	.oobfree = {
		{.offset = 2,
77
		 .length = 38} }
L
Linus Torvalds 已提交
78 79
};

80 81 82 83 84 85 86 87 88 89 90
static struct nand_ecclayout nand_oob_128 = {
	.eccbytes = 48,
	.eccpos = {
		   80, 81, 82, 83, 84, 85, 86, 87,
		   88, 89, 90, 91, 92, 93, 94, 95,
		   96, 97, 98, 99, 100, 101, 102, 103,
		   104, 105, 106, 107, 108, 109, 110, 111,
		   112, 113, 114, 115, 116, 117, 118, 119,
		   120, 121, 122, 123, 124, 125, 126, 127},
	.oobfree = {
		{.offset = 2,
91
		 .length = 78} }
92 93
};

94
static int nand_get_device(struct mtd_info *mtd, int new_state);
L
Linus Torvalds 已提交
95

96 97 98
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops);

99 100 101
static int check_offs_len(struct mtd_info *mtd,
					loff_t ofs, uint64_t len)
{
102
	struct nand_chip *chip = mtd_to_nand(mtd);
103 104 105
	int ret = 0;

	/* Start address must align on block boundary */
106
	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
107
		pr_debug("%s: unaligned address\n", __func__);
108 109 110 111
		ret = -EINVAL;
	}

	/* Length must align on block boundary */
112
	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
113
		pr_debug("%s: length not block aligned\n", __func__);
114 115 116 117 118 119
		ret = -EINVAL;
	}

	return ret;
}

L
Linus Torvalds 已提交
120 121
/**
 * nand_release_device - [GENERIC] release chip
122
 * @mtd: MTD device structure
123
 *
124
 * Release chip lock and wake up anyone waiting on the device.
L
Linus Torvalds 已提交
125
 */
126
static void nand_release_device(struct mtd_info *mtd)
L
Linus Torvalds 已提交
127
{
128
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
129

T
Thomas Gleixner 已提交
130
	/* Release the controller and the chip */
131 132 133 134 135
	spin_lock(&chip->controller->lock);
	chip->controller->active = NULL;
	chip->state = FL_READY;
	wake_up(&chip->controller->wq);
	spin_unlock(&chip->controller->lock);
L
Linus Torvalds 已提交
136 137 138 139
}

/**
 * nand_read_byte - [DEFAULT] read one byte from the chip
140
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
141
 *
142
 * Default read function for 8bit buswidth
L
Linus Torvalds 已提交
143
 */
144
static uint8_t nand_read_byte(struct mtd_info *mtd)
L
Linus Torvalds 已提交
145
{
146
	struct nand_chip *chip = mtd_to_nand(mtd);
147
	return readb(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
148 149 150
}

/**
151
 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
152
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
153
 *
154 155
 * Default read function for 16bit buswidth with endianness conversion.
 *
L
Linus Torvalds 已提交
156
 */
157
static uint8_t nand_read_byte16(struct mtd_info *mtd)
L
Linus Torvalds 已提交
158
{
159
	struct nand_chip *chip = mtd_to_nand(mtd);
160
	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
L
Linus Torvalds 已提交
161 162 163 164
}

/**
 * nand_read_word - [DEFAULT] read one word from the chip
165
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
166
 *
167
 * Default read function for 16bit buswidth without endianness conversion.
L
Linus Torvalds 已提交
168 169 170
 */
static u16 nand_read_word(struct mtd_info *mtd)
{
171
	struct nand_chip *chip = mtd_to_nand(mtd);
172
	return readw(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
173 174 175 176
}

/**
 * nand_select_chip - [DEFAULT] control CE line
177 178
 * @mtd: MTD device structure
 * @chipnr: chipnumber to select, -1 for deselect
L
Linus Torvalds 已提交
179 180 181
 *
 * Default select function for 1 chip devices.
 */
182
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
L
Linus Torvalds 已提交
183
{
184
	struct nand_chip *chip = mtd_to_nand(mtd);
185 186

	switch (chipnr) {
L
Linus Torvalds 已提交
187
	case -1:
188
		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
189 190 191 192 193 194 195 196 197
		break;
	case 0:
		break;

	default:
		BUG();
	}
}

198 199 200 201 202 203 204 205 206
/**
 * nand_write_byte - [DEFAULT] write single byte to chip
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0]
 */
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
{
207
	struct nand_chip *chip = mtd_to_nand(mtd);
208 209 210 211 212 213 214 215 216 217 218 219 220

	chip->write_buf(mtd, &byte, 1);
}

/**
 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 */
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
{
221
	struct nand_chip *chip = mtd_to_nand(mtd);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	uint16_t word = byte;

	/*
	 * It's not entirely clear what should happen to I/O[15:8] when writing
	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
	 *
	 *    When the host supports a 16-bit bus width, only data is
	 *    transferred at the 16-bit width. All address and command line
	 *    transfers shall use only the lower 8-bits of the data bus. During
	 *    command transfers, the host may place any value on the upper
	 *    8-bits of the data bus. During address transfers, the host shall
	 *    set the upper 8-bits of the data bus to 00h.
	 *
	 * One user of the write_byte callback is nand_onfi_set_features. The
	 * four parameters are specified to be written to I/O[7:0], but this is
	 * neither an address nor a command transfer. Let's assume a 0 on the
	 * upper I/O lines is OK.
	 */
	chip->write_buf(mtd, (uint8_t *)&word, 2);
}

L
Linus Torvalds 已提交
243 244
/**
 * nand_write_buf - [DEFAULT] write buffer to chip
245 246 247
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
248
 *
249
 * Default write function for 8bit buswidth.
L
Linus Torvalds 已提交
250
 */
251
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
252
{
253
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
254

255
	iowrite8_rep(chip->IO_ADDR_W, buf, len);
L
Linus Torvalds 已提交
256 257 258
}

/**
259
 * nand_read_buf - [DEFAULT] read chip data into buffer
260 261 262
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
263
 *
264
 * Default read function for 8bit buswidth.
L
Linus Torvalds 已提交
265
 */
266
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
267
{
268
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
269

270
	ioread8_rep(chip->IO_ADDR_R, buf, len);
L
Linus Torvalds 已提交
271 272 273 274
}

/**
 * nand_write_buf16 - [DEFAULT] write buffer to chip
275 276 277
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
278
 *
279
 * Default write function for 16bit buswidth.
L
Linus Torvalds 已提交
280
 */
281
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
282
{
283
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
284
	u16 *p = (u16 *) buf;
285

286
	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
L
Linus Torvalds 已提交
287 288 289
}

/**
290
 * nand_read_buf16 - [DEFAULT] read chip data into buffer
291 292 293
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
294
 *
295
 * Default read function for 16bit buswidth.
L
Linus Torvalds 已提交
296
 */
297
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
298
{
299
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
300 301
	u16 *p = (u16 *) buf;

302
	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
L
Linus Torvalds 已提交
303 304 305 306
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
307 308
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
309
 *
310
 * Check, if the block is bad.
L
Linus Torvalds 已提交
311
 */
312
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
313
{
314
	int page, res = 0, i = 0;
315
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
316 317
	u16 bad;

318
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
319 320
		ofs += mtd->erasesize - mtd->writesize;

321 322
	page = (int)(ofs >> chip->page_shift) & chip->pagemask;

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	do {
		if (chip->options & NAND_BUSWIDTH_16) {
			chip->cmdfunc(mtd, NAND_CMD_READOOB,
					chip->badblockpos & 0xFE, page);
			bad = cpu_to_le16(chip->read_word(mtd));
			if (chip->badblockpos & 0x1)
				bad >>= 8;
			else
				bad &= 0xFF;
		} else {
			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
					page);
			bad = chip->read_byte(mtd);
		}

		if (likely(chip->badblockbits == 8))
			res = bad != 0xFF;
340
		else
341 342 343 344 345
			res = hweight8(bad) < chip->badblockbits;
		ofs += mtd->writesize;
		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
		i++;
	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
346

L
Linus Torvalds 已提交
347 348 349 350
	return res;
}

/**
351
 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
352 353
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
354
 *
355
 * This is the default implementation, which can be overridden by a hardware
356 357 358 359 360
 * specific driver. It provides the details for writing a bad block marker to a
 * block.
 */
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
361
	struct nand_chip *chip = mtd_to_nand(mtd);
362 363 364 365
	struct mtd_oob_ops ops;
	uint8_t buf[2] = { 0, 0 };
	int ret = 0, res, i = 0;

366
	memset(&ops, 0, sizeof(ops));
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	ops.oobbuf = buf;
	ops.ooboffs = chip->badblockpos;
	if (chip->options & NAND_BUSWIDTH_16) {
		ops.ooboffs &= ~0x01;
		ops.len = ops.ooblen = 2;
	} else {
		ops.len = ops.ooblen = 1;
	}
	ops.mode = MTD_OPS_PLACE_OOB;

	/* Write to first/last page(s) if necessary */
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
		ofs += mtd->erasesize - mtd->writesize;
	do {
		res = nand_do_write_oob(mtd, ofs, &ops);
		if (!ret)
			ret = res;

		i++;
		ofs += mtd->writesize;
	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);

	return ret;
}

/**
 * nand_block_markbad_lowlevel - mark a block bad
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
 * This function performs the generic NAND bad block marking steps (i.e., bad
 * block table(s) and/or marker(s)). We only allow the hardware driver to
 * specify how to write bad block markers to OOB (chip->block_markbad).
 *
401
 * We try operations in the following order:
402
 *  (1) erase the affected block, to allow OOB marker to be written cleanly
403 404 405 406
 *  (2) write bad block marker to OOB area of affected block (unless flag
 *      NAND_BBT_NO_OOB_BBM is present)
 *  (3) update the BBT
 * Note that we retain the first error encountered in (2) or (3), finish the
407
 * procedures, and dump the error in the end.
L
Linus Torvalds 已提交
408
*/
409
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
410
{
411
	struct nand_chip *chip = mtd_to_nand(mtd);
412
	int res, ret = 0;
413

414
	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
415 416 417 418 419 420
		struct erase_info einfo;

		/* Attempt erase before marking OOB */
		memset(&einfo, 0, sizeof(einfo));
		einfo.mtd = mtd;
		einfo.addr = ofs;
421
		einfo.len = 1ULL << chip->phys_erase_shift;
422
		nand_erase_nand(mtd, &einfo, 0);
L
Linus Torvalds 已提交
423

424
		/* Write bad block marker to OOB */
425
		nand_get_device(mtd, FL_WRITING);
426
		ret = chip->block_markbad(mtd, ofs);
427
		nand_release_device(mtd);
428
	}
429

430 431 432
	/* Mark block bad in BBT */
	if (chip->bbt) {
		res = nand_markbad_bbt(mtd, ofs);
433 434 435 436
		if (!ret)
			ret = res;
	}

437 438
	if (!ret)
		mtd->ecc_stats.badblocks++;
439

440
	return ret;
L
Linus Torvalds 已提交
441 442
}

443
/**
L
Linus Torvalds 已提交
444
 * nand_check_wp - [GENERIC] check if the chip is write protected
445
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
446
 *
447 448
 * Check, if the device is write protected. The function expects, that the
 * device is already selected.
L
Linus Torvalds 已提交
449
 */
450
static int nand_check_wp(struct mtd_info *mtd)
L
Linus Torvalds 已提交
451
{
452
	struct nand_chip *chip = mtd_to_nand(mtd);
453

454
	/* Broken xD cards report WP despite being writable */
455 456 457
	if (chip->options & NAND_BROKEN_XD)
		return 0;

L
Linus Torvalds 已提交
458
	/* Check the WP bit */
459 460
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
L
Linus Torvalds 已提交
461 462
}

463
/**
464
 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
465 466 467
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
468
 * Check if the block is marked as reserved.
469 470 471
 */
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
472
	struct nand_chip *chip = mtd_to_nand(mtd);
473 474 475 476 477 478 479

	if (!chip->bbt)
		return 0;
	/* Return info from the table */
	return nand_isreserved_bbt(mtd, ofs);
}

L
Linus Torvalds 已提交
480 481
/**
 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
482 483 484
 * @mtd: MTD device structure
 * @ofs: offset from device start
 * @allowbbt: 1, if its allowed to access the bbt area
L
Linus Torvalds 已提交
485 486 487 488
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
489
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
L
Linus Torvalds 已提交
490
{
491
	struct nand_chip *chip = mtd_to_nand(mtd);
492

493
	if (!chip->bbt)
494
		return chip->block_bad(mtd, ofs);
495

L
Linus Torvalds 已提交
496
	/* Return info from the table */
497
	return nand_isbad_bbt(mtd, ofs, allowbbt);
L
Linus Torvalds 已提交
498 499
}

500 501
/**
 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
502 503
 * @mtd: MTD device structure
 * @timeo: Timeout
504 505 506 507 508 509
 *
 * Helper function for nand_wait_ready used when needing to wait in interrupt
 * context.
 */
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
{
510
	struct nand_chip *chip = mtd_to_nand(mtd);
511 512 513 514 515 516 517 518 519 520 521
	int i;

	/* Wait for the device to get ready */
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready(mtd))
			break;
		touch_softlockup_watchdog();
		mdelay(1);
	}
}

522 523 524 525 526 527
/**
 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 * @mtd: MTD device structure
 *
 * Wait for the ready pin after a command, and warn if a timeout occurs.
 */
528
void nand_wait_ready(struct mtd_info *mtd)
529
{
530
	struct nand_chip *chip = mtd_to_nand(mtd);
531
	unsigned long timeo = 400;
532

533
	if (in_interrupt() || oops_in_progress)
534
		return panic_nand_wait_ready(mtd, timeo);
535

536
	/* Wait until command is processed or timeout occurs */
537
	timeo = jiffies + msecs_to_jiffies(timeo);
538
	do {
539
		if (chip->dev_ready(mtd))
540
			return;
541
		cond_resched();
542
	} while (time_before(jiffies, timeo));
543

544 545
	if (!chip->dev_ready(mtd))
		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
546
}
547
EXPORT_SYMBOL_GPL(nand_wait_ready);
548

549 550 551 552 553 554 555 556 557
/**
 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 * @mtd: MTD device structure
 * @timeo: Timeout in ms
 *
 * Wait for status ready (i.e. command done) or timeout.
 */
static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
{
558
	register struct nand_chip *chip = mtd_to_nand(mtd);
559 560 561 562 563 564 565 566 567

	timeo = jiffies + msecs_to_jiffies(timeo);
	do {
		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
			break;
		touch_softlockup_watchdog();
	} while (time_before(jiffies, timeo));
};

L
Linus Torvalds 已提交
568 569
/**
 * nand_command - [DEFAULT] Send command to NAND device
570 571 572 573
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
574
 *
575
 * Send command to NAND device. This function is used for small page devices
576
 * (512 Bytes per page).
L
Linus Torvalds 已提交
577
 */
578 579
static void nand_command(struct mtd_info *mtd, unsigned int command,
			 int column, int page_addr)
L
Linus Torvalds 已提交
580
{
581
	register struct nand_chip *chip = mtd_to_nand(mtd);
582
	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
583

584
	/* Write out the command to the device */
L
Linus Torvalds 已提交
585 586 587
	if (command == NAND_CMD_SEQIN) {
		int readcmd;

J
Joern Engel 已提交
588
		if (column >= mtd->writesize) {
L
Linus Torvalds 已提交
589
			/* OOB area */
J
Joern Engel 已提交
590
			column -= mtd->writesize;
L
Linus Torvalds 已提交
591 592 593 594 595 596 597 598
			readcmd = NAND_CMD_READOOB;
		} else if (column < 256) {
			/* First 256 bytes --> READ0 */
			readcmd = NAND_CMD_READ0;
		} else {
			column -= 256;
			readcmd = NAND_CMD_READ1;
		}
599
		chip->cmd_ctrl(mtd, readcmd, ctrl);
600
		ctrl &= ~NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
601
	}
602
	chip->cmd_ctrl(mtd, command, ctrl);
L
Linus Torvalds 已提交
603

604
	/* Address cycle, when necessary */
605 606 607 608
	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
	/* Serially input address */
	if (column != -1) {
		/* Adjust columns for 16 bit buswidth */
609 610
		if (chip->options & NAND_BUSWIDTH_16 &&
				!nand_opcode_8bits(command))
611
			column >>= 1;
612
		chip->cmd_ctrl(mtd, column, ctrl);
613 614 615
		ctrl &= ~NAND_CTRL_CHANGE;
	}
	if (page_addr != -1) {
616
		chip->cmd_ctrl(mtd, page_addr, ctrl);
617
		ctrl &= ~NAND_CTRL_CHANGE;
618
		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
619
		/* One more address cycle for devices > 32MiB */
620 621
		if (chip->chipsize > (32 << 20))
			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
L
Linus Torvalds 已提交
622
	}
623
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
624 625

	/*
626 627
	 * Program and erase have their own busy handlers status and sequential
	 * in needs no delay
628
	 */
L
Linus Torvalds 已提交
629
	switch (command) {
630

L
Linus Torvalds 已提交
631 632 633 634 635 636 637 638
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
		return;

	case NAND_CMD_RESET:
639
		if (chip->dev_ready)
L
Linus Torvalds 已提交
640
			break;
641 642
		udelay(chip->chip_delay);
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
643
			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
644 645
		chip->cmd_ctrl(mtd,
			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
646 647
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
648 649
		return;

650
		/* This applies to read commands */
L
Linus Torvalds 已提交
651
	default:
652
		/*
L
Linus Torvalds 已提交
653 654
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
655
		 */
656 657
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
658
			return;
659
		}
L
Linus Torvalds 已提交
660
	}
661 662 663 664
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
665
	ndelay(100);
666 667

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
668 669 670 671
}

/**
 * nand_command_lp - [DEFAULT] Send command to NAND large page device
672 673 674 675
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
676
 *
677
 * Send command to NAND device. This is the version for the new large page
678 679
 * devices. We don't have the separate regions as we have in the small page
 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
L
Linus Torvalds 已提交
680
 */
681 682
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
			    int column, int page_addr)
L
Linus Torvalds 已提交
683
{
684
	register struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
685 686 687

	/* Emulate NAND_CMD_READOOB */
	if (command == NAND_CMD_READOOB) {
J
Joern Engel 已提交
688
		column += mtd->writesize;
L
Linus Torvalds 已提交
689 690
		command = NAND_CMD_READ0;
	}
691

692
	/* Command latch cycle */
693
	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
694 695

	if (column != -1 || page_addr != -1) {
696
		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
L
Linus Torvalds 已提交
697 698 699 700

		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
701 702
			if (chip->options & NAND_BUSWIDTH_16 &&
					!nand_opcode_8bits(command))
L
Linus Torvalds 已提交
703
				column >>= 1;
704
			chip->cmd_ctrl(mtd, column, ctrl);
705
			ctrl &= ~NAND_CTRL_CHANGE;
706
			chip->cmd_ctrl(mtd, column >> 8, ctrl);
707
		}
L
Linus Torvalds 已提交
708
		if (page_addr != -1) {
709 710
			chip->cmd_ctrl(mtd, page_addr, ctrl);
			chip->cmd_ctrl(mtd, page_addr >> 8,
711
				       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
712
			/* One more address cycle for devices > 128MiB */
713 714
			if (chip->chipsize > (128 << 20))
				chip->cmd_ctrl(mtd, page_addr >> 16,
715
					       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
716 717
		}
	}
718
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
719 720

	/*
721
	 * Program and erase have their own busy handlers status, sequential
722
	 * in and status need no delay.
723
	 */
L
Linus Torvalds 已提交
724
	switch (command) {
725

L
Linus Torvalds 已提交
726 727 728 729 730
	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
731
	case NAND_CMD_RNDIN:
L
Linus Torvalds 已提交
732
	case NAND_CMD_STATUS:
733
		return;
L
Linus Torvalds 已提交
734 735

	case NAND_CMD_RESET:
736
		if (chip->dev_ready)
L
Linus Torvalds 已提交
737
			break;
738
		udelay(chip->chip_delay);
739 740 741 742
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
743 744
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
745 746
		return;

747 748 749 750 751 752 753 754
	case NAND_CMD_RNDOUT:
		/* No ready / busy check necessary */
		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
		return;

L
Linus Torvalds 已提交
755
	case NAND_CMD_READ0:
756 757 758 759
		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
760

761
		/* This applies to read commands */
L
Linus Torvalds 已提交
762
	default:
763
		/*
L
Linus Torvalds 已提交
764
		 * If we don't have access to the busy pin, we apply the given
765
		 * command delay.
766
		 */
767 768
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
769
			return;
770
		}
L
Linus Torvalds 已提交
771
	}
772

773 774 775 776
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
777
	ndelay(100);
778 779

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
780 781
}

782 783
/**
 * panic_nand_get_device - [GENERIC] Get chip for selected access
784 785 786
 * @chip: the nand chip descriptor
 * @mtd: MTD device structure
 * @new_state: the state which is requested
787 788 789 790 791 792
 *
 * Used when in panic, no locks are taken.
 */
static void panic_nand_get_device(struct nand_chip *chip,
		      struct mtd_info *mtd, int new_state)
{
793
	/* Hardware controller shared among independent devices */
794 795 796 797
	chip->controller->active = chip;
	chip->state = new_state;
}

L
Linus Torvalds 已提交
798 799
/**
 * nand_get_device - [GENERIC] Get chip for selected access
800 801
 * @mtd: MTD device structure
 * @new_state: the state which is requested
L
Linus Torvalds 已提交
802 803 804
 *
 * Get the device and lock it for exclusive access
 */
805
static int
806
nand_get_device(struct mtd_info *mtd, int new_state)
L
Linus Torvalds 已提交
807
{
808
	struct nand_chip *chip = mtd_to_nand(mtd);
809 810
	spinlock_t *lock = &chip->controller->lock;
	wait_queue_head_t *wq = &chip->controller->wq;
811
	DECLARE_WAITQUEUE(wait, current);
812
retry:
813 814
	spin_lock(lock);

815
	/* Hardware controller shared among independent devices */
816 817
	if (!chip->controller->active)
		chip->controller->active = chip;
T
Thomas Gleixner 已提交
818

819 820
	if (chip->controller->active == chip && chip->state == FL_READY) {
		chip->state = new_state;
821
		spin_unlock(lock);
822 823 824
		return 0;
	}
	if (new_state == FL_PM_SUSPENDED) {
825 826 827 828 829
		if (chip->controller->active->state == FL_PM_SUSPENDED) {
			chip->state = FL_PM_SUSPENDED;
			spin_unlock(lock);
			return 0;
		}
830 831 832 833 834 835
	}
	set_current_state(TASK_UNINTERRUPTIBLE);
	add_wait_queue(wq, &wait);
	spin_unlock(lock);
	schedule();
	remove_wait_queue(wq, &wait);
L
Linus Torvalds 已提交
836 837 838
	goto retry;
}

839
/**
840 841 842 843
 * panic_nand_wait - [GENERIC] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
 * @timeo: timeout
844 845 846
 *
 * Wait for command done. This is a helper function for nand_wait used when
 * we are in interrupt context. May happen when in panic and trying to write
847
 * an oops through mtdoops.
848 849 850 851 852 853 854 855 856 857 858 859 860 861
 */
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
			    unsigned long timeo)
{
	int i;
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready) {
			if (chip->dev_ready(mtd))
				break;
		} else {
			if (chip->read_byte(mtd) & NAND_STATUS_READY)
				break;
		}
		mdelay(1);
862
	}
863 864
}

L
Linus Torvalds 已提交
865
/**
866 867 868
 * nand_wait - [DEFAULT] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
L
Linus Torvalds 已提交
869
 *
870
 * Wait for command done. This applies to erase and program only.
R
Randy Dunlap 已提交
871
 */
872
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
L
Linus Torvalds 已提交
873 874
{

875 876
	int status;
	unsigned long timeo = 400;
L
Linus Torvalds 已提交
877

878 879 880 881
	/*
	 * Apply this short delay always to ensure that we do wait tWB in any
	 * case on any machine.
	 */
882
	ndelay(100);
L
Linus Torvalds 已提交
883

884
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
L
Linus Torvalds 已提交
885

886 887 888
	if (in_interrupt() || oops_in_progress)
		panic_nand_wait(mtd, chip, timeo);
	else {
889
		timeo = jiffies + msecs_to_jiffies(timeo);
890
		do {
891 892 893 894 895 896 897 898
			if (chip->dev_ready) {
				if (chip->dev_ready(mtd))
					break;
			} else {
				if (chip->read_byte(mtd) & NAND_STATUS_READY)
					break;
			}
			cond_resched();
899
		} while (time_before(jiffies, timeo));
L
Linus Torvalds 已提交
900
	}
901

902
	status = (int)chip->read_byte(mtd);
903 904
	/* This can happen if in case of timeout or buggy dev_ready */
	WARN_ON(!(status & NAND_STATUS_READY));
L
Linus Torvalds 已提交
905 906 907
	return status;
}

908
/**
909 910 911 912
 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
913 914 915 916
 * @invert: when = 0, unlock the range of blocks within the lower and
 *                    upper boundary address
 *          when = 1, unlock the range of blocks outside the boundaries
 *                    of the lower and upper boundary address
917
 *
918
 * Returs unlock status.
919 920 921 922 923 924
 */
static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
					uint64_t len, int invert)
{
	int ret = 0;
	int status, page;
925
	struct nand_chip *chip = mtd_to_nand(mtd);
926 927 928 929 930 931 932 933 934 935 936 937 938

	/* Submit address of first page to unlock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);

	/* Submit address of last page to unlock */
	page = (ofs + len) >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
				(page | invert) & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
939
	if (status & NAND_STATUS_FAIL) {
940
		pr_debug("%s: error status = 0x%08x\n",
941 942 943 944 945 946 947 948
					__func__, status);
		ret = -EIO;
	}

	return ret;
}

/**
949 950 951 952
 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
953
 *
954
 * Returns unlock status.
955 956 957 958 959
 */
int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr;
960
	struct nand_chip *chip = mtd_to_nand(mtd);
961

962
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
963 964 965
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
966
		return -EINVAL;
967 968 969 970 971

	/* Align to last block address if size addresses end of the device */
	if (ofs + len == mtd->size)
		len -= mtd->erasesize;

972
	nand_get_device(mtd, FL_UNLOCKING);
973 974 975 976 977 978

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

	chip->select_chip(mtd, chipnr);

979 980 981 982 983 984 985 986 987
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

988 989
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
990
		pr_debug("%s: device is write protected!\n",
991 992 993 994 995 996 997 998
					__func__);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0);

out:
999
	chip->select_chip(mtd, -1);
1000 1001 1002 1003
	nand_release_device(mtd);

	return ret;
}
1004
EXPORT_SYMBOL(nand_unlock);
1005 1006

/**
1007 1008 1009 1010
 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1011
 *
1012 1013 1014 1015
 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
 * have this feature, but it allows only to lock all blocks, not for specified
 * range for block. Implementing 'lock' feature by making use of 'unlock', for
 * now.
1016
 *
1017
 * Returns lock status.
1018 1019 1020 1021 1022
 */
int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr, status, page;
1023
	struct nand_chip *chip = mtd_to_nand(mtd);
1024

1025
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1026 1027 1028
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1029
		return -EINVAL;
1030

1031
	nand_get_device(mtd, FL_LOCKING);
1032 1033 1034 1035 1036 1037

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

	chip->select_chip(mtd, chipnr);

1038 1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

1047 1048
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1049
		pr_debug("%s: device is write protected!\n",
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
					__func__);
		status = MTD_ERASE_FAILED;
		ret = -EIO;
		goto out;
	}

	/* Submit address of first page to lock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1063
	if (status & NAND_STATUS_FAIL) {
1064
		pr_debug("%s: error status = 0x%08x\n",
1065 1066 1067 1068 1069 1070 1071 1072
					__func__, status);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0x1);

out:
1073
	chip->select_chip(mtd, -1);
1074 1075 1076 1077
	nand_release_device(mtd);

	return ret;
}
1078
EXPORT_SYMBOL(nand_lock);
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/**
 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
 * @buf: buffer to test
 * @len: buffer length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a buffer contains only 0xff, which means the underlying region
 * has been erased and is ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region is not erased.
 * Note: The logic of this function has been extracted from the memweight
 * implementation, except that nand_check_erased_buf function exit before
 * testing the whole buffer if the number of bitflips exceed the
 * bitflips_threshold value.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold.
 */
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
	const unsigned char *bitmap = buf;
	int bitflips = 0;
	int weight;

	for (; len && ((uintptr_t)bitmap) % sizeof(long);
	     len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len >= sizeof(long);
	     len -= sizeof(long), bitmap += sizeof(long)) {
		weight = hweight_long(*((unsigned long *)bitmap));
		bitflips += BITS_PER_LONG - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len > 0; len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	return bitflips;
}

/**
 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
 *				 0xff data
 * @data: data buffer to test
 * @datalen: data length
 * @ecc: ECC buffer
 * @ecclen: ECC length
 * @extraoob: extra OOB buffer
 * @extraooblen: extra OOB length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a data buffer and its associated ECC and OOB data contains only
 * 0xff pattern, which means the underlying region has been erased and is
 * ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region as not erased.
 *
 * Note:
 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
 *    different from the NAND page size. When fixing bitflips, ECC engines will
 *    report the number of errors per chunk, and the NAND core infrastructure
 *    expect you to return the maximum number of bitflips for the whole page.
 *    This is why you should always use this function on a single chunk and
 *    not on the whole page. After checking each chunk you should update your
 *    max_bitflips value accordingly.
 * 2/ When checking for bitflips in erased pages you should not only check
 *    the payload data but also their associated ECC data, because a user might
 *    have programmed almost all bits to 1 but a few. In this case, we
 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
 *    this case.
 * 3/ The extraoob argument is optional, and should be used if some of your OOB
 *    data are protected by the ECC engine.
 *    It could also be used if you support subpages and want to attach some
 *    extra OOB data to an ECC chunk.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold. In case of success, the passed buffers are filled with 0xff.
 */
int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int bitflips_threshold)
{
	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;

	data_bitflips = nand_check_erased_buf(data, datalen,
					      bitflips_threshold);
	if (data_bitflips < 0)
		return data_bitflips;

	bitflips_threshold -= data_bitflips;

	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
	if (ecc_bitflips < 0)
		return ecc_bitflips;

	bitflips_threshold -= ecc_bitflips;

	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
						  bitflips_threshold);
	if (extraoob_bitflips < 0)
		return extraoob_bitflips;

	if (data_bitflips)
		memset(data, 0xff, datalen);

	if (ecc_bitflips)
		memset(ecc, 0xff, ecclen);

	if (extraoob_bitflips)
		memset(extraoob, 0xff, extraooblen);

	return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);

1208
/**
1209
 * nand_read_page_raw - [INTERN] read raw page data without ecc
1210 1211 1212
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1213
 * @oob_required: caller requires OOB data read to chip->oob_poi
1214
 * @page: page number to read
1215
 *
1216
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1217 1218
 */
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1219
			      uint8_t *buf, int oob_required, int page)
1220 1221
{
	chip->read_buf(mtd, buf, mtd->writesize);
1222 1223
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1224 1225 1226
	return 0;
}

1227
/**
1228
 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1229 1230 1231
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1232
 * @oob_required: caller requires OOB data read to chip->oob_poi
1233
 * @page: page number to read
1234 1235 1236
 *
 * We need a special oob layout and handling even when OOB isn't used.
 */
1237
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1238 1239
				       struct nand_chip *chip, uint8_t *buf,
				       int oob_required, int page)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->read_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->read_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->read_buf(mtd, oob, size);

	return 0;
}

L
Linus Torvalds 已提交
1271
/**
1272
 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1273 1274 1275
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1276
 * @oob_required: caller requires OOB data read to chip->oob_poi
1277
 * @page: page number to read
1278
 */
1279
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1280
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1281
{
1282 1283 1284 1285
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1286 1287
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1288
	uint32_t *eccpos = chip->ecc.layout->eccpos;
1289
	unsigned int max_bitflips = 0;
1290

1291
	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1292 1293 1294 1295 1296

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

	for (i = 0; i < chip->ecc.total; i++)
1297
		ecc_code[i] = chip->oob_poi[eccpos[i]];
1298 1299 1300 1301 1302 1303 1304 1305

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1306
		if (stat < 0) {
1307
			mtd->ecc_stats.failed++;
1308
		} else {
1309
			mtd->ecc_stats.corrected += stat;
1310 1311
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1312
	}
1313
	return max_bitflips;
1314
}
L
Linus Torvalds 已提交
1315

1316
/**
1317
 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1318 1319 1320 1321 1322
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @data_offs: offset of requested data within the page
 * @readlen: data length
 * @bufpoi: buffer to store read data
1323
 * @page: page number to read
1324
 */
1325
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1326 1327
			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
			int page)
1328 1329 1330 1331 1332 1333 1334
{
	int start_step, end_step, num_steps;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *p;
	int data_col_addr, i, gaps = 0;
	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
R
Ron 已提交
1335
	int index;
1336
	unsigned int max_bitflips = 0;
1337

1338
	/* Column address within the page aligned to ECC size (256bytes) */
1339 1340 1341
	start_step = data_offs / chip->ecc.size;
	end_step = (data_offs + readlen - 1) / chip->ecc.size;
	num_steps = end_step - start_step + 1;
R
Ron 已提交
1342
	index = start_step * chip->ecc.bytes;
1343

1344
	/* Data size aligned to ECC ecc.size */
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	datafrag_len = num_steps * chip->ecc.size;
	eccfrag_len = num_steps * chip->ecc.bytes;

	data_col_addr = start_step * chip->ecc.size;
	/* If we read not a page aligned data */
	if (data_col_addr != 0)
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);

	p = bufpoi + data_col_addr;
	chip->read_buf(mtd, p, datafrag_len);

1356
	/* Calculate ECC */
1357 1358 1359
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);

1360 1361
	/*
	 * The performance is faster if we position offsets according to
1362
	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1363
	 */
1364
	for (i = 0; i < eccfrag_len - 1; i++) {
1365
		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1366 1367 1368 1369 1370 1371 1372 1373
			gaps = 1;
			break;
		}
	}
	if (gaps) {
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	} else {
1374
		/*
1375
		 * Send the command to read the particular ECC bytes take care
1376 1377
		 * about buswidth alignment in read_buf.
		 */
1378
		aligned_pos = eccpos[index] & ~(busw - 1);
1379
		aligned_len = eccfrag_len;
1380
		if (eccpos[index] & (busw - 1))
1381
			aligned_len++;
1382
		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1383 1384
			aligned_len++;

1385 1386
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
					mtd->writesize + aligned_pos, -1);
1387 1388 1389 1390
		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
	}

	for (i = 0; i < eccfrag_len; i++)
1391
		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1392 1393 1394 1395 1396

	p = bufpoi + data_col_addr;
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
		int stat;

1397 1398
		stat = chip->ecc.correct(mtd, p,
			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
						&chip->buffers->ecccode[i],
						chip->ecc.bytes,
						NULL, 0,
						chip->ecc.strength);
		}

1409
		if (stat < 0) {
1410
			mtd->ecc_stats.failed++;
1411
		} else {
1412
			mtd->ecc_stats.corrected += stat;
1413 1414
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1415
	}
1416
	return max_bitflips;
1417 1418
}

1419
/**
1420
 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1421 1422 1423
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1424
 * @oob_required: caller requires OOB data read to chip->oob_poi
1425
 * @page: page number to read
1426
 *
1427
 * Not for syndrome calculating ECC controllers which need a special oob layout.
1428
 */
1429
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1430
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1431
{
1432 1433 1434 1435
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1436 1437
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1438
	uint32_t *eccpos = chip->ecc.layout->eccpos;
1439
	unsigned int max_bitflips = 0;
1440 1441 1442 1443 1444

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
L
Linus Torvalds 已提交
1445
	}
1446
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
L
Linus Torvalds 已提交
1447

1448
	for (i = 0; i < chip->ecc.total; i++)
1449
		ecc_code[i] = chip->oob_poi[eccpos[i]];
L
Linus Torvalds 已提交
1450

1451 1452
	eccsteps = chip->ecc.steps;
	p = buf;
1453

1454 1455
	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
L
Linus Torvalds 已提交
1456

1457
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1458 1459 1460 1461 1462 1463 1464 1465 1466
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1467
		if (stat < 0) {
1468
			mtd->ecc_stats.failed++;
1469
		} else {
1470
			mtd->ecc_stats.corrected += stat;
1471 1472
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1473
	}
1474
	return max_bitflips;
1475
}
L
Linus Torvalds 已提交
1476

1477
/**
1478
 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1479 1480 1481
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1482
 * @oob_required: caller requires OOB data read to chip->oob_poi
1483
 * @page: page number to read
1484
 *
1485 1486 1487 1488 1489
 * Hardware ECC for large page chips, require OOB to be read first. For this
 * ECC mode, the write_page method is re-used from ECC_HW. These methods
 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
 * the data area, by overwriting the NAND manufacturer bad block markings.
1490 1491
 */
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1492
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1493 1494 1495 1496 1497 1498 1499 1500
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
1501
	unsigned int max_bitflips = 0;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	/* Read the OOB area first */
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = chip->oob_poi[eccpos[i]];

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1519 1520 1521 1522 1523 1524 1525 1526 1527
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1528
		if (stat < 0) {
1529
			mtd->ecc_stats.failed++;
1530
		} else {
1531
			mtd->ecc_stats.corrected += stat;
1532 1533
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1534
	}
1535
	return max_bitflips;
1536 1537
}

1538
/**
1539
 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1540 1541 1542
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1543
 * @oob_required: caller requires OOB data read to chip->oob_poi
1544
 * @page: page number to read
1545
 *
1546 1547
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
1548 1549
 */
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1550
				   uint8_t *buf, int oob_required, int page)
1551 1552 1553 1554
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
1555
	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1556
	uint8_t *p = buf;
1557
	uint8_t *oob = chip->oob_poi;
1558
	unsigned int max_bitflips = 0;
L
Linus Torvalds 已提交
1559

1560 1561
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
1562

1563 1564
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
L
Linus Torvalds 已提交
1565

1566 1567 1568 1569
		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}
L
Linus Torvalds 已提交
1570

1571 1572 1573
		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
		chip->read_buf(mtd, oob, eccbytes);
		stat = chip->ecc.correct(mtd, p, oob, NULL);
1574

1575
		oob += eccbytes;
L
Linus Torvalds 已提交
1576

1577 1578 1579
		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
1580
		}
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
							   oob - eccpadbytes,
							   eccpadbytes,
							   NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1598
	}
L
Linus Torvalds 已提交
1599

1600
	/* Calculate remaining oob bytes */
1601
	i = mtd->oobsize - (oob - chip->oob_poi);
1602 1603
	if (i)
		chip->read_buf(mtd, oob, i);
1604

1605
	return max_bitflips;
1606
}
L
Linus Torvalds 已提交
1607

1608
/**
1609
 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1610 1611 1612 1613
 * @chip: nand chip structure
 * @oob: oob destination address
 * @ops: oob ops structure
 * @len: size of oob to transfer
1614 1615
 */
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1616
				  struct mtd_oob_ops *ops, size_t len)
1617
{
1618
	switch (ops->mode) {
1619

1620 1621
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
1622 1623 1624
		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
		return oob + len;

1625
	case MTD_OPS_AUTO_OOB: {
1626
		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1627 1628
		uint32_t boffs = 0, roffs = ops->ooboffs;
		size_t bytes = 0;
1629

1630
		for (; free->length && len; free++, len -= bytes) {
1631
			/* Read request not from offset 0? */
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			if (unlikely(roffs)) {
				if (roffs >= free->length) {
					roffs -= free->length;
					continue;
				}
				boffs = free->offset + roffs;
				bytes = min_t(size_t, len,
					      (free->length - roffs));
				roffs = 0;
			} else {
				bytes = min_t(size_t, len, free->length);
				boffs = free->offset;
			}
			memcpy(oob, chip->oob_poi + boffs, bytes);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			oob += bytes;
		}
		return oob;
	}
	default:
		BUG();
	}
	return NULL;
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
 * @mtd: MTD device structure
 * @retry_mode: the retry mode to use
 *
 * Some vendors supply a special command to shift the Vt threshold, to be used
 * when there are too many bitflips in a page (i.e., ECC error). After setting
 * a new threshold, the host should retry reading the page.
 */
static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
1667
	struct nand_chip *chip = mtd_to_nand(mtd);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

	pr_debug("setting READ RETRY mode %d\n", retry_mode);

	if (retry_mode >= chip->read_retries)
		return -EINVAL;

	if (!chip->setup_read_retry)
		return -EOPNOTSUPP;

	return chip->setup_read_retry(mtd, retry_mode);
}

1680
/**
1681
 * nand_do_read_ops - [INTERN] Read data with ECC
1682 1683 1684
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob ops structure
1685 1686 1687
 *
 * Internal function. Called with chip held.
 */
1688 1689
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
1690
{
1691
	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1692
	struct nand_chip *chip = mtd_to_nand(mtd);
1693
	int ret = 0;
1694
	uint32_t readlen = ops->len;
1695
	uint32_t oobreadlen = ops->ooblen;
1696
	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1697

1698
	uint8_t *bufpoi, *oob, *buf;
1699
	int use_bufpoi;
1700
	unsigned int max_bitflips = 0;
1701
	int retry_mode = 0;
1702
	bool ecc_fail = false;
L
Linus Torvalds 已提交
1703

1704 1705
	chipnr = (int)(from >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);
1706

1707 1708
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
1709

1710
	col = (int)(from & (mtd->writesize - 1));
1711

1712 1713
	buf = ops->datbuf;
	oob = ops->oobbuf;
1714
	oob_required = oob ? 1 : 0;
1715

1716
	while (1) {
1717 1718
		unsigned int ecc_failures = mtd->ecc_stats.failed;

1719 1720
		bytes = min(mtd->writesize - col, readlen);
		aligned = (bytes == mtd->writesize);
1721

1722 1723 1724 1725 1726 1727 1728
		if (!aligned)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;

1729
		/* Is the current page in the buffer? */
1730
		if (realpage != chip->pagebuf || oob) {
1731 1732 1733 1734 1735
			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;

			if (use_bufpoi && aligned)
				pr_debug("%s: using read bounce buffer for buf@%p\n",
						 __func__, buf);
1736

1737
read_retry:
1738
			chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
L
Linus Torvalds 已提交
1739

1740 1741 1742 1743
			/*
			 * Now read the page into the buffer.  Absent an error,
			 * the read methods return max bitflips per ecc step.
			 */
1744
			if (unlikely(ops->mode == MTD_OPS_RAW))
1745
				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1746 1747
							      oob_required,
							      page);
1748 1749
			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
				 !oob)
1750
				ret = chip->ecc.read_subpage(mtd, chip,
1751 1752
							col, bytes, bufpoi,
							page);
1753
			else
1754
				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1755
							  oob_required, page);
1756
			if (ret < 0) {
1757
				if (use_bufpoi)
1758 1759
					/* Invalidate page cache */
					chip->pagebuf = -1;
L
Linus Torvalds 已提交
1760
				break;
1761
			}
1762

1763 1764
			max_bitflips = max_t(unsigned int, max_bitflips, ret);

1765
			/* Transfer not aligned data */
1766
			if (use_bufpoi) {
1767
				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1768
				    !(mtd->ecc_stats.failed - ecc_failures) &&
1769
				    (ops->mode != MTD_OPS_RAW)) {
1770
					chip->pagebuf = realpage;
1771 1772
					chip->pagebuf_bitflips = ret;
				} else {
1773 1774
					/* Invalidate page cache */
					chip->pagebuf = -1;
1775
				}
1776
				memcpy(buf, chip->buffers->databuf + col, bytes);
1777 1778
			}

1779
			if (unlikely(oob)) {
1780 1781 1782 1783 1784 1785 1786
				int toread = min(oobreadlen, max_oobsize);

				if (toread) {
					oob = nand_transfer_oob(chip,
						oob, ops, toread);
					oobreadlen -= toread;
				}
1787
			}
1788 1789 1790 1791 1792 1793 1794 1795

			if (chip->options & NAND_NEED_READRDY) {
				/* Apply delay or wait for ready/busy pin */
				if (!chip->dev_ready)
					udelay(chip->chip_delay);
				else
					nand_wait_ready(mtd);
			}
1796

1797
			if (mtd->ecc_stats.failed - ecc_failures) {
1798
				if (retry_mode + 1 < chip->read_retries) {
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
					retry_mode++;
					ret = nand_setup_read_retry(mtd,
							retry_mode);
					if (ret < 0)
						break;

					/* Reset failures; retry */
					mtd->ecc_stats.failed = ecc_failures;
					goto read_retry;
				} else {
					/* No more retry modes; real failure */
					ecc_fail = true;
				}
			}

			buf += bytes;
1815
		} else {
1816
			memcpy(buf, chip->buffers->databuf + col, bytes);
1817
			buf += bytes;
1818 1819
			max_bitflips = max_t(unsigned int, max_bitflips,
					     chip->pagebuf_bitflips);
1820
		}
L
Linus Torvalds 已提交
1821

1822
		readlen -= bytes;
1823

1824 1825 1826 1827 1828 1829 1830 1831
		/* Reset to retry mode 0 */
		if (retry_mode) {
			ret = nand_setup_read_retry(mtd, 0);
			if (ret < 0)
				break;
			retry_mode = 0;
		}

1832
		if (!readlen)
1833
			break;
L
Linus Torvalds 已提交
1834

1835
		/* For subsequent reads align to page boundary */
L
Linus Torvalds 已提交
1836 1837 1838 1839
		col = 0;
		/* Increment page address */
		realpage++;

1840
		page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
1841 1842 1843
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
1844 1845
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
1846 1847
		}
	}
1848
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
1849

1850
	ops->retlen = ops->len - (size_t) readlen;
1851 1852
	if (oob)
		ops->oobretlen = ops->ooblen - oobreadlen;
L
Linus Torvalds 已提交
1853

1854
	if (ret < 0)
1855 1856
		return ret;

1857
	if (ecc_fail)
1858 1859
		return -EBADMSG;

1860
	return max_bitflips;
1861 1862 1863
}

/**
L
Lucas De Marchi 已提交
1864
 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1865 1866 1867 1868 1869
 * @mtd: MTD device structure
 * @from: offset to read from
 * @len: number of bytes to read
 * @retlen: pointer to variable to store the number of read bytes
 * @buf: the databuffer to put data
1870
 *
1871
 * Get hold of the chip and call nand_do_read.
1872 1873 1874 1875
 */
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
		     size_t *retlen, uint8_t *buf)
{
1876
	struct mtd_oob_ops ops;
1877 1878
	int ret;

1879
	nand_get_device(mtd, FL_READING);
1880
	memset(&ops, 0, sizeof(ops));
1881 1882
	ops.len = len;
	ops.datbuf = buf;
1883
	ops.mode = MTD_OPS_PLACE_OOB;
1884 1885
	ret = nand_do_read_ops(mtd, from, &ops);
	*retlen = ops.retlen;
1886 1887
	nand_release_device(mtd);
	return ret;
L
Linus Torvalds 已提交
1888 1889
}

1890
/**
1891
 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1892 1893 1894
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
1895 1896
 */
static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1897
			     int page)
1898
{
1899
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1900
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1901
	return 0;
1902 1903 1904
}

/**
1905
 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1906
 *			    with syndromes
1907 1908 1909
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
1910 1911
 */
static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1912
				  int page)
1913 1914 1915 1916
{
	int length = mtd->oobsize;
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size;
1917
	uint8_t *bufpoi = chip->oob_poi;
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	int i, toread, sndrnd = 0, pos;

	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
	for (i = 0; i < chip->ecc.steps; i++) {
		if (sndrnd) {
			pos = eccsize + i * (eccsize + chunk);
			if (mtd->writesize > 512)
				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
			else
				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
		} else
			sndrnd = 1;
		toread = min_t(int, length, chunk);
		chip->read_buf(mtd, bufpoi, toread);
		bufpoi += toread;
		length -= toread;
	}
	if (length > 0)
		chip->read_buf(mtd, bufpoi, length);

1938
	return 0;
1939 1940 1941
}

/**
1942
 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1943 1944 1945
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
 */
static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
			      int page)
{
	int status = 0;
	const uint8_t *buf = chip->oob_poi;
	int length = mtd->oobsize;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, buf, length);
	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

S
Savin Zlobec 已提交
1961
	return status & NAND_STATUS_FAIL ? -EIO : 0;
1962 1963 1964
}

/**
1965
 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1966 1967 1968 1969
 *			     with syndrome - only for large page flash
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
 */
static int nand_write_oob_syndrome(struct mtd_info *mtd,
				   struct nand_chip *chip, int page)
{
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size, length = mtd->oobsize;
	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
	const uint8_t *bufpoi = chip->oob_poi;

	/*
	 * data-ecc-data-ecc ... ecc-oob
	 * or
	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
	 */
	if (!chip->ecc.prepad && !chip->ecc.postpad) {
		pos = steps * (eccsize + chunk);
		steps = 0;
	} else
1988
		pos = eccsize;
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
	for (i = 0; i < steps; i++) {
		if (sndcmd) {
			if (mtd->writesize <= 512) {
				uint32_t fill = 0xFFFFFFFF;

				len = eccsize;
				while (len > 0) {
					int num = min_t(int, len, 4);
					chip->write_buf(mtd, (uint8_t *)&fill,
							num);
					len -= num;
				}
			} else {
				pos = eccsize + i * (eccsize + chunk);
				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
			}
		} else
			sndcmd = 1;
		len = min_t(int, length, chunk);
		chip->write_buf(mtd, bufpoi, len);
		bufpoi += len;
		length -= len;
	}
	if (length > 0)
		chip->write_buf(mtd, bufpoi, length);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

L
Linus Torvalds 已提交
2023
/**
2024
 * nand_do_read_oob - [INTERN] NAND read out-of-band
2025 2026 2027
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2028
 *
2029
 * NAND read out-of-band data from the spare area.
L
Linus Torvalds 已提交
2030
 */
2031 2032
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2033
{
2034
	int page, realpage, chipnr;
2035
	struct nand_chip *chip = mtd_to_nand(mtd);
2036
	struct mtd_ecc_stats stats;
2037 2038
	int readlen = ops->ooblen;
	int len;
2039
	uint8_t *buf = ops->oobbuf;
2040
	int ret = 0;
2041

2042
	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2043
			__func__, (unsigned long long)from, readlen);
L
Linus Torvalds 已提交
2044

2045 2046
	stats = mtd->ecc_stats;

2047
	len = mtd_oobavail(mtd, ops);
2048 2049

	if (unlikely(ops->ooboffs >= len)) {
2050 2051
		pr_debug("%s: attempt to start read outside oob\n",
				__func__);
2052 2053 2054 2055 2056 2057 2058
		return -EINVAL;
	}

	/* Do not allow reads past end of device */
	if (unlikely(from >= mtd->size ||
		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
					(from >> chip->page_shift)) * len)) {
2059 2060
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
2061 2062
		return -EINVAL;
	}
2063

2064
	chipnr = (int)(from >> chip->chip_shift);
2065
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2066

2067 2068 2069
	/* Shift to get page */
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2070

2071
	while (1) {
2072
		if (ops->mode == MTD_OPS_RAW)
2073
			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2074
		else
2075 2076 2077 2078
			ret = chip->ecc.read_oob(mtd, chip, page);

		if (ret < 0)
			break;
2079 2080 2081

		len = min(len, readlen);
		buf = nand_transfer_oob(chip, buf, ops, len);
2082

2083 2084 2085 2086 2087 2088 2089 2090
		if (chip->options & NAND_NEED_READRDY) {
			/* Apply delay or wait for ready/busy pin */
			if (!chip->dev_ready)
				udelay(chip->chip_delay);
			else
				nand_wait_ready(mtd);
		}

2091
		readlen -= len;
S
Savin Zlobec 已提交
2092 2093 2094
		if (!readlen)
			break;

2095 2096 2097 2098 2099 2100 2101 2102 2103
		/* Increment page address */
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2104 2105
		}
	}
2106
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2107

2108 2109 2110 2111
	ops->oobretlen = ops->ooblen - readlen;

	if (ret < 0)
		return ret;
2112 2113 2114 2115 2116

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
L
Linus Torvalds 已提交
2117 2118 2119
}

/**
2120
 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2121 2122 2123
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2124
 *
2125
 * NAND read data and/or out-of-band data.
L
Linus Torvalds 已提交
2126
 */
2127 2128
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
			 struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2129
{
2130 2131 2132
	int ret = -ENOTSUPP;

	ops->retlen = 0;
L
Linus Torvalds 已提交
2133 2134

	/* Do not allow reads past end of device */
2135
	if (ops->datbuf && (from + ops->len) > mtd->size) {
2136 2137
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
L
Linus Torvalds 已提交
2138 2139 2140
		return -EINVAL;
	}

2141
	nand_get_device(mtd, FL_READING);
L
Linus Torvalds 已提交
2142

2143
	switch (ops->mode) {
2144 2145 2146
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_AUTO_OOB:
	case MTD_OPS_RAW:
2147
		break;
L
Linus Torvalds 已提交
2148

2149 2150 2151
	default:
		goto out;
	}
L
Linus Torvalds 已提交
2152

2153 2154 2155 2156
	if (!ops->datbuf)
		ret = nand_do_read_oob(mtd, from, ops);
	else
		ret = nand_do_read_ops(mtd, from, ops);
2157

2158
out:
2159 2160 2161
	nand_release_device(mtd);
	return ret;
}
2162

L
Linus Torvalds 已提交
2163

2164
/**
2165
 * nand_write_page_raw - [INTERN] raw page write function
2166 2167 2168
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2169
 * @oob_required: must write chip->oob_poi to OOB
2170
 * @page: page number to write
2171
 *
2172
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2173
 */
2174
static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2175
			       const uint8_t *buf, int oob_required, int page)
2176 2177
{
	chip->write_buf(mtd, buf, mtd->writesize);
2178 2179
	if (oob_required)
		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2180 2181

	return 0;
L
Linus Torvalds 已提交
2182 2183
}

2184
/**
2185
 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2186 2187 2188
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2189
 * @oob_required: must write chip->oob_poi to OOB
2190
 * @page: page number to write
2191 2192 2193
 *
 * We need a special oob layout and handling even when ECC isn't checked.
 */
2194
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2195
					struct nand_chip *chip,
2196 2197
					const uint8_t *buf, int oob_required,
					int page)
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->write_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

2213
		chip->write_buf(mtd, oob, eccbytes);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->write_buf(mtd, oob, size);
2225 2226

	return 0;
2227
}
2228
/**
2229
 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2230 2231 2232
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2233
 * @oob_required: must write chip->oob_poi to OOB
2234
 * @page: page number to write
2235
 */
2236
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2237 2238
				 const uint8_t *buf, int oob_required,
				 int page)
2239
{
2240 2241 2242
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2243
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2244
	const uint8_t *p = buf;
2245
	uint32_t *eccpos = chip->ecc.layout->eccpos;
2246

2247
	/* Software ECC calculation */
2248 2249
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2250

2251 2252
	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2253

2254
	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2255
}
2256

2257
/**
2258
 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2259 2260 2261
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2262
 * @oob_required: must write chip->oob_poi to OOB
2263
 * @page: page number to write
2264
 */
2265
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2266 2267
				  const uint8_t *buf, int oob_required,
				  int page)
2268 2269 2270 2271
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2272
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2273
	const uint8_t *p = buf;
2274
	uint32_t *eccpos = chip->ecc.layout->eccpos;
2275

2276 2277
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2278
		chip->write_buf(mtd, p, eccsize);
2279
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2280 2281
	}

2282 2283 2284 2285
	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2286 2287

	return 0;
2288 2289
}

2290 2291

/**
2292
 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2293 2294
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
2295
 * @offset:	column address of subpage within the page
2296
 * @data_len:	data length
2297
 * @buf:	data buffer
2298
 * @oob_required: must write chip->oob_poi to OOB
2299
 * @page: page number to write
2300 2301 2302
 */
static int nand_write_subpage_hwecc(struct mtd_info *mtd,
				struct nand_chip *chip, uint32_t offset,
2303
				uint32_t data_len, const uint8_t *buf,
2304
				int oob_required, int page)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
{
	uint8_t *oob_buf  = chip->oob_poi;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	int ecc_size      = chip->ecc.size;
	int ecc_bytes     = chip->ecc.bytes;
	int ecc_steps     = chip->ecc.steps;
	uint32_t *eccpos  = chip->ecc.layout->eccpos;
	uint32_t start_step = offset / ecc_size;
	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
	int oob_bytes       = mtd->oobsize / ecc_steps;
	int step, i;

	for (step = 0; step < ecc_steps; step++) {
		/* configure controller for WRITE access */
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

		/* write data (untouched subpages already masked by 0xFF) */
2322
		chip->write_buf(mtd, buf, ecc_size);
2323 2324 2325 2326 2327

		/* mask ECC of un-touched subpages by padding 0xFF */
		if ((step < start_step) || (step > end_step))
			memset(ecc_calc, 0xff, ecc_bytes);
		else
2328
			chip->ecc.calculate(mtd, buf, ecc_calc);
2329 2330 2331 2332 2333 2334

		/* mask OOB of un-touched subpages by padding 0xFF */
		/* if oob_required, preserve OOB metadata of written subpage */
		if (!oob_required || (step < start_step) || (step > end_step))
			memset(oob_buf, 0xff, oob_bytes);

2335
		buf += ecc_size;
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		ecc_calc += ecc_bytes;
		oob_buf  += oob_bytes;
	}

	/* copy calculated ECC for whole page to chip->buffer->oob */
	/* this include masked-value(0xFF) for unwritten subpages */
	ecc_calc = chip->buffers->ecccalc;
	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	/* write OOB buffer to NAND device */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}


2353
/**
2354
 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2355 2356 2357
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2358
 * @oob_required: must write chip->oob_poi to OOB
2359
 * @page: page number to write
L
Linus Torvalds 已提交
2360
 *
2361 2362
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
2363
 */
2364
static int nand_write_page_syndrome(struct mtd_info *mtd,
2365
				    struct nand_chip *chip,
2366 2367
				    const uint8_t *buf, int oob_required,
				    int page)
L
Linus Torvalds 已提交
2368
{
2369 2370 2371 2372 2373
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
L
Linus Torvalds 已提交
2374

2375
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
L
Linus Torvalds 已提交
2376

2377 2378
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
		chip->write_buf(mtd, p, eccsize);
2379

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->ecc.calculate(mtd, p, oob);
		chip->write_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
L
Linus Torvalds 已提交
2392 2393
		}
	}
2394 2395

	/* Calculate remaining oob bytes */
2396
	i = mtd->oobsize - (oob - chip->oob_poi);
2397 2398
	if (i)
		chip->write_buf(mtd, oob, i);
2399 2400

	return 0;
2401 2402 2403
}

/**
2404
 * nand_write_page - [REPLACEABLE] write one page
2405 2406
 * @mtd: MTD device structure
 * @chip: NAND chip descriptor
2407 2408
 * @offset: address offset within the page
 * @data_len: length of actual data to be written
2409
 * @buf: the data to write
2410
 * @oob_required: must write chip->oob_poi to OOB
2411 2412 2413
 * @page: page number to write
 * @cached: cached programming
 * @raw: use _raw version of write_page
2414 2415
 */
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2416 2417
		uint32_t offset, int data_len, const uint8_t *buf,
		int oob_required, int page, int cached, int raw)
2418
{
2419 2420 2421 2422 2423 2424 2425
	int status, subpage;

	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
		chip->ecc.write_subpage)
		subpage = offset || (data_len < mtd->writesize);
	else
		subpage = 0;
2426 2427 2428

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

2429
	if (unlikely(raw))
2430
		status = chip->ecc.write_page_raw(mtd, chip, buf,
2431
						  oob_required, page);
2432 2433
	else if (subpage)
		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2434
						 buf, oob_required, page);
2435
	else
2436 2437
		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
					      page);
2438 2439 2440

	if (status < 0)
		return status;
2441 2442

	/*
2443
	 * Cached progamming disabled for now. Not sure if it's worth the
2444
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2445 2446 2447
	 */
	cached = 0;

2448
	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2449 2450

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2451
		status = chip->waitfunc(mtd, chip);
2452 2453
		/*
		 * See if operation failed and additional status checks are
2454
		 * available.
2455 2456 2457 2458 2459 2460 2461 2462 2463
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2464
		status = chip->waitfunc(mtd, chip);
2465 2466 2467
	}

	return 0;
L
Linus Torvalds 已提交
2468 2469
}

2470
/**
2471
 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2472
 * @mtd: MTD device structure
2473 2474 2475
 * @oob: oob data buffer
 * @len: oob data write length
 * @ops: oob ops structure
2476
 */
2477 2478
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
			      struct mtd_oob_ops *ops)
2479
{
2480
	struct nand_chip *chip = mtd_to_nand(mtd);
2481 2482 2483 2484 2485 2486 2487

	/*
	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
	 * data from a previous OOB read.
	 */
	memset(chip->oob_poi, 0xff, mtd->oobsize);

2488
	switch (ops->mode) {
2489

2490 2491
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
2492 2493 2494
		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
		return oob + len;

2495
	case MTD_OPS_AUTO_OOB: {
2496
		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2497 2498
		uint32_t boffs = 0, woffs = ops->ooboffs;
		size_t bytes = 0;
2499

2500
		for (; free->length && len; free++, len -= bytes) {
2501
			/* Write request not from offset 0? */
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
			if (unlikely(woffs)) {
				if (woffs >= free->length) {
					woffs -= free->length;
					continue;
				}
				boffs = free->offset + woffs;
				bytes = min_t(size_t, len,
					      (free->length - woffs));
				woffs = 0;
			} else {
				bytes = min_t(size_t, len, free->length);
				boffs = free->offset;
			}
2515
			memcpy(chip->oob_poi + boffs, oob, bytes);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
			oob += bytes;
		}
		return oob;
	}
	default:
		BUG();
	}
	return NULL;
}

2526
#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
L
Linus Torvalds 已提交
2527 2528

/**
2529
 * nand_do_write_ops - [INTERN] NAND write with ECC
2530 2531 2532
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2533
 *
2534
 * NAND write with ECC.
L
Linus Torvalds 已提交
2535
 */
2536 2537
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2538
{
2539
	int chipnr, realpage, page, blockmask, column;
2540
	struct nand_chip *chip = mtd_to_nand(mtd);
2541
	uint32_t writelen = ops->len;
2542 2543

	uint32_t oobwritelen = ops->ooblen;
2544
	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2545

2546 2547
	uint8_t *oob = ops->oobbuf;
	uint8_t *buf = ops->datbuf;
2548
	int ret;
2549
	int oob_required = oob ? 1 : 0;
L
Linus Torvalds 已提交
2550

2551
	ops->retlen = 0;
2552 2553
	if (!writelen)
		return 0;
L
Linus Torvalds 已提交
2554

2555
	/* Reject writes, which are not page aligned */
2556
	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2557 2558
		pr_notice("%s: attempt to write non page aligned data\n",
			   __func__);
L
Linus Torvalds 已提交
2559 2560 2561
		return -EINVAL;
	}

2562
	column = to & (mtd->writesize - 1);
L
Linus Torvalds 已提交
2563

2564 2565 2566
	chipnr = (int)(to >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);

L
Linus Torvalds 已提交
2567
	/* Check, if it is write protected */
2568 2569 2570 2571
	if (nand_check_wp(mtd)) {
		ret = -EIO;
		goto err_out;
	}
L
Linus Torvalds 已提交
2572

2573 2574 2575 2576 2577
	realpage = (int)(to >> chip->page_shift);
	page = realpage & chip->pagemask;
	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;

	/* Invalidate the page cache, when we write to the cached page */
2578 2579
	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2580
		chip->pagebuf = -1;
2581

2582
	/* Don't allow multipage oob writes with offset */
2583 2584 2585 2586
	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
		ret = -EINVAL;
		goto err_out;
	}
2587

2588
	while (1) {
2589
		int bytes = mtd->writesize;
2590
		int cached = writelen > bytes && page != blockmask;
2591
		uint8_t *wbuf = buf;
2592 2593 2594 2595 2596 2597 2598 2599 2600
		int use_bufpoi;
		int part_pagewr = (column || writelen < (mtd->writesize - 1));

		if (part_pagewr)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;
2601

2602 2603 2604 2605
		/* Partial page write?, or need to use bounce buffer */
		if (use_bufpoi) {
			pr_debug("%s: using write bounce buffer for buf@%p\n",
					 __func__, buf);
2606
			cached = 0;
2607 2608
			if (part_pagewr)
				bytes = min_t(int, bytes - column, writelen);
2609 2610 2611 2612 2613
			chip->pagebuf = -1;
			memset(chip->buffers->databuf, 0xff, mtd->writesize);
			memcpy(&chip->buffers->databuf[column], buf, bytes);
			wbuf = chip->buffers->databuf;
		}
L
Linus Torvalds 已提交
2614

2615 2616
		if (unlikely(oob)) {
			size_t len = min(oobwritelen, oobmaxlen);
2617
			oob = nand_fill_oob(mtd, oob, len, ops);
2618
			oobwritelen -= len;
2619 2620 2621
		} else {
			/* We still need to erase leftover OOB data */
			memset(chip->oob_poi, 0xff, mtd->oobsize);
2622
		}
2623 2624 2625
		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
					oob_required, page, cached,
					(ops->mode == MTD_OPS_RAW));
2626 2627 2628 2629 2630 2631 2632
		if (ret)
			break;

		writelen -= bytes;
		if (!writelen)
			break;

2633
		column = 0;
2634 2635 2636 2637 2638 2639 2640 2641 2642
		buf += bytes;
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2643 2644
		}
	}
2645 2646

	ops->retlen = ops->len - writelen;
2647 2648
	if (unlikely(oob))
		ops->oobretlen = ops->ooblen;
2649 2650 2651

err_out:
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2652 2653 2654
	return ret;
}

2655 2656
/**
 * panic_nand_write - [MTD Interface] NAND write with ECC
2657 2658 2659 2660 2661
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2662 2663 2664 2665 2666 2667 2668
 *
 * NAND write with ECC. Used when performing writes in interrupt context, this
 * may for example be called by mtdoops when writing an oops while in panic.
 */
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, const uint8_t *buf)
{
2669
	struct nand_chip *chip = mtd_to_nand(mtd);
2670
	struct mtd_oob_ops ops;
2671 2672
	int ret;

2673
	/* Wait for the device to get ready */
2674 2675
	panic_nand_wait(mtd, chip, 400);

2676
	/* Grab the device */
2677 2678
	panic_nand_get_device(chip, mtd, FL_WRITING);

2679
	memset(&ops, 0, sizeof(ops));
2680 2681
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2682
	ops.mode = MTD_OPS_PLACE_OOB;
2683

2684
	ret = nand_do_write_ops(mtd, to, &ops);
2685

2686
	*retlen = ops.retlen;
2687 2688 2689
	return ret;
}

2690
/**
2691
 * nand_write - [MTD Interface] NAND write with ECC
2692 2693 2694 2695 2696
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2697
 *
2698
 * NAND write with ECC.
2699
 */
2700 2701
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			  size_t *retlen, const uint8_t *buf)
2702
{
2703
	struct mtd_oob_ops ops;
2704 2705
	int ret;

2706
	nand_get_device(mtd, FL_WRITING);
2707
	memset(&ops, 0, sizeof(ops));
2708 2709
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2710
	ops.mode = MTD_OPS_PLACE_OOB;
2711 2712
	ret = nand_do_write_ops(mtd, to, &ops);
	*retlen = ops.retlen;
2713
	nand_release_device(mtd);
2714
	return ret;
2715
}
2716

L
Linus Torvalds 已提交
2717
/**
2718
 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2719 2720 2721
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2722
 *
2723
 * NAND write out-of-band.
L
Linus Torvalds 已提交
2724
 */
2725 2726
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2727
{
2728
	int chipnr, page, status, len;
2729
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
2730

2731
	pr_debug("%s: to = 0x%08x, len = %i\n",
2732
			 __func__, (unsigned int)to, (int)ops->ooblen);
L
Linus Torvalds 已提交
2733

2734
	len = mtd_oobavail(mtd, ops);
2735

L
Linus Torvalds 已提交
2736
	/* Do not allow write past end of page */
2737
	if ((ops->ooboffs + ops->ooblen) > len) {
2738 2739
		pr_debug("%s: attempt to write past end of page\n",
				__func__);
L
Linus Torvalds 已提交
2740 2741 2742
		return -EINVAL;
	}

2743
	if (unlikely(ops->ooboffs >= len)) {
2744 2745
		pr_debug("%s: attempt to start write outside oob\n",
				__func__);
2746 2747 2748
		return -EINVAL;
	}

2749
	/* Do not allow write past end of device */
2750 2751 2752 2753
	if (unlikely(to >= mtd->size ||
		     ops->ooboffs + ops->ooblen >
			((mtd->size >> chip->page_shift) -
			 (to >> chip->page_shift)) * len)) {
2754 2755
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
2756 2757 2758
		return -EINVAL;
	}

2759
	chipnr = (int)(to >> chip->chip_shift);
2760
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770
	/* Shift to get page */
	page = (int)(to >> chip->page_shift);

	/*
	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
	 * of my DiskOnChip 2000 test units) will clear the whole data page too
	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
	 * it in the doc2000 driver in August 1999.  dwmw2.
	 */
2771
	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
L
Linus Torvalds 已提交
2772 2773

	/* Check, if it is write protected */
2774 2775
	if (nand_check_wp(mtd)) {
		chip->select_chip(mtd, -1);
2776
		return -EROFS;
2777
	}
2778

L
Linus Torvalds 已提交
2779
	/* Invalidate the page cache, if we write to the cached page */
2780 2781
	if (page == chip->pagebuf)
		chip->pagebuf = -1;
L
Linus Torvalds 已提交
2782

2783
	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2784

2785
	if (ops->mode == MTD_OPS_RAW)
2786 2787 2788
		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
	else
		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
L
Linus Torvalds 已提交
2789

2790 2791
	chip->select_chip(mtd, -1);

2792 2793
	if (status)
		return status;
L
Linus Torvalds 已提交
2794

2795
	ops->oobretlen = ops->ooblen;
L
Linus Torvalds 已提交
2796

2797
	return 0;
2798 2799 2800 2801
}

/**
 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2802 2803 2804
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
2805 2806 2807 2808 2809 2810 2811 2812 2813
 */
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
			  struct mtd_oob_ops *ops)
{
	int ret = -ENOTSUPP;

	ops->retlen = 0;

	/* Do not allow writes past end of device */
2814
	if (ops->datbuf && (to + ops->len) > mtd->size) {
2815 2816
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
2817 2818 2819
		return -EINVAL;
	}

2820
	nand_get_device(mtd, FL_WRITING);
2821

2822
	switch (ops->mode) {
2823 2824 2825
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_AUTO_OOB:
	case MTD_OPS_RAW:
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		break;

	default:
		goto out;
	}

	if (!ops->datbuf)
		ret = nand_do_write_oob(mtd, to, ops);
	else
		ret = nand_do_write_ops(mtd, to, ops);

2837
out:
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842
	nand_release_device(mtd);
	return ret;
}

/**
2843
 * single_erase - [GENERIC] NAND standard block erase command function
2844 2845
 * @mtd: MTD device structure
 * @page: the page address of the block which will be erased
L
Linus Torvalds 已提交
2846
 *
2847
 * Standard erase command for NAND chips. Returns NAND status.
L
Linus Torvalds 已提交
2848
 */
2849
static int single_erase(struct mtd_info *mtd, int page)
L
Linus Torvalds 已提交
2850
{
2851
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
2852
	/* Send commands to erase a block */
2853 2854
	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2855 2856

	return chip->waitfunc(mtd, chip);
L
Linus Torvalds 已提交
2857 2858 2859 2860
}

/**
 * nand_erase - [MTD Interface] erase block(s)
2861 2862
 * @mtd: MTD device structure
 * @instr: erase instruction
L
Linus Torvalds 已提交
2863
 *
2864
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
2865
 */
2866
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
L
Linus Torvalds 已提交
2867
{
2868
	return nand_erase_nand(mtd, instr, 0);
L
Linus Torvalds 已提交
2869
}
2870

L
Linus Torvalds 已提交
2871
/**
2872
 * nand_erase_nand - [INTERN] erase block(s)
2873 2874 2875
 * @mtd: MTD device structure
 * @instr: erase instruction
 * @allowbbt: allow erasing the bbt area
L
Linus Torvalds 已提交
2876
 *
2877
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
2878
 */
2879 2880
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
		    int allowbbt)
L
Linus Torvalds 已提交
2881
{
2882
	int page, status, pages_per_block, ret, chipnr;
2883
	struct nand_chip *chip = mtd_to_nand(mtd);
2884
	loff_t len;
L
Linus Torvalds 已提交
2885

2886 2887 2888
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
			__func__, (unsigned long long)instr->addr,
			(unsigned long long)instr->len);
L
Linus Torvalds 已提交
2889

2890
	if (check_offs_len(mtd, instr->addr, instr->len))
L
Linus Torvalds 已提交
2891 2892 2893
		return -EINVAL;

	/* Grab the lock and see if the device is available */
2894
	nand_get_device(mtd, FL_ERASING);
L
Linus Torvalds 已提交
2895 2896

	/* Shift to get first page */
2897 2898
	page = (int)(instr->addr >> chip->page_shift);
	chipnr = (int)(instr->addr >> chip->chip_shift);
L
Linus Torvalds 已提交
2899 2900

	/* Calculate pages in each block */
2901
	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
L
Linus Torvalds 已提交
2902 2903

	/* Select the NAND device */
2904
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2905 2906 2907

	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
2908 2909
		pr_debug("%s: device is write protected!\n",
				__func__);
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		instr->state = MTD_ERASE_FAILED;
		goto erase_exit;
	}

	/* Loop through the pages */
	len = instr->len;

	instr->state = MTD_ERASING;

	while (len) {
W
Wolfram Sang 已提交
2920
		/* Check if we have a bad block, we do not erase bad blocks! */
2921
		if (nand_block_checkbad(mtd, ((loff_t) page) <<
2922
					chip->page_shift, allowbbt)) {
2923 2924
			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
				    __func__, page);
L
Linus Torvalds 已提交
2925 2926 2927
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
2928

2929 2930
		/*
		 * Invalidate the page cache, if we erase the block which
2931
		 * contains the current cached page.
2932 2933 2934 2935
		 */
		if (page <= chip->pagebuf && chip->pagebuf <
		    (page + pages_per_block))
			chip->pagebuf = -1;
L
Linus Torvalds 已提交
2936

2937
		status = chip->erase(mtd, page & chip->pagemask);
L
Linus Torvalds 已提交
2938

2939 2940 2941 2942 2943 2944 2945
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_ERASING,
					       status, page);
2946

L
Linus Torvalds 已提交
2947
		/* See if block erase succeeded */
2948
		if (status & NAND_STATUS_FAIL) {
2949 2950
			pr_debug("%s: failed erase, page 0x%08x\n",
					__func__, page);
L
Linus Torvalds 已提交
2951
			instr->state = MTD_ERASE_FAILED;
2952 2953
			instr->fail_addr =
				((loff_t)page << chip->page_shift);
L
Linus Torvalds 已提交
2954 2955
			goto erase_exit;
		}
2956

L
Linus Torvalds 已提交
2957
		/* Increment page address and decrement length */
2958
		len -= (1ULL << chip->phys_erase_shift);
L
Linus Torvalds 已提交
2959 2960 2961
		page += pages_per_block;

		/* Check, if we cross a chip boundary */
2962
		if (len && !(page & chip->pagemask)) {
L
Linus Torvalds 已提交
2963
			chipnr++;
2964 2965
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2966 2967 2968 2969
		}
	}
	instr->state = MTD_ERASE_DONE;

2970
erase_exit:
L
Linus Torvalds 已提交
2971 2972 2973 2974

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;

	/* Deselect and wake up anyone waiting on the device */
2975
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2976 2977
	nand_release_device(mtd);

2978 2979 2980 2981
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

L
Linus Torvalds 已提交
2982 2983 2984 2985 2986 2987
	/* Return more or less happy */
	return ret;
}

/**
 * nand_sync - [MTD Interface] sync
2988
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
2989
 *
2990
 * Sync is actually a wait for chip ready function.
L
Linus Torvalds 已提交
2991
 */
2992
static void nand_sync(struct mtd_info *mtd)
L
Linus Torvalds 已提交
2993
{
2994
	pr_debug("%s: called\n", __func__);
L
Linus Torvalds 已提交
2995 2996

	/* Grab the lock and see if the device is available */
2997
	nand_get_device(mtd, FL_SYNCING);
L
Linus Torvalds 已提交
2998
	/* Release it and go back */
2999
	nand_release_device(mtd);
L
Linus Torvalds 已提交
3000 3001 3002
}

/**
3003
 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3004 3005
 * @mtd: MTD device structure
 * @offs: offset relative to mtd start
L
Linus Torvalds 已提交
3006
 */
3007
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
L
Linus Torvalds 已提交
3008
{
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	struct nand_chip *chip = mtd_to_nand(mtd);
	int chipnr = (int)(offs >> chip->chip_shift);
	int ret;

	/* Select the NAND device */
	nand_get_device(mtd, FL_READING);
	chip->select_chip(mtd, chipnr);

	ret = nand_block_checkbad(mtd, offs, 0);

	chip->select_chip(mtd, -1);
	nand_release_device(mtd);

	return ret;
L
Linus Torvalds 已提交
3023 3024 3025
}

/**
3026
 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3027 3028
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
L
Linus Torvalds 已提交
3029
 */
3030
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
3031 3032 3033
{
	int ret;

3034 3035
	ret = nand_block_isbad(mtd, ofs);
	if (ret) {
3036
		/* If it was bad already, return success and do nothing */
L
Linus Torvalds 已提交
3037 3038
		if (ret > 0)
			return 0;
3039 3040
		return ret;
	}
L
Linus Torvalds 已提交
3041

3042
	return nand_block_markbad_lowlevel(mtd, ofs);
L
Linus Torvalds 已提交
3043 3044
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
/**
 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
	int status;
3056
	int i;
3057

3058 3059 3060
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3061 3062 3063
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3064 3065 3066
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		chip->write_byte(mtd, subfeature_param[i]);

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	status = chip->waitfunc(mtd, chip);
	if (status & NAND_STATUS_FAIL)
		return -EIO;
	return 0;
}

/**
 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
3083 3084
	int i;

3085 3086 3087
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3088 3089 3090
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3091 3092
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		*subfeature_param++ = chip->read_byte(mtd);
3093 3094 3095
	return 0;
}

3096 3097
/**
 * nand_suspend - [MTD Interface] Suspend the NAND flash
3098
 * @mtd: MTD device structure
3099 3100 3101
 */
static int nand_suspend(struct mtd_info *mtd)
{
3102
	return nand_get_device(mtd, FL_PM_SUSPENDED);
3103 3104 3105 3106
}

/**
 * nand_resume - [MTD Interface] Resume the NAND flash
3107
 * @mtd: MTD device structure
3108 3109 3110
 */
static void nand_resume(struct mtd_info *mtd)
{
3111
	struct nand_chip *chip = mtd_to_nand(mtd);
3112

3113
	if (chip->state == FL_PM_SUSPENDED)
3114 3115
		nand_release_device(mtd);
	else
3116 3117
		pr_err("%s called for a chip which is not in suspended state\n",
			__func__);
3118 3119
}

S
Scott Branden 已提交
3120 3121 3122 3123 3124 3125 3126
/**
 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
 *                 prevent further operations
 * @mtd: MTD device structure
 */
static void nand_shutdown(struct mtd_info *mtd)
{
3127
	nand_get_device(mtd, FL_PM_SUSPENDED);
S
Scott Branden 已提交
3128 3129
}

3130
/* Set default functions */
3131
static void nand_set_defaults(struct nand_chip *chip, int busw)
T
Thomas Gleixner 已提交
3132
{
L
Linus Torvalds 已提交
3133
	/* check for proper chip_delay setup, set 20us if not */
3134 3135
	if (!chip->chip_delay)
		chip->chip_delay = 20;
L
Linus Torvalds 已提交
3136 3137

	/* check, if a user supplied command function given */
3138 3139
	if (chip->cmdfunc == NULL)
		chip->cmdfunc = nand_command;
L
Linus Torvalds 已提交
3140 3141

	/* check, if a user supplied wait function given */
3142 3143 3144 3145 3146
	if (chip->waitfunc == NULL)
		chip->waitfunc = nand_wait;

	if (!chip->select_chip)
		chip->select_chip = nand_select_chip;
3147

3148 3149 3150 3151 3152 3153
	/* set for ONFI nand */
	if (!chip->onfi_set_features)
		chip->onfi_set_features = nand_onfi_set_features;
	if (!chip->onfi_get_features)
		chip->onfi_get_features = nand_onfi_get_features;

3154 3155
	/* If called twice, pointers that depend on busw may need to be reset */
	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3156 3157 3158 3159 3160 3161 3162
		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
	if (!chip->read_word)
		chip->read_word = nand_read_word;
	if (!chip->block_bad)
		chip->block_bad = nand_block_bad;
	if (!chip->block_markbad)
		chip->block_markbad = nand_default_block_markbad;
3163
	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3164
		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3165 3166
	if (!chip->write_byte || chip->write_byte == nand_write_byte)
		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3167
	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3168 3169 3170
		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
	if (!chip->scan_bbt)
		chip->scan_bbt = nand_default_bbt;
3171 3172 3173 3174 3175 3176 3177

	if (!chip->controller) {
		chip->controller = &chip->hwcontrol;
		spin_lock_init(&chip->controller->lock);
		init_waitqueue_head(&chip->controller->wq);
	}

T
Thomas Gleixner 已提交
3178 3179
}

3180
/* Sanitize ONFI strings so we can safely print them */
3181 3182 3183 3184
static void sanitize_string(uint8_t *s, size_t len)
{
	ssize_t i;

3185
	/* Null terminate */
3186 3187
	s[len - 1] = 0;

3188
	/* Remove non printable chars */
3189 3190 3191 3192 3193
	for (i = 0; i < len - 1; i++) {
		if (s[i] < ' ' || s[i] > 127)
			s[i] = '?';
	}

3194
	/* Remove trailing spaces */
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	strim(s);
}

static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
	int i;
	while (len--) {
		crc ^= *p++ << 8;
		for (i = 0; i < 8; i++)
			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
	}

	return crc;
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
/* Parse the Extended Parameter Page. */
static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
		struct nand_chip *chip, struct nand_onfi_params *p)
{
	struct onfi_ext_param_page *ep;
	struct onfi_ext_section *s;
	struct onfi_ext_ecc_info *ecc;
	uint8_t *cursor;
	int ret = -EINVAL;
	int len;
	int i;

	len = le16_to_cpu(p->ext_param_page_length) * 16;
	ep = kmalloc(len, GFP_KERNEL);
3224 3225
	if (!ep)
		return -ENOMEM;
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

	/* Send our own NAND_CMD_PARAM. */
	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);

	/* Use the Change Read Column command to skip the ONFI param pages. */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
			sizeof(*p) * p->num_of_param_pages , -1);

	/* Read out the Extended Parameter Page. */
	chip->read_buf(mtd, (uint8_t *)ep, len);
	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
		!= le16_to_cpu(ep->crc))) {
		pr_debug("fail in the CRC.\n");
		goto ext_out;
	}

	/*
	 * Check the signature.
	 * Do not strictly follow the ONFI spec, maybe changed in future.
	 */
	if (strncmp(ep->sig, "EPPS", 4)) {
		pr_debug("The signature is invalid.\n");
		goto ext_out;
	}

	/* find the ECC section. */
	cursor = (uint8_t *)(ep + 1);
	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
		s = ep->sections + i;
		if (s->type == ONFI_SECTION_TYPE_2)
			break;
		cursor += s->length * 16;
	}
	if (i == ONFI_EXT_SECTION_MAX) {
		pr_debug("We can not find the ECC section.\n");
		goto ext_out;
	}

	/* get the info we want. */
	ecc = (struct onfi_ext_ecc_info *)cursor;

3267 3268 3269
	if (!ecc->codeword_size) {
		pr_debug("Invalid codeword size\n");
		goto ext_out;
3270 3271
	}

3272 3273
	chip->ecc_strength_ds = ecc->ecc_bits;
	chip->ecc_step_ds = 1 << ecc->codeword_size;
3274
	ret = 0;
3275 3276 3277 3278 3279 3280

ext_out:
	kfree(ep);
	return ret;
}

3281 3282
static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
{
3283
	struct nand_chip *chip = mtd_to_nand(mtd);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
			feature);
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static void nand_onfi_detect_micron(struct nand_chip *chip,
		struct nand_onfi_params *p)
{
	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;

	if (le16_to_cpu(p->vendor_revision) < 1)
		return;

	chip->read_retries = micron->read_retry_options;
	chip->setup_read_retry = nand_setup_read_retry_micron;
}

3305
/*
3306
 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3307 3308
 */
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3309
					int *busw)
3310 3311
{
	struct nand_onfi_params *p = &chip->onfi_params;
3312
	int i, j;
3313 3314
	int val;

3315
	/* Try ONFI for unknown chip or LP */
3316 3317 3318 3319 3320 3321 3322
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
	for (i = 0; i < 3; i++) {
3323 3324
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);
3325 3326 3327 3328 3329 3330
		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
				le16_to_cpu(p->crc)) {
			break;
		}
	}

3331 3332
	if (i == 3) {
		pr_err("Could not find valid ONFI parameter page; aborting\n");
3333
		return 0;
3334
	}
3335

3336
	/* Check version */
3337
	val = le16_to_cpu(p->revision);
3338 3339 3340
	if (val & (1 << 5))
		chip->onfi_version = 23;
	else if (val & (1 << 4))
3341 3342 3343 3344 3345
		chip->onfi_version = 22;
	else if (val & (1 << 3))
		chip->onfi_version = 21;
	else if (val & (1 << 2))
		chip->onfi_version = 20;
3346
	else if (val & (1 << 1))
3347
		chip->onfi_version = 10;
3348 3349

	if (!chip->onfi_version) {
3350
		pr_info("unsupported ONFI version: %d\n", val);
3351 3352
		return 0;
	}
3353 3354 3355 3356 3357

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;
3358

3359
	mtd->writesize = le32_to_cpu(p->byte_per_page);
3360 3361 3362 3363 3364 3365 3366 3367 3368

	/*
	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
	 * (don't ask me who thought of this...). MTD assumes that these
	 * dimensions will be power-of-2, so just truncate the remaining area.
	 */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

3369
	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3370 3371 3372

	/* See erasesize comment */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3373
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3374
	chip->bits_per_cell = p->bits_per_cell;
3375 3376

	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3377
		*busw = NAND_BUSWIDTH_16;
3378 3379
	else
		*busw = 0;
3380

3381 3382 3383
	if (p->ecc_bits != 0xff) {
		chip->ecc_strength_ds = p->ecc_bits;
		chip->ecc_step_ds = 512;
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	} else if (chip->onfi_version >= 21 &&
		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {

		/*
		 * The nand_flash_detect_ext_param_page() uses the
		 * Change Read Column command which maybe not supported
		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
		 * now. We do not replace user supplied command function.
		 */
		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
			chip->cmdfunc = nand_command_lp;

		/* The Extended Parameter Page is supported since ONFI 2.1. */
		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3398 3399 3400
			pr_warn("Failed to detect ONFI extended param page\n");
	} else {
		pr_warn("Could not retrieve ONFI ECC requirements\n");
3401 3402
	}

3403 3404 3405
	if (p->jedec_id == NAND_MFR_MICRON)
		nand_onfi_detect_micron(chip, p);

3406 3407 3408
	return 1;
}

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
/*
 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
 */
static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
					int *busw)
{
	struct nand_jedec_params *p = &chip->jedec_params;
	struct jedec_ecc_info *ecc;
	int val;
	int i, j;

	/* Try JEDEC for unknown chip or LP */
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'C')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
	for (i = 0; i < 3; i++) {
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);

		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
				le16_to_cpu(p->crc))
			break;
	}

	if (i == 3) {
		pr_err("Could not find valid JEDEC parameter page; aborting\n");
		return 0;
	}

	/* Check version */
	val = le16_to_cpu(p->revision);
	if (val & (1 << 2))
		chip->jedec_version = 10;
	else if (val & (1 << 1))
		chip->jedec_version = 1; /* vendor specific version */

	if (!chip->jedec_version) {
		pr_info("unsupported JEDEC version: %d\n", val);
		return 0;
	}

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;

	mtd->writesize = le32_to_cpu(p->byte_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
	chip->bits_per_cell = p->bits_per_cell;

	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
		*busw = NAND_BUSWIDTH_16;
	else
		*busw = 0;

	/* ECC info */
	ecc = &p->ecc_info[0];

	if (ecc->codeword_size >= 9) {
		chip->ecc_strength_ds = ecc->ecc_bits;
		chip->ecc_step_ds = 1 << ecc->codeword_size;
	} else {
		pr_warn("Invalid codeword size\n");
	}

	return 1;
}

3490 3491 3492 3493 3494 3495 3496 3497
/*
 * nand_id_has_period - Check if an ID string has a given wraparound period
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array
 * @period: the period of repitition
 *
 * Check if an ID string is repeated within a given sequence of bytes at
 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3498
 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
 * if the repetition has a period of @period; otherwise, returns zero.
 */
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
	int i, j;
	for (i = 0; i < period; i++)
		for (j = i + period; j < arrlen; j += period)
			if (id_data[i] != id_data[j])
				return 0;
	return 1;
}

/*
 * nand_id_len - Get the length of an ID string returned by CMD_READID
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array

 * Returns the length of the ID string, according to known wraparound/trailing
 * zero patterns. If no pattern exists, returns the length of the array.
 */
static int nand_id_len(u8 *id_data, int arrlen)
{
	int last_nonzero, period;

	/* Find last non-zero byte */
	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
		if (id_data[last_nonzero])
			break;

	/* All zeros */
	if (last_nonzero < 0)
		return 0;

	/* Calculate wraparound period */
	for (period = 1; period < arrlen; period++)
		if (nand_id_has_period(id_data, arrlen, period))
			break;

	/* There's a repeated pattern */
	if (period < arrlen)
		return period;

	/* There are trailing zeros */
	if (last_nonzero < arrlen - 1)
		return last_nonzero + 1;

	/* No pattern detected */
	return arrlen;
}

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
	int bits;

	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
	bits >>= NAND_CI_CELLTYPE_SHIFT;
	return bits + 1;
}

3559 3560 3561 3562 3563 3564 3565 3566
/*
 * Many new NAND share similar device ID codes, which represent the size of the
 * chip. The rest of the parameters must be decoded according to generic or
 * manufacturer-specific "extended ID" decoding patterns.
 */
static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
				u8 id_data[8], int *busw)
{
3567
	int extid, id_len;
3568
	/* The 3rd id byte holds MLC / multichip data */
3569
	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3570 3571 3572
	/* The 4th id byte is the important one */
	extid = id_data[3];

3573 3574
	id_len = nand_id_len(id_data, 8);

3575 3576 3577
	/*
	 * Field definitions are in the following datasheets:
	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3578
	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3579
	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3580
	 *
3581 3582
	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
	 * ID to decide what to do.
3583
	 */
3584
	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3585
			!nand_is_slc(chip) && id_data[5] != 0x00) {
3586 3587 3588 3589
		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
3590
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3591 3592 3593 3594 3595 3596 3597 3598 3599
		case 1:
			mtd->oobsize = 128;
			break;
		case 2:
			mtd->oobsize = 218;
			break;
		case 3:
			mtd->oobsize = 400;
			break;
3600
		case 4:
3601 3602
			mtd->oobsize = 436;
			break;
3603 3604 3605 3606 3607 3608
		case 5:
			mtd->oobsize = 512;
			break;
		case 6:
			mtd->oobsize = 640;
			break;
3609 3610 3611 3612
		case 7:
		default: /* Other cases are "reserved" (unknown) */
			mtd->oobsize = 1024;
			break;
3613 3614 3615 3616 3617 3618
		}
		extid >>= 2;
		/* Calc blocksize */
		mtd->erasesize = (128 * 1024) <<
			(((extid >> 1) & 0x04) | (extid & 0x03));
		*busw = 0;
3619
	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3620
			!nand_is_slc(chip)) {
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		unsigned int tmp;

		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
		case 0:
			mtd->oobsize = 128;
			break;
		case 1:
			mtd->oobsize = 224;
			break;
		case 2:
			mtd->oobsize = 448;
			break;
		case 3:
			mtd->oobsize = 64;
			break;
		case 4:
			mtd->oobsize = 32;
			break;
		case 5:
			mtd->oobsize = 16;
			break;
		default:
			mtd->oobsize = 640;
			break;
		}
		extid >>= 2;
		/* Calc blocksize */
		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
		if (tmp < 0x03)
			mtd->erasesize = (128 * 1024) << tmp;
		else if (tmp == 0x03)
			mtd->erasesize = 768 * 1024;
		else
			mtd->erasesize = (64 * 1024) << tmp;
		*busw = 0;
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	} else {
		/* Calc pagesize */
		mtd->writesize = 1024 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		mtd->oobsize = (8 << (extid & 0x01)) *
			(mtd->writesize >> 9);
		extid >>= 2;
		/* Calc blocksize. Blocksize is multiples of 64KiB */
		mtd->erasesize = (64 * 1024) << (extid & 0x03);
		extid >>= 2;
		/* Get buswidth information */
		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

		/*
		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
		 * follows:
		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
		 *                         110b -> 24nm
		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
		 */
		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3683
				nand_is_slc(chip) &&
3684 3685 3686 3687 3688
				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
				!(id_data[4] & 0x80) /* !BENAND */) {
			mtd->oobsize = 32 * mtd->writesize >> 9;
		}

3689 3690 3691
	}
}

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
/*
 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
 * decodes a matching ID table entry and assigns the MTD size parameters for
 * the chip.
 */
static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
				struct nand_flash_dev *type, u8 id_data[8],
				int *busw)
{
	int maf_id = id_data[0];

	mtd->erasesize = type->erasesize;
	mtd->writesize = type->pagesize;
	mtd->oobsize = mtd->writesize / 32;
	*busw = type->options & NAND_BUSWIDTH_16;

3708 3709 3710
	/* All legacy ID NAND are small-page, SLC */
	chip->bits_per_cell = 1;

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	/*
	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
	 * some Spansion chips have erasesize that conflicts with size
	 * listed in nand_ids table.
	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
	 */
	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
			&& id_data[6] == 0x00 && id_data[7] == 0x00
			&& mtd->writesize == 512) {
		mtd->erasesize = 128 * 1024;
		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
	}
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
/*
 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
 * heuristic patterns using various detected parameters (e.g., manufacturer,
 * page size, cell-type information).
 */
static void nand_decode_bbm_options(struct mtd_info *mtd,
				    struct nand_chip *chip, u8 id_data[8])
{
	int maf_id = id_data[0];

	/* Set the bad block position */
	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
	else
		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;

	/*
	 * Bad block marker is stored in the last page of each block on Samsung
	 * and Hynix MLC devices; stored in first two pages of each block on
	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
	 * AMD/Spansion, and Macronix.  All others scan only the first page.
	 */
3747
	if (!nand_is_slc(chip) &&
3748 3749 3750
			(maf_id == NAND_MFR_SAMSUNG ||
			 maf_id == NAND_MFR_HYNIX))
		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3751
	else if ((nand_is_slc(chip) &&
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
				(maf_id == NAND_MFR_SAMSUNG ||
				 maf_id == NAND_MFR_HYNIX ||
				 maf_id == NAND_MFR_TOSHIBA ||
				 maf_id == NAND_MFR_AMD ||
				 maf_id == NAND_MFR_MACRONIX)) ||
			(mtd->writesize == 2048 &&
			 maf_id == NAND_MFR_MICRON))
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
	return type->id_len;
}

static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
		   struct nand_flash_dev *type, u8 *id_data, int *busw)
{
	if (!strncmp(type->id, id_data, type->id_len)) {
		mtd->writesize = type->pagesize;
		mtd->erasesize = type->erasesize;
		mtd->oobsize = type->oobsize;

3775
		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3776 3777
		chip->chipsize = (uint64_t)type->chipsize << 20;
		chip->options |= type->options;
3778 3779
		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
		chip->ecc_step_ds = NAND_ECC_STEP(type);
3780 3781
		chip->onfi_timing_mode_default =
					type->onfi_timing_mode_default;
3782 3783 3784

		*busw = type->options & NAND_BUSWIDTH_16;

3785 3786 3787
		if (!mtd->name)
			mtd->name = type->name;

3788 3789 3790 3791 3792
		return true;
	}
	return false;
}

T
Thomas Gleixner 已提交
3793
/*
3794
 * Get the flash and manufacturer id and lookup if the type is supported.
T
Thomas Gleixner 已提交
3795 3796
 */
static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3797
						  struct nand_chip *chip,
3798
						  int *maf_id, int *dev_id,
3799
						  struct nand_flash_dev *type)
T
Thomas Gleixner 已提交
3800
{
3801
	int busw;
3802
	int i, maf_idx;
3803
	u8 id_data[8];
L
Linus Torvalds 已提交
3804 3805

	/* Select the device */
3806
	chip->select_chip(mtd, 0);
L
Linus Torvalds 已提交
3807

3808 3809
	/*
	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3810
	 * after power-up.
3811 3812 3813
	 */
	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

L
Linus Torvalds 已提交
3814
	/* Send the command for reading device ID */
3815
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
3816 3817

	/* Read manufacturer and device IDs */
3818
	*maf_id = chip->read_byte(mtd);
3819
	*dev_id = chip->read_byte(mtd);
L
Linus Torvalds 已提交
3820

3821 3822
	/*
	 * Try again to make sure, as some systems the bus-hold or other
3823 3824 3825 3826 3827 3828 3829
	 * interface concerns can cause random data which looks like a
	 * possibly credible NAND flash to appear. If the two results do
	 * not match, ignore the device completely.
	 */

	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

3830 3831
	/* Read entire ID string */
	for (i = 0; i < 8; i++)
3832
		id_data[i] = chip->read_byte(mtd);
3833

3834
	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3835
		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3836
			*maf_id, *dev_id, id_data[0], id_data[1]);
3837 3838 3839
		return ERR_PTR(-ENODEV);
	}

T
Thomas Gleixner 已提交
3840
	if (!type)
3841 3842
		type = nand_flash_ids;

3843 3844 3845 3846 3847
	for (; type->name != NULL; type++) {
		if (is_full_id_nand(type)) {
			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
				goto ident_done;
		} else if (*dev_id == type->dev_id) {
3848
			break;
3849 3850
		}
	}
3851

3852 3853
	chip->onfi_version = 0;
	if (!type->name || !type->pagesize) {
3854
		/* Check if the chip is ONFI compliant */
3855
		if (nand_flash_detect_onfi(mtd, chip, &busw))
3856
			goto ident_done;
3857 3858 3859 3860

		/* Check if the chip is JEDEC compliant */
		if (nand_flash_detect_jedec(mtd, chip, &busw))
			goto ident_done;
3861 3862
	}

3863
	if (!type->name)
T
Thomas Gleixner 已提交
3864 3865
		return ERR_PTR(-ENODEV);

3866 3867 3868
	if (!mtd->name)
		mtd->name = type->name;

3869
	chip->chipsize = (uint64_t)type->chipsize << 20;
T
Thomas Gleixner 已提交
3870

3871
	if (!type->pagesize) {
3872 3873
		/* Decode parameters from extended ID */
		nand_decode_ext_id(mtd, chip, id_data, &busw);
T
Thomas Gleixner 已提交
3874
	} else {
3875
		nand_decode_id(mtd, chip, type, id_data, &busw);
T
Thomas Gleixner 已提交
3876
	}
3877 3878
	/* Get chip options */
	chip->options |= type->options;
3879

3880 3881 3882
	/*
	 * Check if chip is not a Samsung device. Do not clear the
	 * options for chips which do not have an extended id.
3883 3884 3885 3886 3887
	 */
	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:

T
Thomas Gleixner 已提交
3888
	/* Try to identify manufacturer */
3889
	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
T
Thomas Gleixner 已提交
3890 3891 3892
		if (nand_manuf_ids[maf_idx].id == *maf_id)
			break;
	}
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902
	if (chip->options & NAND_BUSWIDTH_AUTO) {
		WARN_ON(chip->options & NAND_BUSWIDTH_16);
		chip->options |= busw;
		nand_set_defaults(chip, busw);
	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
		/*
		 * Check, if buswidth is correct. Hardware drivers should set
		 * chip correct!
		 */
3903 3904 3905 3906
		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
			*maf_id, *dev_id);
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
		pr_warn("bus width %d instead %d bit\n",
3907 3908
			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
			   busw ? 16 : 8);
T
Thomas Gleixner 已提交
3909 3910
		return ERR_PTR(-EINVAL);
	}
3911

3912 3913
	nand_decode_bbm_options(mtd, chip, id_data);

T
Thomas Gleixner 已提交
3914
	/* Calculate the address shift from the page size */
3915
	chip->page_shift = ffs(mtd->writesize) - 1;
3916
	/* Convert chipsize to number of pages per chip -1 */
3917
	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3918

3919
	chip->bbt_erase_shift = chip->phys_erase_shift =
T
Thomas Gleixner 已提交
3920
		ffs(mtd->erasesize) - 1;
3921 3922
	if (chip->chipsize & 0xffffffff)
		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3923 3924 3925 3926
	else {
		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
		chip->chip_shift += 32 - 1;
	}
L
Linus Torvalds 已提交
3927

A
Artem Bityutskiy 已提交
3928
	chip->badblockbits = 8;
3929
	chip->erase = single_erase;
T
Thomas Gleixner 已提交
3930

3931
	/* Do not replace user supplied command function! */
3932 3933
	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
		chip->cmdfunc = nand_command_lp;
T
Thomas Gleixner 已提交
3934

3935 3936
	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
		*maf_id, *dev_id);
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947

	if (chip->onfi_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->onfi_params.model);
	else if (chip->jedec_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->jedec_params.model);
	else
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				type->name);

3948
	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3949
		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3950
		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
T
Thomas Gleixner 已提交
3951 3952 3953
	return type;
}

3954
static int nand_dt_init(struct nand_chip *chip)
3955
{
3956
	struct device_node *dn = nand_get_flash_node(chip);
3957 3958
	int ecc_mode, ecc_strength, ecc_step;

3959 3960 3961
	if (!dn)
		return 0;

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	if (of_get_nand_bus_width(dn) == 16)
		chip->options |= NAND_BUSWIDTH_16;

	if (of_get_nand_on_flash_bbt(dn))
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	ecc_mode = of_get_nand_ecc_mode(dn);
	ecc_strength = of_get_nand_ecc_strength(dn);
	ecc_step = of_get_nand_ecc_step_size(dn);

	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
		pr_err("must set both strength and step size in DT\n");
		return -EINVAL;
	}

	if (ecc_mode >= 0)
		chip->ecc.mode = ecc_mode;

	if (ecc_strength >= 0)
		chip->ecc.strength = ecc_strength;

	if (ecc_step > 0)
		chip->ecc.size = ecc_step;

	return 0;
}

T
Thomas Gleixner 已提交
3990
/**
3991
 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3992 3993 3994
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
 * @table: alternative NAND ID table
T
Thomas Gleixner 已提交
3995
 *
3996 3997
 * This is the first phase of the normal nand_scan() function. It reads the
 * flash ID and sets up MTD fields accordingly.
T
Thomas Gleixner 已提交
3998
 *
3999
 * The mtd->owner field must be set to the module of the caller.
T
Thomas Gleixner 已提交
4000
 */
4001 4002
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
		    struct nand_flash_dev *table)
T
Thomas Gleixner 已提交
4003
{
4004
	int i, nand_maf_id, nand_dev_id;
4005
	struct nand_chip *chip = mtd_to_nand(mtd);
T
Thomas Gleixner 已提交
4006
	struct nand_flash_dev *type;
4007 4008
	int ret;

4009 4010 4011
	ret = nand_dt_init(chip);
	if (ret)
		return ret;
T
Thomas Gleixner 已提交
4012

4013 4014 4015
	if (!mtd->name && mtd->dev.parent)
		mtd->name = dev_name(mtd->dev.parent);

T
Thomas Gleixner 已提交
4016
	/* Set the default functions */
4017
	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
T
Thomas Gleixner 已提交
4018 4019

	/* Read the flash type */
4020 4021
	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
				   &nand_dev_id, table);
T
Thomas Gleixner 已提交
4022 4023

	if (IS_ERR(type)) {
4024
		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4025
			pr_warn("No NAND device found\n");
4026
		chip->select_chip(mtd, -1);
T
Thomas Gleixner 已提交
4027
		return PTR_ERR(type);
L
Linus Torvalds 已提交
4028 4029
	}

4030 4031
	chip->select_chip(mtd, -1);

T
Thomas Gleixner 已提交
4032
	/* Check for a chip array */
4033
	for (i = 1; i < maxchips; i++) {
4034
		chip->select_chip(mtd, i);
4035 4036
		/* See comment in nand_get_flash_type for reset */
		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
L
Linus Torvalds 已提交
4037
		/* Send the command for reading device ID */
4038
		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4039
		/* Read manufacturer and device IDs */
4040
		if (nand_maf_id != chip->read_byte(mtd) ||
4041 4042
		    nand_dev_id != chip->read_byte(mtd)) {
			chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4043
			break;
4044 4045
		}
		chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4046 4047
	}
	if (i > 1)
4048
		pr_info("%d chips detected\n", i);
4049

L
Linus Torvalds 已提交
4050
	/* Store the number of chips and calc total size for mtd */
4051 4052
	chip->numchips = i;
	mtd->size = i * chip->chipsize;
T
Thomas Gleixner 已提交
4053

4054 4055
	return 0;
}
4056
EXPORT_SYMBOL(nand_scan_ident);
4057

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
/*
 * Check if the chip configuration meet the datasheet requirements.

 * If our configuration corrects A bits per B bytes and the minimum
 * required correction level is X bits per Y bytes, then we must ensure
 * both of the following are true:
 *
 * (1) A / B >= X / Y
 * (2) A >= X
 *
 * Requirement (1) ensures we can correct for the required bitflip density.
 * Requirement (2) ensures we can correct even when all bitflips are clumped
 * in the same sector.
 */
static bool nand_ecc_strength_good(struct mtd_info *mtd)
{
4074
	struct nand_chip *chip = mtd_to_nand(mtd);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int corr, ds_corr;

	if (ecc->size == 0 || chip->ecc_step_ds == 0)
		/* Not enough information */
		return true;

	/*
	 * We get the number of corrected bits per page to compare
	 * the correction density.
	 */
	corr = (mtd->writesize * ecc->strength) / ecc->size;
	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;

	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
}
4091 4092 4093

/**
 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4094
 * @mtd: MTD device structure
4095
 *
4096 4097 4098
 * This is the second phase of the normal nand_scan() function. It fills out
 * all the uninitialized function pointers with the defaults and scans for a
 * bad block table if appropriate.
4099 4100 4101 4102
 */
int nand_scan_tail(struct mtd_info *mtd)
{
	int i;
4103
	struct nand_chip *chip = mtd_to_nand(mtd);
4104
	struct nand_ecc_ctrl *ecc = &chip->ecc;
4105
	struct nand_buffers *nbuf;
4106

4107 4108 4109 4110
	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
			!(chip->bbt_options & NAND_BBT_USE_FLASH));

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	if (!(chip->options & NAND_OWN_BUFFERS)) {
		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
				+ mtd->oobsize * 3, GFP_KERNEL);
		if (!nbuf)
			return -ENOMEM;
		nbuf->ecccalc = (uint8_t *)(nbuf + 1);
		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
		nbuf->databuf = nbuf->ecccode + mtd->oobsize;

		chip->buffers = nbuf;
	} else {
		if (!chip->buffers)
			return -ENOMEM;
	}
4125

4126
	/* Set the internal oob buffer location, just after the page data */
4127
	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
L
Linus Torvalds 已提交
4128

T
Thomas Gleixner 已提交
4129
	/*
4130
	 * If no default placement scheme is given, select an appropriate one.
T
Thomas Gleixner 已提交
4131
	 */
4132
	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4133
		switch (mtd->oobsize) {
L
Linus Torvalds 已提交
4134
		case 8:
4135
			ecc->layout = &nand_oob_8;
L
Linus Torvalds 已提交
4136 4137
			break;
		case 16:
4138
			ecc->layout = &nand_oob_16;
L
Linus Torvalds 已提交
4139 4140
			break;
		case 64:
4141
			ecc->layout = &nand_oob_64;
L
Linus Torvalds 已提交
4142
			break;
4143
		case 128:
4144
			ecc->layout = &nand_oob_128;
4145
			break;
L
Linus Torvalds 已提交
4146
		default:
4147 4148
			pr_warn("No oob scheme defined for oobsize %d\n",
				   mtd->oobsize);
L
Linus Torvalds 已提交
4149 4150 4151
			BUG();
		}
	}
4152

4153 4154 4155
	if (!chip->write_page)
		chip->write_page = nand_write_page;

4156
	/*
4157
	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
T
Thomas Gleixner 已提交
4158
	 * selected and we have 256 byte pagesize fallback to software ECC
4159
	 */
4160

4161
	switch (ecc->mode) {
4162 4163
	case NAND_ECC_HW_OOB_FIRST:
		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4164
		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4165
			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4166 4167
			BUG();
		}
4168 4169
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc_oob_first;
4170

T
Thomas Gleixner 已提交
4171
	case NAND_ECC_HW:
4172
		/* Use standard hwecc read page function? */
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_hwecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_std;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_std;
		if (!ecc->read_subpage)
			ecc->read_subpage = nand_read_subpage;
4187
		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4188
			ecc->write_subpage = nand_write_subpage_hwecc;
4189

T
Thomas Gleixner 已提交
4190
	case NAND_ECC_HW_SYNDROME:
4191 4192 4193 4194 4195
		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
		    (!ecc->read_page ||
		     ecc->read_page == nand_read_page_hwecc ||
		     !ecc->write_page ||
		     ecc->write_page == nand_write_page_hwecc)) {
4196
			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
T
Thomas Gleixner 已提交
4197 4198
			BUG();
		}
4199
		/* Use standard syndrome read/write page function? */
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_syndrome;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_syndrome;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw_syndrome;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw_syndrome;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_syndrome;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_syndrome;

		if (mtd->writesize >= ecc->size) {
			if (!ecc->strength) {
4215 4216 4217
				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
				BUG();
			}
T
Thomas Gleixner 已提交
4218
			break;
4219
		}
4220 4221
		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
			ecc->size, mtd->writesize);
4222
		ecc->mode = NAND_ECC_SOFT;
4223

T
Thomas Gleixner 已提交
4224
	case NAND_ECC_SOFT:
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
		ecc->calculate = nand_calculate_ecc;
		ecc->correct = nand_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
		if (!ecc->size)
			ecc->size = 256;
		ecc->bytes = 3;
		ecc->strength = 1;
L
Linus Torvalds 已提交
4238
		break;
4239

4240 4241
	case NAND_ECC_SOFT_BCH:
		if (!mtd_nand_has_bch()) {
4242
			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4243 4244
			BUG();
		}
4245 4246 4247 4248 4249 4250 4251 4252 4253
		ecc->calculate = nand_bch_calculate_ecc;
		ecc->correct = nand_bch_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
4254
		/*
4255 4256 4257
		 * Board driver should supply ecc.size and ecc.strength values
		 * to select how many bits are correctable. Otherwise, default
		 * to 4 bits for large page devices.
4258
		 */
4259 4260
		if (!ecc->size && (mtd->oobsize >= 64)) {
			ecc->size = 512;
4261
			ecc->strength = 4;
4262
		}
4263 4264

		/* See nand_bch_init() for details. */
4265 4266
		ecc->bytes = 0;
		ecc->priv = nand_bch_init(mtd);
4267
		if (!ecc->priv) {
4268
			pr_warn("BCH ECC initialization failed!\n");
4269 4270 4271 4272
			BUG();
		}
		break;

4273
	case NAND_ECC_NONE:
4274
		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4275 4276 4277 4278 4279 4280 4281 4282 4283
		ecc->read_page = nand_read_page_raw;
		ecc->write_page = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->write_oob = nand_write_oob_std;
		ecc->size = mtd->writesize;
		ecc->bytes = 0;
		ecc->strength = 0;
L
Linus Torvalds 已提交
4284
		break;
4285

L
Linus Torvalds 已提交
4286
	default:
4287
		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4288
		BUG();
L
Linus Torvalds 已提交
4289
	}
4290

4291
	/* For many systems, the standard OOB write also works for raw */
4292 4293 4294 4295
	if (!ecc->read_oob_raw)
		ecc->read_oob_raw = ecc->read_oob;
	if (!ecc->write_oob_raw)
		ecc->write_oob_raw = ecc->write_oob;
4296

4297 4298
	/*
	 * The number of bytes available for a client to place data into
4299
	 * the out of band area.
4300
	 */
4301 4302 4303 4304 4305
	mtd->oobavail = 0;
	if (ecc->layout) {
		for (i = 0; ecc->layout->oobfree[i].length; i++)
			mtd->oobavail += ecc->layout->oobfree[i].length;
	}
4306

4307 4308 4309 4310
	/* ECC sanity check: warn if it's too weak */
	if (!nand_ecc_strength_good(mtd))
		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
			mtd->name);
4311

T
Thomas Gleixner 已提交
4312 4313
	/*
	 * Set the number of read / write steps for one page depending on ECC
4314
	 * mode.
T
Thomas Gleixner 已提交
4315
	 */
4316 4317
	ecc->steps = mtd->writesize / ecc->size;
	if (ecc->steps * ecc->size != mtd->writesize) {
4318
		pr_warn("Invalid ECC parameters\n");
T
Thomas Gleixner 已提交
4319
		BUG();
L
Linus Torvalds 已提交
4320
	}
4321
	ecc->total = ecc->steps * ecc->bytes;
4322

4323
	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4324
	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4325
		switch (ecc->steps) {
4326 4327 4328 4329 4330
		case 2:
			mtd->subpage_sft = 1;
			break;
		case 4:
		case 8:
4331
		case 16:
4332 4333 4334 4335 4336 4337
			mtd->subpage_sft = 2;
			break;
		}
	}
	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;

4338
	/* Initialize state */
4339
	chip->state = FL_READY;
L
Linus Torvalds 已提交
4340 4341

	/* Invalidate the pagebuffer reference */
4342
	chip->pagebuf = -1;
L
Linus Torvalds 已提交
4343

4344
	/* Large page NAND with SOFT_ECC should support subpage reads */
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
	switch (ecc->mode) {
	case NAND_ECC_SOFT:
	case NAND_ECC_SOFT_BCH:
		if (chip->page_shift > 9)
			chip->options |= NAND_SUBPAGE_READ;
		break;

	default:
		break;
	}
4355

L
Linus Torvalds 已提交
4356
	/* Fill in remaining MTD driver data */
4357
	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4358 4359
	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
						MTD_CAP_NANDFLASH;
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	mtd->_erase = nand_erase;
	mtd->_point = NULL;
	mtd->_unpoint = NULL;
	mtd->_read = nand_read;
	mtd->_write = nand_write;
	mtd->_panic_write = panic_nand_write;
	mtd->_read_oob = nand_read_oob;
	mtd->_write_oob = nand_write_oob;
	mtd->_sync = nand_sync;
	mtd->_lock = NULL;
	mtd->_unlock = NULL;
	mtd->_suspend = nand_suspend;
	mtd->_resume = nand_resume;
S
Scott Branden 已提交
4373
	mtd->_reboot = nand_shutdown;
4374
	mtd->_block_isreserved = nand_block_isreserved;
4375 4376
	mtd->_block_isbad = nand_block_isbad;
	mtd->_block_markbad = nand_block_markbad;
4377
	mtd->writebufsize = mtd->writesize;
L
Linus Torvalds 已提交
4378

M
Mike Dunn 已提交
4379
	/* propagate ecc info to mtd_info */
4380 4381 4382
	mtd->ecclayout = ecc->layout;
	mtd->ecc_strength = ecc->strength;
	mtd->ecc_step_size = ecc->size;
4383 4384 4385 4386 4387 4388
	/*
	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
	 * properly set.
	 */
	if (!mtd->bitflip_threshold)
4389
		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
L
Linus Torvalds 已提交
4390

4391
	/* Check, if we should skip the bad block table scan */
4392
	if (chip->options & NAND_SKIP_BBTSCAN)
4393
		return 0;
L
Linus Torvalds 已提交
4394 4395

	/* Build bad block table */
4396
	return chip->scan_bbt(mtd);
L
Linus Torvalds 已提交
4397
}
4398
EXPORT_SYMBOL(nand_scan_tail);
L
Linus Torvalds 已提交
4399

4400 4401
/*
 * is_module_text_address() isn't exported, and it's mostly a pointless
4402
 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4403 4404
 * to call us from in-kernel code if the core NAND support is modular.
 */
4405 4406 4407 4408
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() \
4409
	is_module_text_address((unsigned long)__builtin_return_address(0))
4410 4411 4412 4413
#endif

/**
 * nand_scan - [NAND Interface] Scan for the NAND device
4414 4415
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
4416
 *
4417 4418 4419 4420
 * This fills out all the uninitialized function pointers with the defaults.
 * The flash ID is read and the mtd/chip structures are filled with the
 * appropriate values. The mtd->owner field must be set to the module of the
 * caller.
4421 4422 4423 4424 4425 4426 4427
 */
int nand_scan(struct mtd_info *mtd, int maxchips)
{
	int ret;

	/* Many callers got this wrong, so check for it for a while... */
	if (!mtd->owner && caller_is_module()) {
4428
		pr_crit("%s called with NULL mtd->owner!\n", __func__);
4429 4430 4431
		BUG();
	}

4432
	ret = nand_scan_ident(mtd, maxchips, NULL);
4433 4434 4435 4436
	if (!ret)
		ret = nand_scan_tail(mtd);
	return ret;
}
4437
EXPORT_SYMBOL(nand_scan);
4438

L
Linus Torvalds 已提交
4439
/**
4440
 * nand_release - [NAND Interface] Free resources held by the NAND device
4441 4442
 * @mtd: MTD device structure
 */
4443
void nand_release(struct mtd_info *mtd)
L
Linus Torvalds 已提交
4444
{
4445
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
4446

4447 4448 4449
	if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);

4450
	mtd_device_unregister(mtd);
L
Linus Torvalds 已提交
4451

J
Jesper Juhl 已提交
4452
	/* Free bad block table memory */
4453
	kfree(chip->bbt);
4454 4455
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
4456 4457 4458 4459 4460

	/* Free bad block descriptor memory */
	if (chip->badblock_pattern && chip->badblock_pattern->options
			& NAND_BBT_DYNAMICSTRUCT)
		kfree(chip->badblock_pattern);
L
Linus Torvalds 已提交
4461
}
4462
EXPORT_SYMBOL_GPL(nand_release);
4463

4464
MODULE_LICENSE("GPL");
4465 4466
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4467
MODULE_DESCRIPTION("Generic NAND flash driver code");