nand_base.c 128.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 *  Overview:
 *   This is the generic MTD driver for NAND flash devices. It should be
 *   capable of working with almost all NAND chips currently available.
5
 *
L
Linus Torvalds 已提交
6
 *	Additional technical information is available on
7
 *	http://www.linux-mtd.infradead.org/doc/nand.html
8
 *
L
Linus Torvalds 已提交
9
 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10
 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
L
Linus Torvalds 已提交
11
 *
12
 *  Credits:
13 14
 *	David Woodhouse for adding multichip support
 *
L
Linus Torvalds 已提交
15 16 17
 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
 *	rework for 2K page size chips
 *
18
 *  TODO:
L
Linus Torvalds 已提交
19 20
 *	Enable cached programming for 2k page size chips
 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21
 *	if we have HW ECC support.
22
 *	BBT table is not serialized, has to be fixed
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

30 31
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

32
#include <linux/module.h>
L
Linus Torvalds 已提交
33 34
#include <linux/delay.h>
#include <linux/errno.h>
T
Thomas Gleixner 已提交
35
#include <linux/err.h>
L
Linus Torvalds 已提交
36 37
#include <linux/sched.h>
#include <linux/slab.h>
38
#include <linux/mm.h>
L
Linus Torvalds 已提交
39 40 41 42
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
43
#include <linux/mtd/nand_bch.h>
L
Linus Torvalds 已提交
44 45
#include <linux/interrupt.h>
#include <linux/bitops.h>
46
#include <linux/io.h>
L
Linus Torvalds 已提交
47
#include <linux/mtd/partitions.h>
48
#include <linux/of.h>
L
Linus Torvalds 已提交
49

50 51 52 53
static int nand_get_device(struct mtd_info *mtd, int new_state);

static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops);
L
Linus Torvalds 已提交
54 55

/* Define default oob placement schemes for large and small page devices */
56 57 58 59 60
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
61

62 63
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
64

65 66 67 68 69 70 71
	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 4;
	} else {
		oobregion->offset = 6;
		oobregion->length = ecc->total - 4;
	}
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79 80
	return 0;
}

static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	if (mtd->oobsize == 16) {
		if (section)
			return -ERANGE;

		oobregion->length = 8;
		oobregion->offset = 8;
	} else {
		oobregion->length = 2;
		if (!section)
			oobregion->offset = 3;
		else
			oobregion->offset = 6;
	}

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
	.ecc = nand_ooblayout_ecc_sp,
	.free = nand_ooblayout_free_sp,
102
};
103
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
104

105 106 107 108 109
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
110

111 112
	if (section)
		return -ERANGE;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	oobregion->length = ecc->total;
	oobregion->offset = mtd->oobsize - oobregion->length;

	return 0;
}

static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

	if (section)
		return -ERANGE;

	oobregion->length = mtd->oobsize - ecc->total - 2;
	oobregion->offset = 2;

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
	.ecc = nand_ooblayout_ecc_lp,
	.free = nand_ooblayout_free_lp,
};
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
T
Thomas Gleixner 已提交
140

141 142 143
static int check_offs_len(struct mtd_info *mtd,
					loff_t ofs, uint64_t len)
{
144
	struct nand_chip *chip = mtd_to_nand(mtd);
145 146 147
	int ret = 0;

	/* Start address must align on block boundary */
148
	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
149
		pr_debug("%s: unaligned address\n", __func__);
150 151 152 153
		ret = -EINVAL;
	}

	/* Length must align on block boundary */
154
	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
155
		pr_debug("%s: length not block aligned\n", __func__);
156 157 158 159 160 161
		ret = -EINVAL;
	}

	return ret;
}

L
Linus Torvalds 已提交
162 163
/**
 * nand_release_device - [GENERIC] release chip
164
 * @mtd: MTD device structure
165
 *
166
 * Release chip lock and wake up anyone waiting on the device.
L
Linus Torvalds 已提交
167
 */
168
static void nand_release_device(struct mtd_info *mtd)
L
Linus Torvalds 已提交
169
{
170
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
171

T
Thomas Gleixner 已提交
172
	/* Release the controller and the chip */
173 174 175 176 177
	spin_lock(&chip->controller->lock);
	chip->controller->active = NULL;
	chip->state = FL_READY;
	wake_up(&chip->controller->wq);
	spin_unlock(&chip->controller->lock);
L
Linus Torvalds 已提交
178 179 180 181
}

/**
 * nand_read_byte - [DEFAULT] read one byte from the chip
182
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
183
 *
184
 * Default read function for 8bit buswidth
L
Linus Torvalds 已提交
185
 */
186
static uint8_t nand_read_byte(struct mtd_info *mtd)
L
Linus Torvalds 已提交
187
{
188
	struct nand_chip *chip = mtd_to_nand(mtd);
189
	return readb(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
190 191 192
}

/**
193
 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
194
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
195
 *
196 197
 * Default read function for 16bit buswidth with endianness conversion.
 *
L
Linus Torvalds 已提交
198
 */
199
static uint8_t nand_read_byte16(struct mtd_info *mtd)
L
Linus Torvalds 已提交
200
{
201
	struct nand_chip *chip = mtd_to_nand(mtd);
202
	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
L
Linus Torvalds 已提交
203 204 205 206
}

/**
 * nand_read_word - [DEFAULT] read one word from the chip
207
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
208
 *
209
 * Default read function for 16bit buswidth without endianness conversion.
L
Linus Torvalds 已提交
210 211 212
 */
static u16 nand_read_word(struct mtd_info *mtd)
{
213
	struct nand_chip *chip = mtd_to_nand(mtd);
214
	return readw(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
215 216 217 218
}

/**
 * nand_select_chip - [DEFAULT] control CE line
219 220
 * @mtd: MTD device structure
 * @chipnr: chipnumber to select, -1 for deselect
L
Linus Torvalds 已提交
221 222 223
 *
 * Default select function for 1 chip devices.
 */
224
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
L
Linus Torvalds 已提交
225
{
226
	struct nand_chip *chip = mtd_to_nand(mtd);
227 228

	switch (chipnr) {
L
Linus Torvalds 已提交
229
	case -1:
230
		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239
		break;
	case 0:
		break;

	default:
		BUG();
	}
}

240 241 242 243 244 245 246 247 248
/**
 * nand_write_byte - [DEFAULT] write single byte to chip
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0]
 */
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
{
249
	struct nand_chip *chip = mtd_to_nand(mtd);
250 251 252 253 254 255 256 257 258 259 260 261 262

	chip->write_buf(mtd, &byte, 1);
}

/**
 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 */
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
{
263
	struct nand_chip *chip = mtd_to_nand(mtd);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	uint16_t word = byte;

	/*
	 * It's not entirely clear what should happen to I/O[15:8] when writing
	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
	 *
	 *    When the host supports a 16-bit bus width, only data is
	 *    transferred at the 16-bit width. All address and command line
	 *    transfers shall use only the lower 8-bits of the data bus. During
	 *    command transfers, the host may place any value on the upper
	 *    8-bits of the data bus. During address transfers, the host shall
	 *    set the upper 8-bits of the data bus to 00h.
	 *
	 * One user of the write_byte callback is nand_onfi_set_features. The
	 * four parameters are specified to be written to I/O[7:0], but this is
	 * neither an address nor a command transfer. Let's assume a 0 on the
	 * upper I/O lines is OK.
	 */
	chip->write_buf(mtd, (uint8_t *)&word, 2);
}

L
Linus Torvalds 已提交
285 286
/**
 * nand_write_buf - [DEFAULT] write buffer to chip
287 288 289
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
290
 *
291
 * Default write function for 8bit buswidth.
L
Linus Torvalds 已提交
292
 */
293
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
294
{
295
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
296

297
	iowrite8_rep(chip->IO_ADDR_W, buf, len);
L
Linus Torvalds 已提交
298 299 300
}

/**
301
 * nand_read_buf - [DEFAULT] read chip data into buffer
302 303 304
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
305
 *
306
 * Default read function for 8bit buswidth.
L
Linus Torvalds 已提交
307
 */
308
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
309
{
310
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
311

312
	ioread8_rep(chip->IO_ADDR_R, buf, len);
L
Linus Torvalds 已提交
313 314 315 316
}

/**
 * nand_write_buf16 - [DEFAULT] write buffer to chip
317 318 319
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
320
 *
321
 * Default write function for 16bit buswidth.
L
Linus Torvalds 已提交
322
 */
323
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
324
{
325
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
326
	u16 *p = (u16 *) buf;
327

328
	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
L
Linus Torvalds 已提交
329 330 331
}

/**
332
 * nand_read_buf16 - [DEFAULT] read chip data into buffer
333 334 335
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
336
 *
337
 * Default read function for 16bit buswidth.
L
Linus Torvalds 已提交
338
 */
339
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
340
{
341
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
342 343
	u16 *p = (u16 *) buf;

344
	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
L
Linus Torvalds 已提交
345 346 347 348
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
349 350
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
351
 *
352
 * Check, if the block is bad.
L
Linus Torvalds 已提交
353
 */
354
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
355
{
356
	int page, res = 0, i = 0;
357
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
358 359
	u16 bad;

360
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
361 362
		ofs += mtd->erasesize - mtd->writesize;

363 364
	page = (int)(ofs >> chip->page_shift) & chip->pagemask;

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	do {
		if (chip->options & NAND_BUSWIDTH_16) {
			chip->cmdfunc(mtd, NAND_CMD_READOOB,
					chip->badblockpos & 0xFE, page);
			bad = cpu_to_le16(chip->read_word(mtd));
			if (chip->badblockpos & 0x1)
				bad >>= 8;
			else
				bad &= 0xFF;
		} else {
			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
					page);
			bad = chip->read_byte(mtd);
		}

		if (likely(chip->badblockbits == 8))
			res = bad != 0xFF;
382
		else
383 384 385 386 387
			res = hweight8(bad) < chip->badblockbits;
		ofs += mtd->writesize;
		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
		i++;
	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
388

L
Linus Torvalds 已提交
389 390 391 392
	return res;
}

/**
393
 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
394 395
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
396
 *
397
 * This is the default implementation, which can be overridden by a hardware
398 399 400 401 402
 * specific driver. It provides the details for writing a bad block marker to a
 * block.
 */
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
403
	struct nand_chip *chip = mtd_to_nand(mtd);
404 405 406 407
	struct mtd_oob_ops ops;
	uint8_t buf[2] = { 0, 0 };
	int ret = 0, res, i = 0;

408
	memset(&ops, 0, sizeof(ops));
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	ops.oobbuf = buf;
	ops.ooboffs = chip->badblockpos;
	if (chip->options & NAND_BUSWIDTH_16) {
		ops.ooboffs &= ~0x01;
		ops.len = ops.ooblen = 2;
	} else {
		ops.len = ops.ooblen = 1;
	}
	ops.mode = MTD_OPS_PLACE_OOB;

	/* Write to first/last page(s) if necessary */
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
		ofs += mtd->erasesize - mtd->writesize;
	do {
		res = nand_do_write_oob(mtd, ofs, &ops);
		if (!ret)
			ret = res;

		i++;
		ofs += mtd->writesize;
	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);

	return ret;
}

/**
 * nand_block_markbad_lowlevel - mark a block bad
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
 * This function performs the generic NAND bad block marking steps (i.e., bad
 * block table(s) and/or marker(s)). We only allow the hardware driver to
 * specify how to write bad block markers to OOB (chip->block_markbad).
 *
443
 * We try operations in the following order:
444
 *  (1) erase the affected block, to allow OOB marker to be written cleanly
445 446 447 448
 *  (2) write bad block marker to OOB area of affected block (unless flag
 *      NAND_BBT_NO_OOB_BBM is present)
 *  (3) update the BBT
 * Note that we retain the first error encountered in (2) or (3), finish the
449
 * procedures, and dump the error in the end.
L
Linus Torvalds 已提交
450
*/
451
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
452
{
453
	struct nand_chip *chip = mtd_to_nand(mtd);
454
	int res, ret = 0;
455

456
	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
457 458 459 460 461 462
		struct erase_info einfo;

		/* Attempt erase before marking OOB */
		memset(&einfo, 0, sizeof(einfo));
		einfo.mtd = mtd;
		einfo.addr = ofs;
463
		einfo.len = 1ULL << chip->phys_erase_shift;
464
		nand_erase_nand(mtd, &einfo, 0);
L
Linus Torvalds 已提交
465

466
		/* Write bad block marker to OOB */
467
		nand_get_device(mtd, FL_WRITING);
468
		ret = chip->block_markbad(mtd, ofs);
469
		nand_release_device(mtd);
470
	}
471

472 473 474
	/* Mark block bad in BBT */
	if (chip->bbt) {
		res = nand_markbad_bbt(mtd, ofs);
475 476 477 478
		if (!ret)
			ret = res;
	}

479 480
	if (!ret)
		mtd->ecc_stats.badblocks++;
481

482
	return ret;
L
Linus Torvalds 已提交
483 484
}

485
/**
L
Linus Torvalds 已提交
486
 * nand_check_wp - [GENERIC] check if the chip is write protected
487
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
488
 *
489 490
 * Check, if the device is write protected. The function expects, that the
 * device is already selected.
L
Linus Torvalds 已提交
491
 */
492
static int nand_check_wp(struct mtd_info *mtd)
L
Linus Torvalds 已提交
493
{
494
	struct nand_chip *chip = mtd_to_nand(mtd);
495

496
	/* Broken xD cards report WP despite being writable */
497 498 499
	if (chip->options & NAND_BROKEN_XD)
		return 0;

L
Linus Torvalds 已提交
500
	/* Check the WP bit */
501 502
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
L
Linus Torvalds 已提交
503 504
}

505
/**
506
 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
507 508 509
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
510
 * Check if the block is marked as reserved.
511 512 513
 */
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
514
	struct nand_chip *chip = mtd_to_nand(mtd);
515 516 517 518 519 520 521

	if (!chip->bbt)
		return 0;
	/* Return info from the table */
	return nand_isreserved_bbt(mtd, ofs);
}

L
Linus Torvalds 已提交
522 523
/**
 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
524 525 526
 * @mtd: MTD device structure
 * @ofs: offset from device start
 * @allowbbt: 1, if its allowed to access the bbt area
L
Linus Torvalds 已提交
527 528 529 530
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
531
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
L
Linus Torvalds 已提交
532
{
533
	struct nand_chip *chip = mtd_to_nand(mtd);
534

535
	if (!chip->bbt)
536
		return chip->block_bad(mtd, ofs);
537

L
Linus Torvalds 已提交
538
	/* Return info from the table */
539
	return nand_isbad_bbt(mtd, ofs, allowbbt);
L
Linus Torvalds 已提交
540 541
}

542 543
/**
 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
544 545
 * @mtd: MTD device structure
 * @timeo: Timeout
546 547 548 549 550 551
 *
 * Helper function for nand_wait_ready used when needing to wait in interrupt
 * context.
 */
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
{
552
	struct nand_chip *chip = mtd_to_nand(mtd);
553 554 555 556 557 558 559 560 561 562 563
	int i;

	/* Wait for the device to get ready */
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready(mtd))
			break;
		touch_softlockup_watchdog();
		mdelay(1);
	}
}

564 565 566 567 568 569
/**
 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 * @mtd: MTD device structure
 *
 * Wait for the ready pin after a command, and warn if a timeout occurs.
 */
570
void nand_wait_ready(struct mtd_info *mtd)
571
{
572
	struct nand_chip *chip = mtd_to_nand(mtd);
573
	unsigned long timeo = 400;
574

575
	if (in_interrupt() || oops_in_progress)
576
		return panic_nand_wait_ready(mtd, timeo);
577

578
	/* Wait until command is processed or timeout occurs */
579
	timeo = jiffies + msecs_to_jiffies(timeo);
580
	do {
581
		if (chip->dev_ready(mtd))
582
			return;
583
		cond_resched();
584
	} while (time_before(jiffies, timeo));
585

586 587
	if (!chip->dev_ready(mtd))
		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
588
}
589
EXPORT_SYMBOL_GPL(nand_wait_ready);
590

591 592 593 594 595 596 597 598 599
/**
 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 * @mtd: MTD device structure
 * @timeo: Timeout in ms
 *
 * Wait for status ready (i.e. command done) or timeout.
 */
static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
{
600
	register struct nand_chip *chip = mtd_to_nand(mtd);
601 602 603 604 605 606 607 608 609

	timeo = jiffies + msecs_to_jiffies(timeo);
	do {
		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
			break;
		touch_softlockup_watchdog();
	} while (time_before(jiffies, timeo));
};

L
Linus Torvalds 已提交
610 611
/**
 * nand_command - [DEFAULT] Send command to NAND device
612 613 614 615
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
616
 *
617
 * Send command to NAND device. This function is used for small page devices
618
 * (512 Bytes per page).
L
Linus Torvalds 已提交
619
 */
620 621
static void nand_command(struct mtd_info *mtd, unsigned int command,
			 int column, int page_addr)
L
Linus Torvalds 已提交
622
{
623
	register struct nand_chip *chip = mtd_to_nand(mtd);
624
	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
625

626
	/* Write out the command to the device */
L
Linus Torvalds 已提交
627 628 629
	if (command == NAND_CMD_SEQIN) {
		int readcmd;

J
Joern Engel 已提交
630
		if (column >= mtd->writesize) {
L
Linus Torvalds 已提交
631
			/* OOB area */
J
Joern Engel 已提交
632
			column -= mtd->writesize;
L
Linus Torvalds 已提交
633 634 635 636 637 638 639 640
			readcmd = NAND_CMD_READOOB;
		} else if (column < 256) {
			/* First 256 bytes --> READ0 */
			readcmd = NAND_CMD_READ0;
		} else {
			column -= 256;
			readcmd = NAND_CMD_READ1;
		}
641
		chip->cmd_ctrl(mtd, readcmd, ctrl);
642
		ctrl &= ~NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
643
	}
644
	chip->cmd_ctrl(mtd, command, ctrl);
L
Linus Torvalds 已提交
645

646
	/* Address cycle, when necessary */
647 648 649 650
	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
	/* Serially input address */
	if (column != -1) {
		/* Adjust columns for 16 bit buswidth */
651 652
		if (chip->options & NAND_BUSWIDTH_16 &&
				!nand_opcode_8bits(command))
653
			column >>= 1;
654
		chip->cmd_ctrl(mtd, column, ctrl);
655 656 657
		ctrl &= ~NAND_CTRL_CHANGE;
	}
	if (page_addr != -1) {
658
		chip->cmd_ctrl(mtd, page_addr, ctrl);
659
		ctrl &= ~NAND_CTRL_CHANGE;
660
		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
661
		/* One more address cycle for devices > 32MiB */
662 663
		if (chip->chipsize > (32 << 20))
			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
L
Linus Torvalds 已提交
664
	}
665
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666 667

	/*
668 669
	 * Program and erase have their own busy handlers status and sequential
	 * in needs no delay
670
	 */
L
Linus Torvalds 已提交
671
	switch (command) {
672

L
Linus Torvalds 已提交
673 674 675 676 677 678 679 680
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
		return;

	case NAND_CMD_RESET:
681
		if (chip->dev_ready)
L
Linus Torvalds 已提交
682
			break;
683 684
		udelay(chip->chip_delay);
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
685
			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
686 687
		chip->cmd_ctrl(mtd,
			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
688 689
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
690 691
		return;

692
		/* This applies to read commands */
L
Linus Torvalds 已提交
693
	default:
694
		/*
L
Linus Torvalds 已提交
695 696
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
697
		 */
698 699
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
700
			return;
701
		}
L
Linus Torvalds 已提交
702
	}
703 704 705 706
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
707
	ndelay(100);
708 709

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
710 711
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static void nand_ccs_delay(struct nand_chip *chip)
{
	/*
	 * The controller already takes care of waiting for tCCS when the RNDIN
	 * or RNDOUT command is sent, return directly.
	 */
	if (!(chip->options & NAND_WAIT_TCCS))
		return;

	/*
	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
	 * (which should be safe for all NANDs).
	 */
	if (chip->data_interface && chip->data_interface->timings.sdr.tCCS_min)
		ndelay(chip->data_interface->timings.sdr.tCCS_min / 1000);
	else
		ndelay(500);
}

L
Linus Torvalds 已提交
731 732
/**
 * nand_command_lp - [DEFAULT] Send command to NAND large page device
733 734 735 736
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
737
 *
738
 * Send command to NAND device. This is the version for the new large page
739 740
 * devices. We don't have the separate regions as we have in the small page
 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
L
Linus Torvalds 已提交
741
 */
742 743
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
			    int column, int page_addr)
L
Linus Torvalds 已提交
744
{
745
	register struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
746 747 748

	/* Emulate NAND_CMD_READOOB */
	if (command == NAND_CMD_READOOB) {
J
Joern Engel 已提交
749
		column += mtd->writesize;
L
Linus Torvalds 已提交
750 751
		command = NAND_CMD_READ0;
	}
752

753
	/* Command latch cycle */
754
	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
755 756

	if (column != -1 || page_addr != -1) {
757
		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
L
Linus Torvalds 已提交
758 759 760 761

		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
762 763
			if (chip->options & NAND_BUSWIDTH_16 &&
					!nand_opcode_8bits(command))
L
Linus Torvalds 已提交
764
				column >>= 1;
765
			chip->cmd_ctrl(mtd, column, ctrl);
766
			ctrl &= ~NAND_CTRL_CHANGE;
767

768
			/* Only output a single addr cycle for 8bits opcodes. */
769 770
			if (!nand_opcode_8bits(command))
				chip->cmd_ctrl(mtd, column >> 8, ctrl);
771
		}
L
Linus Torvalds 已提交
772
		if (page_addr != -1) {
773 774
			chip->cmd_ctrl(mtd, page_addr, ctrl);
			chip->cmd_ctrl(mtd, page_addr >> 8,
775
				       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
776
			/* One more address cycle for devices > 128MiB */
777 778
			if (chip->chipsize > (128 << 20))
				chip->cmd_ctrl(mtd, page_addr >> 16,
779
					       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
780 781
		}
	}
782
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
783 784

	/*
785
	 * Program and erase have their own busy handlers status, sequential
786
	 * in and status need no delay.
787
	 */
L
Linus Torvalds 已提交
788
	switch (command) {
789

L
Linus Torvalds 已提交
790 791 792 793 794 795
	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
796
		return;
L
Linus Torvalds 已提交
797

798 799 800 801
	case NAND_CMD_RNDIN:
		nand_ccs_delay(chip);
		return;

L
Linus Torvalds 已提交
802
	case NAND_CMD_RESET:
803
		if (chip->dev_ready)
L
Linus Torvalds 已提交
804
			break;
805
		udelay(chip->chip_delay);
806 807 808 809
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
810 811
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
812 813
		return;

814 815 816 817 818 819
	case NAND_CMD_RNDOUT:
		/* No ready / busy check necessary */
		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
820 821

		nand_ccs_delay(chip);
822 823
		return;

L
Linus Torvalds 已提交
824
	case NAND_CMD_READ0:
825 826 827 828
		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
829

830
		/* This applies to read commands */
L
Linus Torvalds 已提交
831
	default:
832
		/*
L
Linus Torvalds 已提交
833
		 * If we don't have access to the busy pin, we apply the given
834
		 * command delay.
835
		 */
836 837
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
838
			return;
839
		}
L
Linus Torvalds 已提交
840
	}
841

842 843 844 845
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
846
	ndelay(100);
847 848

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
849 850
}

851 852
/**
 * panic_nand_get_device - [GENERIC] Get chip for selected access
853 854 855
 * @chip: the nand chip descriptor
 * @mtd: MTD device structure
 * @new_state: the state which is requested
856 857 858 859 860 861
 *
 * Used when in panic, no locks are taken.
 */
static void panic_nand_get_device(struct nand_chip *chip,
		      struct mtd_info *mtd, int new_state)
{
862
	/* Hardware controller shared among independent devices */
863 864 865 866
	chip->controller->active = chip;
	chip->state = new_state;
}

L
Linus Torvalds 已提交
867 868
/**
 * nand_get_device - [GENERIC] Get chip for selected access
869 870
 * @mtd: MTD device structure
 * @new_state: the state which is requested
L
Linus Torvalds 已提交
871 872 873
 *
 * Get the device and lock it for exclusive access
 */
874
static int
875
nand_get_device(struct mtd_info *mtd, int new_state)
L
Linus Torvalds 已提交
876
{
877
	struct nand_chip *chip = mtd_to_nand(mtd);
878 879
	spinlock_t *lock = &chip->controller->lock;
	wait_queue_head_t *wq = &chip->controller->wq;
880
	DECLARE_WAITQUEUE(wait, current);
881
retry:
882 883
	spin_lock(lock);

884
	/* Hardware controller shared among independent devices */
885 886
	if (!chip->controller->active)
		chip->controller->active = chip;
T
Thomas Gleixner 已提交
887

888 889
	if (chip->controller->active == chip && chip->state == FL_READY) {
		chip->state = new_state;
890
		spin_unlock(lock);
891 892 893
		return 0;
	}
	if (new_state == FL_PM_SUSPENDED) {
894 895 896 897 898
		if (chip->controller->active->state == FL_PM_SUSPENDED) {
			chip->state = FL_PM_SUSPENDED;
			spin_unlock(lock);
			return 0;
		}
899 900 901 902 903 904
	}
	set_current_state(TASK_UNINTERRUPTIBLE);
	add_wait_queue(wq, &wait);
	spin_unlock(lock);
	schedule();
	remove_wait_queue(wq, &wait);
L
Linus Torvalds 已提交
905 906 907
	goto retry;
}

908
/**
909 910 911 912
 * panic_nand_wait - [GENERIC] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
 * @timeo: timeout
913 914 915
 *
 * Wait for command done. This is a helper function for nand_wait used when
 * we are in interrupt context. May happen when in panic and trying to write
916
 * an oops through mtdoops.
917 918 919 920 921 922 923 924 925 926 927 928 929 930
 */
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
			    unsigned long timeo)
{
	int i;
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready) {
			if (chip->dev_ready(mtd))
				break;
		} else {
			if (chip->read_byte(mtd) & NAND_STATUS_READY)
				break;
		}
		mdelay(1);
931
	}
932 933
}

L
Linus Torvalds 已提交
934
/**
935 936 937
 * nand_wait - [DEFAULT] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
L
Linus Torvalds 已提交
938
 *
939
 * Wait for command done. This applies to erase and program only.
R
Randy Dunlap 已提交
940
 */
941
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
L
Linus Torvalds 已提交
942 943
{

944 945
	int status;
	unsigned long timeo = 400;
L
Linus Torvalds 已提交
946

947 948 949 950
	/*
	 * Apply this short delay always to ensure that we do wait tWB in any
	 * case on any machine.
	 */
951
	ndelay(100);
L
Linus Torvalds 已提交
952

953
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
L
Linus Torvalds 已提交
954

955 956 957
	if (in_interrupt() || oops_in_progress)
		panic_nand_wait(mtd, chip, timeo);
	else {
958
		timeo = jiffies + msecs_to_jiffies(timeo);
959
		do {
960 961 962 963 964 965 966 967
			if (chip->dev_ready) {
				if (chip->dev_ready(mtd))
					break;
			} else {
				if (chip->read_byte(mtd) & NAND_STATUS_READY)
					break;
			}
			cond_resched();
968
		} while (time_before(jiffies, timeo));
L
Linus Torvalds 已提交
969
	}
970

971
	status = (int)chip->read_byte(mtd);
972 973
	/* This can happen if in case of timeout or buggy dev_ready */
	WARN_ON(!(status & NAND_STATUS_READY));
L
Linus Torvalds 已提交
974 975 976
	return status;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 * nand_reset_data_interface - Reset data interface and timings
 * @chip: The NAND chip
 *
 * Reset the Data interface and timings to ONFI mode 0.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_reset_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct nand_data_interface *conf;
	int ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * The ONFI specification says:
	 * "
	 * To transition from NV-DDR or NV-DDR2 to the SDR data
	 * interface, the host shall use the Reset (FFh) command
	 * using SDR timing mode 0. A device in any timing mode is
	 * required to recognize Reset (FFh) command issued in SDR
	 * timing mode 0.
	 * "
	 *
	 * Configure the data interface in SDR mode and set the
	 * timings to timing mode 0.
	 */

	conf = nand_get_default_data_interface();
	ret = chip->setup_data_interface(mtd, conf, false);
	if (ret)
		pr_err("Failed to configure data interface to SDR timing mode 0\n");

	return ret;
}

/**
 * nand_setup_data_interface - Setup the best data interface and timings
 * @chip: The NAND chip
 *
 * Find and configure the best data interface and NAND timings supported by
 * the chip and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_setup_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	if (!chip->setup_data_interface || !chip->data_interface)
		return 0;

	/*
	 * Ensure the timing mode has been changed on the chip side
	 * before changing timings on the controller side.
	 */
	if (chip->onfi_version) {
		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
			chip->onfi_timing_mode_default,
		};

		ret = chip->onfi_set_features(mtd, chip,
				ONFI_FEATURE_ADDR_TIMING_MODE,
				tmode_param);
		if (ret)
			goto err;
	}

	ret = chip->setup_data_interface(mtd, chip->data_interface, false);
err:
	return ret;
}

/**
 * nand_init_data_interface - find the best data interface and timings
 * @chip: The NAND chip
 *
 * Find the best data interface and NAND timings supported by the chip
 * and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table. After this
 * function nand_chip->data_interface is initialized with the best timing mode
 * available.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_init_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int modes, mode, ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * First try to identify the best timings from ONFI parameters and
	 * if the NAND does not support ONFI, fallback to the default ONFI
	 * timing mode.
	 */
	modes = onfi_get_async_timing_mode(chip);
	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
		if (!chip->onfi_timing_mode_default)
			return 0;

		modes = GENMASK(chip->onfi_timing_mode_default, 0);
	}

	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
				       GFP_KERNEL);
	if (!chip->data_interface)
		return -ENOMEM;

	for (mode = fls(modes) - 1; mode >= 0; mode--) {
		ret = onfi_init_data_interface(chip, chip->data_interface,
					       NAND_SDR_IFACE, mode);
		if (ret)
			continue;

		ret = chip->setup_data_interface(mtd, chip->data_interface,
						 true);
		if (!ret) {
			chip->onfi_timing_mode_default = mode;
			break;
		}
	}

	return 0;
}

static void nand_release_data_interface(struct nand_chip *chip)
{
	kfree(chip->data_interface);
}

1119 1120 1121
/**
 * nand_reset - Reset and initialize a NAND device
 * @chip: The NAND chip
1122
 * @chipnr: Internal die id
1123 1124 1125
 *
 * Returns 0 for success or negative error code otherwise
 */
1126
int nand_reset(struct nand_chip *chip, int chipnr)
1127 1128
{
	struct mtd_info *mtd = nand_to_mtd(chip);
1129 1130 1131 1132 1133
	int ret;

	ret = nand_reset_data_interface(chip);
	if (ret)
		return ret;
1134

1135 1136 1137 1138 1139
	/*
	 * The CS line has to be released before we can apply the new NAND
	 * interface settings, hence this weird ->select_chip() dance.
	 */
	chip->select_chip(mtd, chipnr);
1140
	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1141
	chip->select_chip(mtd, -1);
1142

1143
	chip->select_chip(mtd, chipnr);
1144
	ret = nand_setup_data_interface(chip);
1145
	chip->select_chip(mtd, -1);
1146 1147 1148
	if (ret)
		return ret;

1149 1150 1151
	return 0;
}

1152
/**
1153 1154 1155 1156
 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1157 1158 1159 1160
 * @invert: when = 0, unlock the range of blocks within the lower and
 *                    upper boundary address
 *          when = 1, unlock the range of blocks outside the boundaries
 *                    of the lower and upper boundary address
1161
 *
1162
 * Returs unlock status.
1163 1164 1165 1166 1167 1168
 */
static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
					uint64_t len, int invert)
{
	int ret = 0;
	int status, page;
1169
	struct nand_chip *chip = mtd_to_nand(mtd);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	/* Submit address of first page to unlock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);

	/* Submit address of last page to unlock */
	page = (ofs + len) >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
				(page | invert) & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1183
	if (status & NAND_STATUS_FAIL) {
1184
		pr_debug("%s: error status = 0x%08x\n",
1185 1186 1187 1188 1189 1190 1191 1192
					__func__, status);
		ret = -EIO;
	}

	return ret;
}

/**
1193 1194 1195 1196
 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1197
 *
1198
 * Returns unlock status.
1199 1200 1201 1202 1203
 */
int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr;
1204
	struct nand_chip *chip = mtd_to_nand(mtd);
1205

1206
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1207 1208 1209
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1210
		return -EINVAL;
1211 1212 1213 1214 1215

	/* Align to last block address if size addresses end of the device */
	if (ofs + len == mtd->size)
		len -= mtd->erasesize;

1216
	nand_get_device(mtd, FL_UNLOCKING);
1217 1218 1219 1220

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

1221 1222 1223 1224 1225 1226 1227
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1228 1229 1230
	nand_reset(chip, chipnr);

	chip->select_chip(mtd, chipnr);
1231

1232 1233
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1234
		pr_debug("%s: device is write protected!\n",
1235 1236 1237 1238 1239 1240 1241 1242
					__func__);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0);

out:
1243
	chip->select_chip(mtd, -1);
1244 1245 1246 1247
	nand_release_device(mtd);

	return ret;
}
1248
EXPORT_SYMBOL(nand_unlock);
1249 1250

/**
1251 1252 1253 1254
 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1255
 *
1256 1257 1258 1259
 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
 * have this feature, but it allows only to lock all blocks, not for specified
 * range for block. Implementing 'lock' feature by making use of 'unlock', for
 * now.
1260
 *
1261
 * Returns lock status.
1262 1263 1264 1265 1266
 */
int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr, status, page;
1267
	struct nand_chip *chip = mtd_to_nand(mtd);
1268

1269
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1270 1271 1272
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1273
		return -EINVAL;
1274

1275
	nand_get_device(mtd, FL_LOCKING);
1276 1277 1278 1279

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

1280 1281 1282 1283 1284 1285 1286
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1287 1288 1289
	nand_reset(chip, chipnr);

	chip->select_chip(mtd, chipnr);
1290

1291 1292
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1293
		pr_debug("%s: device is write protected!\n",
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
					__func__);
		status = MTD_ERASE_FAILED;
		ret = -EIO;
		goto out;
	}

	/* Submit address of first page to lock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1307
	if (status & NAND_STATUS_FAIL) {
1308
		pr_debug("%s: error status = 0x%08x\n",
1309 1310 1311 1312 1313 1314 1315 1316
					__func__, status);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0x1);

out:
1317
	chip->select_chip(mtd, -1);
1318 1319 1320 1321
	nand_release_device(mtd);

	return ret;
}
1322
EXPORT_SYMBOL(nand_lock);
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/**
 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
 * @buf: buffer to test
 * @len: buffer length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a buffer contains only 0xff, which means the underlying region
 * has been erased and is ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region is not erased.
 * Note: The logic of this function has been extracted from the memweight
 * implementation, except that nand_check_erased_buf function exit before
 * testing the whole buffer if the number of bitflips exceed the
 * bitflips_threshold value.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold.
 */
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
	const unsigned char *bitmap = buf;
	int bitflips = 0;
	int weight;

	for (; len && ((uintptr_t)bitmap) % sizeof(long);
	     len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len >= sizeof(long);
	     len -= sizeof(long), bitmap += sizeof(long)) {
		weight = hweight_long(*((unsigned long *)bitmap));
		bitflips += BITS_PER_LONG - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len > 0; len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	return bitflips;
}

/**
 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
 *				 0xff data
 * @data: data buffer to test
 * @datalen: data length
 * @ecc: ECC buffer
 * @ecclen: ECC length
 * @extraoob: extra OOB buffer
 * @extraooblen: extra OOB length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a data buffer and its associated ECC and OOB data contains only
 * 0xff pattern, which means the underlying region has been erased and is
 * ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region as not erased.
 *
 * Note:
 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
 *    different from the NAND page size. When fixing bitflips, ECC engines will
 *    report the number of errors per chunk, and the NAND core infrastructure
 *    expect you to return the maximum number of bitflips for the whole page.
 *    This is why you should always use this function on a single chunk and
 *    not on the whole page. After checking each chunk you should update your
 *    max_bitflips value accordingly.
 * 2/ When checking for bitflips in erased pages you should not only check
 *    the payload data but also their associated ECC data, because a user might
 *    have programmed almost all bits to 1 but a few. In this case, we
 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
 *    this case.
 * 3/ The extraoob argument is optional, and should be used if some of your OOB
 *    data are protected by the ECC engine.
 *    It could also be used if you support subpages and want to attach some
 *    extra OOB data to an ECC chunk.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold. In case of success, the passed buffers are filled with 0xff.
 */
int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int bitflips_threshold)
{
	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;

	data_bitflips = nand_check_erased_buf(data, datalen,
					      bitflips_threshold);
	if (data_bitflips < 0)
		return data_bitflips;

	bitflips_threshold -= data_bitflips;

	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
	if (ecc_bitflips < 0)
		return ecc_bitflips;

	bitflips_threshold -= ecc_bitflips;

	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
						  bitflips_threshold);
	if (extraoob_bitflips < 0)
		return extraoob_bitflips;

	if (data_bitflips)
		memset(data, 0xff, datalen);

	if (ecc_bitflips)
		memset(ecc, 0xff, ecclen);

	if (extraoob_bitflips)
		memset(extraoob, 0xff, extraooblen);

	return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);

1452
/**
1453
 * nand_read_page_raw - [INTERN] read raw page data without ecc
1454 1455 1456
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1457
 * @oob_required: caller requires OOB data read to chip->oob_poi
1458
 * @page: page number to read
1459
 *
1460
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1461 1462
 */
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1463
			      uint8_t *buf, int oob_required, int page)
1464 1465
{
	chip->read_buf(mtd, buf, mtd->writesize);
1466 1467
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1468 1469 1470
	return 0;
}

1471
/**
1472
 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1473 1474 1475
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1476
 * @oob_required: caller requires OOB data read to chip->oob_poi
1477
 * @page: page number to read
1478 1479 1480
 *
 * We need a special oob layout and handling even when OOB isn't used.
 */
1481
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1482 1483
				       struct nand_chip *chip, uint8_t *buf,
				       int oob_required, int page)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->read_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->read_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->read_buf(mtd, oob, size);

	return 0;
}

L
Linus Torvalds 已提交
1515
/**
1516
 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1517 1518 1519
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1520
 * @oob_required: caller requires OOB data read to chip->oob_poi
1521
 * @page: page number to read
1522
 */
1523
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1524
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1525
{
1526
	int i, eccsize = chip->ecc.size, ret;
1527 1528 1529
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1530 1531
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1532
	unsigned int max_bitflips = 0;
1533

1534
	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1535 1536 1537 1538

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

1539 1540 1541 1542
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1543 1544 1545 1546 1547 1548 1549 1550

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1551
		if (stat < 0) {
1552
			mtd->ecc_stats.failed++;
1553
		} else {
1554
			mtd->ecc_stats.corrected += stat;
1555 1556
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1557
	}
1558
	return max_bitflips;
1559
}
L
Linus Torvalds 已提交
1560

1561
/**
1562
 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1563 1564 1565 1566 1567
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @data_offs: offset of requested data within the page
 * @readlen: data length
 * @bufpoi: buffer to store read data
1568
 * @page: page number to read
1569
 */
1570
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1571 1572
			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
			int page)
1573
{
1574
	int start_step, end_step, num_steps, ret;
1575 1576 1577 1578
	uint8_t *p;
	int data_col_addr, i, gaps = 0;
	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1579
	int index, section = 0;
1580
	unsigned int max_bitflips = 0;
1581
	struct mtd_oob_region oobregion = { };
1582

1583
	/* Column address within the page aligned to ECC size (256bytes) */
1584 1585 1586
	start_step = data_offs / chip->ecc.size;
	end_step = (data_offs + readlen - 1) / chip->ecc.size;
	num_steps = end_step - start_step + 1;
R
Ron 已提交
1587
	index = start_step * chip->ecc.bytes;
1588

1589
	/* Data size aligned to ECC ecc.size */
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	datafrag_len = num_steps * chip->ecc.size;
	eccfrag_len = num_steps * chip->ecc.bytes;

	data_col_addr = start_step * chip->ecc.size;
	/* If we read not a page aligned data */
	if (data_col_addr != 0)
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);

	p = bufpoi + data_col_addr;
	chip->read_buf(mtd, p, datafrag_len);

1601
	/* Calculate ECC */
1602 1603 1604
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);

1605 1606
	/*
	 * The performance is faster if we position offsets according to
1607
	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1608
	 */
1609 1610 1611 1612 1613 1614 1615
	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
	if (ret)
		return ret;

	if (oobregion.length < eccfrag_len)
		gaps = 1;

1616 1617 1618 1619
	if (gaps) {
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	} else {
1620
		/*
1621
		 * Send the command to read the particular ECC bytes take care
1622 1623
		 * about buswidth alignment in read_buf.
		 */
1624
		aligned_pos = oobregion.offset & ~(busw - 1);
1625
		aligned_len = eccfrag_len;
1626
		if (oobregion.offset & (busw - 1))
1627
			aligned_len++;
1628 1629
		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
		    (busw - 1))
1630 1631
			aligned_len++;

1632
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1633
			      mtd->writesize + aligned_pos, -1);
1634 1635 1636
		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
	}

1637 1638 1639 1640
	ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
					 chip->oob_poi, index, eccfrag_len);
	if (ret)
		return ret;
1641 1642 1643 1644 1645

	p = bufpoi + data_col_addr;
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
		int stat;

1646 1647
		stat = chip->ecc.correct(mtd, p,
			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
						&chip->buffers->ecccode[i],
						chip->ecc.bytes,
						NULL, 0,
						chip->ecc.strength);
		}

1658
		if (stat < 0) {
1659
			mtd->ecc_stats.failed++;
1660
		} else {
1661
			mtd->ecc_stats.corrected += stat;
1662 1663
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1664
	}
1665
	return max_bitflips;
1666 1667
}

1668
/**
1669
 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1670 1671 1672
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1673
 * @oob_required: caller requires OOB data read to chip->oob_poi
1674
 * @page: page number to read
1675
 *
1676
 * Not for syndrome calculating ECC controllers which need a special oob layout.
1677
 */
1678
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1679
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1680
{
1681
	int i, eccsize = chip->ecc.size, ret;
1682 1683 1684
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1685 1686
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1687
	unsigned int max_bitflips = 0;
1688 1689 1690 1691 1692

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
L
Linus Torvalds 已提交
1693
	}
1694
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
L
Linus Torvalds 已提交
1695

1696 1697 1698 1699
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
1700

1701 1702
	eccsteps = chip->ecc.steps;
	p = buf;
1703

1704 1705
	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
L
Linus Torvalds 已提交
1706

1707
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1708 1709 1710 1711 1712 1713 1714 1715 1716
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1717
		if (stat < 0) {
1718
			mtd->ecc_stats.failed++;
1719
		} else {
1720
			mtd->ecc_stats.corrected += stat;
1721 1722
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1723
	}
1724
	return max_bitflips;
1725
}
L
Linus Torvalds 已提交
1726

1727
/**
1728
 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1729 1730 1731
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1732
 * @oob_required: caller requires OOB data read to chip->oob_poi
1733
 * @page: page number to read
1734
 *
1735 1736 1737 1738 1739
 * Hardware ECC for large page chips, require OOB to be read first. For this
 * ECC mode, the write_page method is re-used from ECC_HW. These methods
 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
 * the data area, by overwriting the NAND manufacturer bad block markings.
1740 1741
 */
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1742
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1743
{
1744
	int i, eccsize = chip->ecc.size, ret;
1745 1746 1747 1748 1749
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
1750
	unsigned int max_bitflips = 0;
1751 1752 1753 1754 1755 1756

	/* Read the OOB area first */
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

1757 1758 1759 1760
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1761 1762 1763 1764 1765 1766 1767 1768 1769

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1770 1771 1772 1773 1774 1775 1776 1777 1778
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1779
		if (stat < 0) {
1780
			mtd->ecc_stats.failed++;
1781
		} else {
1782
			mtd->ecc_stats.corrected += stat;
1783 1784
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1785
	}
1786
	return max_bitflips;
1787 1788
}

1789
/**
1790
 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1791 1792 1793
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1794
 * @oob_required: caller requires OOB data read to chip->oob_poi
1795
 * @page: page number to read
1796
 *
1797 1798
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
1799 1800
 */
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1801
				   uint8_t *buf, int oob_required, int page)
1802 1803 1804 1805
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
1806
	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1807
	uint8_t *p = buf;
1808
	uint8_t *oob = chip->oob_poi;
1809
	unsigned int max_bitflips = 0;
L
Linus Torvalds 已提交
1810

1811 1812
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
1813

1814 1815
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
L
Linus Torvalds 已提交
1816

1817 1818 1819 1820
		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}
L
Linus Torvalds 已提交
1821

1822 1823 1824
		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
		chip->read_buf(mtd, oob, eccbytes);
		stat = chip->ecc.correct(mtd, p, oob, NULL);
1825

1826
		oob += eccbytes;
L
Linus Torvalds 已提交
1827

1828 1829 1830
		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
1831
		}
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
							   oob - eccpadbytes,
							   eccpadbytes,
							   NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1849
	}
L
Linus Torvalds 已提交
1850

1851
	/* Calculate remaining oob bytes */
1852
	i = mtd->oobsize - (oob - chip->oob_poi);
1853 1854
	if (i)
		chip->read_buf(mtd, oob, i);
1855

1856
	return max_bitflips;
1857
}
L
Linus Torvalds 已提交
1858

1859
/**
1860
 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1861
 * @mtd: mtd info structure
1862 1863 1864
 * @oob: oob destination address
 * @ops: oob ops structure
 * @len: size of oob to transfer
1865
 */
1866
static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1867
				  struct mtd_oob_ops *ops, size_t len)
1868
{
1869 1870 1871
	struct nand_chip *chip = mtd_to_nand(mtd);
	int ret;

1872
	switch (ops->mode) {
1873

1874 1875
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
1876 1877 1878
		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
		return oob + len;

1879 1880 1881 1882 1883 1884
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

1885 1886 1887 1888 1889 1890
	default:
		BUG();
	}
	return NULL;
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
/**
 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
 * @mtd: MTD device structure
 * @retry_mode: the retry mode to use
 *
 * Some vendors supply a special command to shift the Vt threshold, to be used
 * when there are too many bitflips in a page (i.e., ECC error). After setting
 * a new threshold, the host should retry reading the page.
 */
static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
1902
	struct nand_chip *chip = mtd_to_nand(mtd);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

	pr_debug("setting READ RETRY mode %d\n", retry_mode);

	if (retry_mode >= chip->read_retries)
		return -EINVAL;

	if (!chip->setup_read_retry)
		return -EOPNOTSUPP;

	return chip->setup_read_retry(mtd, retry_mode);
}

1915
/**
1916
 * nand_do_read_ops - [INTERN] Read data with ECC
1917 1918 1919
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob ops structure
1920 1921 1922
 *
 * Internal function. Called with chip held.
 */
1923 1924
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
1925
{
1926
	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1927
	struct nand_chip *chip = mtd_to_nand(mtd);
1928
	int ret = 0;
1929
	uint32_t readlen = ops->len;
1930
	uint32_t oobreadlen = ops->ooblen;
1931
	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1932

1933
	uint8_t *bufpoi, *oob, *buf;
1934
	int use_bufpoi;
1935
	unsigned int max_bitflips = 0;
1936
	int retry_mode = 0;
1937
	bool ecc_fail = false;
L
Linus Torvalds 已提交
1938

1939 1940
	chipnr = (int)(from >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);
1941

1942 1943
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
1944

1945
	col = (int)(from & (mtd->writesize - 1));
1946

1947 1948
	buf = ops->datbuf;
	oob = ops->oobbuf;
1949
	oob_required = oob ? 1 : 0;
1950

1951
	while (1) {
1952 1953
		unsigned int ecc_failures = mtd->ecc_stats.failed;

1954 1955
		bytes = min(mtd->writesize - col, readlen);
		aligned = (bytes == mtd->writesize);
1956

1957 1958 1959 1960 1961 1962 1963
		if (!aligned)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;

1964
		/* Is the current page in the buffer? */
1965
		if (realpage != chip->pagebuf || oob) {
1966 1967 1968 1969 1970
			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;

			if (use_bufpoi && aligned)
				pr_debug("%s: using read bounce buffer for buf@%p\n",
						 __func__, buf);
1971

1972
read_retry:
1973 1974
			if (nand_standard_page_accessors(&chip->ecc))
				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
L
Linus Torvalds 已提交
1975

1976 1977 1978 1979
			/*
			 * Now read the page into the buffer.  Absent an error,
			 * the read methods return max bitflips per ecc step.
			 */
1980
			if (unlikely(ops->mode == MTD_OPS_RAW))
1981
				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1982 1983
							      oob_required,
							      page);
1984 1985
			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
				 !oob)
1986
				ret = chip->ecc.read_subpage(mtd, chip,
1987 1988
							col, bytes, bufpoi,
							page);
1989
			else
1990
				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1991
							  oob_required, page);
1992
			if (ret < 0) {
1993
				if (use_bufpoi)
1994 1995
					/* Invalidate page cache */
					chip->pagebuf = -1;
L
Linus Torvalds 已提交
1996
				break;
1997
			}
1998

1999 2000
			max_bitflips = max_t(unsigned int, max_bitflips, ret);

2001
			/* Transfer not aligned data */
2002
			if (use_bufpoi) {
2003
				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
2004
				    !(mtd->ecc_stats.failed - ecc_failures) &&
2005
				    (ops->mode != MTD_OPS_RAW)) {
2006
					chip->pagebuf = realpage;
2007 2008
					chip->pagebuf_bitflips = ret;
				} else {
2009 2010
					/* Invalidate page cache */
					chip->pagebuf = -1;
2011
				}
2012
				memcpy(buf, chip->buffers->databuf + col, bytes);
2013 2014
			}

2015
			if (unlikely(oob)) {
2016 2017 2018
				int toread = min(oobreadlen, max_oobsize);

				if (toread) {
2019
					oob = nand_transfer_oob(mtd,
2020 2021 2022
						oob, ops, toread);
					oobreadlen -= toread;
				}
2023
			}
2024 2025 2026 2027 2028 2029 2030 2031

			if (chip->options & NAND_NEED_READRDY) {
				/* Apply delay or wait for ready/busy pin */
				if (!chip->dev_ready)
					udelay(chip->chip_delay);
				else
					nand_wait_ready(mtd);
			}
2032

2033
			if (mtd->ecc_stats.failed - ecc_failures) {
2034
				if (retry_mode + 1 < chip->read_retries) {
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
					retry_mode++;
					ret = nand_setup_read_retry(mtd,
							retry_mode);
					if (ret < 0)
						break;

					/* Reset failures; retry */
					mtd->ecc_stats.failed = ecc_failures;
					goto read_retry;
				} else {
					/* No more retry modes; real failure */
					ecc_fail = true;
				}
			}

			buf += bytes;
2051
		} else {
2052
			memcpy(buf, chip->buffers->databuf + col, bytes);
2053
			buf += bytes;
2054 2055
			max_bitflips = max_t(unsigned int, max_bitflips,
					     chip->pagebuf_bitflips);
2056
		}
L
Linus Torvalds 已提交
2057

2058
		readlen -= bytes;
2059

2060 2061 2062 2063 2064 2065 2066 2067
		/* Reset to retry mode 0 */
		if (retry_mode) {
			ret = nand_setup_read_retry(mtd, 0);
			if (ret < 0)
				break;
			retry_mode = 0;
		}

2068
		if (!readlen)
2069
			break;
L
Linus Torvalds 已提交
2070

2071
		/* For subsequent reads align to page boundary */
L
Linus Torvalds 已提交
2072 2073 2074 2075
		col = 0;
		/* Increment page address */
		realpage++;

2076
		page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2077 2078 2079
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
2080 2081
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2082 2083
		}
	}
2084
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2085

2086
	ops->retlen = ops->len - (size_t) readlen;
2087 2088
	if (oob)
		ops->oobretlen = ops->ooblen - oobreadlen;
L
Linus Torvalds 已提交
2089

2090
	if (ret < 0)
2091 2092
		return ret;

2093
	if (ecc_fail)
2094 2095
		return -EBADMSG;

2096
	return max_bitflips;
2097 2098 2099
}

/**
L
Lucas De Marchi 已提交
2100
 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2101 2102 2103 2104 2105
 * @mtd: MTD device structure
 * @from: offset to read from
 * @len: number of bytes to read
 * @retlen: pointer to variable to store the number of read bytes
 * @buf: the databuffer to put data
2106
 *
2107
 * Get hold of the chip and call nand_do_read.
2108 2109 2110 2111
 */
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
		     size_t *retlen, uint8_t *buf)
{
2112
	struct mtd_oob_ops ops;
2113 2114
	int ret;

2115
	nand_get_device(mtd, FL_READING);
2116
	memset(&ops, 0, sizeof(ops));
2117 2118
	ops.len = len;
	ops.datbuf = buf;
2119
	ops.mode = MTD_OPS_PLACE_OOB;
2120 2121
	ret = nand_do_read_ops(mtd, from, &ops);
	*retlen = ops.retlen;
2122 2123
	nand_release_device(mtd);
	return ret;
L
Linus Torvalds 已提交
2124 2125
}

2126
/**
2127
 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2128 2129 2130
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2131
 */
2132
int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2133
{
2134
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2135
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2136
	return 0;
2137
}
2138
EXPORT_SYMBOL(nand_read_oob_std);
2139 2140

/**
2141
 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2142
 *			    with syndromes
2143 2144 2145
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2146
 */
2147 2148
int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			   int page)
2149 2150 2151 2152
{
	int length = mtd->oobsize;
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size;
2153
	uint8_t *bufpoi = chip->oob_poi;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	int i, toread, sndrnd = 0, pos;

	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
	for (i = 0; i < chip->ecc.steps; i++) {
		if (sndrnd) {
			pos = eccsize + i * (eccsize + chunk);
			if (mtd->writesize > 512)
				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
			else
				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
		} else
			sndrnd = 1;
		toread = min_t(int, length, chunk);
		chip->read_buf(mtd, bufpoi, toread);
		bufpoi += toread;
		length -= toread;
	}
	if (length > 0)
		chip->read_buf(mtd, bufpoi, length);

2174
	return 0;
2175
}
2176
EXPORT_SYMBOL(nand_read_oob_syndrome);
2177 2178

/**
2179
 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2180 2181 2182
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2183
 */
2184
int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
{
	int status = 0;
	const uint8_t *buf = chip->oob_poi;
	int length = mtd->oobsize;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, buf, length);
	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

S
Savin Zlobec 已提交
2197
	return status & NAND_STATUS_FAIL ? -EIO : 0;
2198
}
2199
EXPORT_SYMBOL(nand_write_oob_std);
2200 2201

/**
2202
 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2203 2204 2205 2206
 *			     with syndrome - only for large page flash
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2207
 */
2208 2209
int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
{
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size, length = mtd->oobsize;
	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
	const uint8_t *bufpoi = chip->oob_poi;

	/*
	 * data-ecc-data-ecc ... ecc-oob
	 * or
	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
	 */
	if (!chip->ecc.prepad && !chip->ecc.postpad) {
		pos = steps * (eccsize + chunk);
		steps = 0;
	} else
2225
		pos = eccsize;
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
	for (i = 0; i < steps; i++) {
		if (sndcmd) {
			if (mtd->writesize <= 512) {
				uint32_t fill = 0xFFFFFFFF;

				len = eccsize;
				while (len > 0) {
					int num = min_t(int, len, 4);
					chip->write_buf(mtd, (uint8_t *)&fill,
							num);
					len -= num;
				}
			} else {
				pos = eccsize + i * (eccsize + chunk);
				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
			}
		} else
			sndcmd = 1;
		len = min_t(int, length, chunk);
		chip->write_buf(mtd, bufpoi, len);
		bufpoi += len;
		length -= len;
	}
	if (length > 0)
		chip->write_buf(mtd, bufpoi, length);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}
2259
EXPORT_SYMBOL(nand_write_oob_syndrome);
2260

L
Linus Torvalds 已提交
2261
/**
2262
 * nand_do_read_oob - [INTERN] NAND read out-of-band
2263 2264 2265
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2266
 *
2267
 * NAND read out-of-band data from the spare area.
L
Linus Torvalds 已提交
2268
 */
2269 2270
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2271
{
2272
	int page, realpage, chipnr;
2273
	struct nand_chip *chip = mtd_to_nand(mtd);
2274
	struct mtd_ecc_stats stats;
2275 2276
	int readlen = ops->ooblen;
	int len;
2277
	uint8_t *buf = ops->oobbuf;
2278
	int ret = 0;
2279

2280
	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2281
			__func__, (unsigned long long)from, readlen);
L
Linus Torvalds 已提交
2282

2283 2284
	stats = mtd->ecc_stats;

2285
	len = mtd_oobavail(mtd, ops);
2286 2287

	if (unlikely(ops->ooboffs >= len)) {
2288 2289
		pr_debug("%s: attempt to start read outside oob\n",
				__func__);
2290 2291 2292 2293 2294 2295 2296
		return -EINVAL;
	}

	/* Do not allow reads past end of device */
	if (unlikely(from >= mtd->size ||
		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
					(from >> chip->page_shift)) * len)) {
2297 2298
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
2299 2300
		return -EINVAL;
	}
2301

2302
	chipnr = (int)(from >> chip->chip_shift);
2303
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2304

2305 2306 2307
	/* Shift to get page */
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2308

2309
	while (1) {
2310
		if (ops->mode == MTD_OPS_RAW)
2311
			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2312
		else
2313 2314 2315 2316
			ret = chip->ecc.read_oob(mtd, chip, page);

		if (ret < 0)
			break;
2317 2318

		len = min(len, readlen);
2319
		buf = nand_transfer_oob(mtd, buf, ops, len);
2320

2321 2322 2323 2324 2325 2326 2327 2328
		if (chip->options & NAND_NEED_READRDY) {
			/* Apply delay or wait for ready/busy pin */
			if (!chip->dev_ready)
				udelay(chip->chip_delay);
			else
				nand_wait_ready(mtd);
		}

2329
		readlen -= len;
S
Savin Zlobec 已提交
2330 2331 2332
		if (!readlen)
			break;

2333 2334 2335 2336 2337 2338 2339 2340 2341
		/* Increment page address */
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2342 2343
		}
	}
2344
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2345

2346 2347 2348 2349
	ops->oobretlen = ops->ooblen - readlen;

	if (ret < 0)
		return ret;
2350 2351 2352 2353 2354

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
L
Linus Torvalds 已提交
2355 2356 2357
}

/**
2358
 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2359 2360 2361
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2362
 *
2363
 * NAND read data and/or out-of-band data.
L
Linus Torvalds 已提交
2364
 */
2365 2366
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
			 struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2367
{
2368
	int ret;
2369 2370

	ops->retlen = 0;
L
Linus Torvalds 已提交
2371 2372

	/* Do not allow reads past end of device */
2373
	if (ops->datbuf && (from + ops->len) > mtd->size) {
2374 2375
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
L
Linus Torvalds 已提交
2376 2377 2378
		return -EINVAL;
	}

2379 2380 2381 2382
	if (ops->mode != MTD_OPS_PLACE_OOB &&
	    ops->mode != MTD_OPS_AUTO_OOB &&
	    ops->mode != MTD_OPS_RAW)
		return -ENOTSUPP;
L
Linus Torvalds 已提交
2383

2384
	nand_get_device(mtd, FL_READING);
L
Linus Torvalds 已提交
2385

2386 2387 2388 2389
	if (!ops->datbuf)
		ret = nand_do_read_oob(mtd, from, ops);
	else
		ret = nand_do_read_ops(mtd, from, ops);
2390

2391 2392 2393
	nand_release_device(mtd);
	return ret;
}
2394

L
Linus Torvalds 已提交
2395

2396
/**
2397
 * nand_write_page_raw - [INTERN] raw page write function
2398 2399 2400
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2401
 * @oob_required: must write chip->oob_poi to OOB
2402
 * @page: page number to write
2403
 *
2404
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2405
 */
2406
static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2407
			       const uint8_t *buf, int oob_required, int page)
2408 2409
{
	chip->write_buf(mtd, buf, mtd->writesize);
2410 2411
	if (oob_required)
		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2412 2413

	return 0;
L
Linus Torvalds 已提交
2414 2415
}

2416
/**
2417
 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2418 2419 2420
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2421
 * @oob_required: must write chip->oob_poi to OOB
2422
 * @page: page number to write
2423 2424 2425
 *
 * We need a special oob layout and handling even when ECC isn't checked.
 */
2426
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2427
					struct nand_chip *chip,
2428 2429
					const uint8_t *buf, int oob_required,
					int page)
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->write_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

2445
		chip->write_buf(mtd, oob, eccbytes);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->write_buf(mtd, oob, size);
2457 2458

	return 0;
2459
}
2460
/**
2461
 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2462 2463 2464
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2465
 * @oob_required: must write chip->oob_poi to OOB
2466
 * @page: page number to write
2467
 */
2468
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2469 2470
				 const uint8_t *buf, int oob_required,
				 int page)
2471
{
2472
	int i, eccsize = chip->ecc.size, ret;
2473 2474
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2475
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2476
	const uint8_t *p = buf;
2477

2478
	/* Software ECC calculation */
2479 2480
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2481

2482 2483 2484 2485
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2486

2487
	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2488
}
2489

2490
/**
2491
 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2492 2493 2494
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2495
 * @oob_required: must write chip->oob_poi to OOB
2496
 * @page: page number to write
2497
 */
2498
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2499 2500
				  const uint8_t *buf, int oob_required,
				  int page)
2501
{
2502
	int i, eccsize = chip->ecc.size, ret;
2503 2504
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2505
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2506
	const uint8_t *p = buf;
2507

2508 2509
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2510
		chip->write_buf(mtd, p, eccsize);
2511
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2512 2513
	}

2514 2515 2516 2517
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2518 2519

	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2520 2521

	return 0;
2522 2523
}

2524 2525

/**
2526
 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2527 2528
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
2529
 * @offset:	column address of subpage within the page
2530
 * @data_len:	data length
2531
 * @buf:	data buffer
2532
 * @oob_required: must write chip->oob_poi to OOB
2533
 * @page: page number to write
2534 2535 2536
 */
static int nand_write_subpage_hwecc(struct mtd_info *mtd,
				struct nand_chip *chip, uint32_t offset,
2537
				uint32_t data_len, const uint8_t *buf,
2538
				int oob_required, int page)
2539 2540 2541 2542 2543 2544 2545 2546 2547
{
	uint8_t *oob_buf  = chip->oob_poi;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	int ecc_size      = chip->ecc.size;
	int ecc_bytes     = chip->ecc.bytes;
	int ecc_steps     = chip->ecc.steps;
	uint32_t start_step = offset / ecc_size;
	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
	int oob_bytes       = mtd->oobsize / ecc_steps;
2548
	int step, ret;
2549 2550 2551 2552 2553 2554

	for (step = 0; step < ecc_steps; step++) {
		/* configure controller for WRITE access */
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

		/* write data (untouched subpages already masked by 0xFF) */
2555
		chip->write_buf(mtd, buf, ecc_size);
2556 2557 2558 2559 2560

		/* mask ECC of un-touched subpages by padding 0xFF */
		if ((step < start_step) || (step > end_step))
			memset(ecc_calc, 0xff, ecc_bytes);
		else
2561
			chip->ecc.calculate(mtd, buf, ecc_calc);
2562 2563 2564 2565 2566 2567

		/* mask OOB of un-touched subpages by padding 0xFF */
		/* if oob_required, preserve OOB metadata of written subpage */
		if (!oob_required || (step < start_step) || (step > end_step))
			memset(oob_buf, 0xff, oob_bytes);

2568
		buf += ecc_size;
2569 2570 2571 2572 2573 2574 2575
		ecc_calc += ecc_bytes;
		oob_buf  += oob_bytes;
	}

	/* copy calculated ECC for whole page to chip->buffer->oob */
	/* this include masked-value(0xFF) for unwritten subpages */
	ecc_calc = chip->buffers->ecccalc;
2576 2577 2578 2579
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2580 2581 2582 2583 2584 2585 2586 2587

	/* write OOB buffer to NAND device */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}


2588
/**
2589
 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2590 2591 2592
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2593
 * @oob_required: must write chip->oob_poi to OOB
2594
 * @page: page number to write
L
Linus Torvalds 已提交
2595
 *
2596 2597
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
2598
 */
2599
static int nand_write_page_syndrome(struct mtd_info *mtd,
2600
				    struct nand_chip *chip,
2601 2602
				    const uint8_t *buf, int oob_required,
				    int page)
L
Linus Torvalds 已提交
2603
{
2604 2605 2606 2607 2608
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
L
Linus Torvalds 已提交
2609

2610
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
L
Linus Torvalds 已提交
2611

2612 2613
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
		chip->write_buf(mtd, p, eccsize);
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->ecc.calculate(mtd, p, oob);
		chip->write_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
L
Linus Torvalds 已提交
2627 2628
		}
	}
2629 2630

	/* Calculate remaining oob bytes */
2631
	i = mtd->oobsize - (oob - chip->oob_poi);
2632 2633
	if (i)
		chip->write_buf(mtd, oob, i);
2634 2635

	return 0;
2636 2637 2638
}

/**
2639
 * nand_write_page - [REPLACEABLE] write one page
2640 2641
 * @mtd: MTD device structure
 * @chip: NAND chip descriptor
2642 2643
 * @offset: address offset within the page
 * @data_len: length of actual data to be written
2644
 * @buf: the data to write
2645
 * @oob_required: must write chip->oob_poi to OOB
2646 2647 2648
 * @page: page number to write
 * @cached: cached programming
 * @raw: use _raw version of write_page
2649 2650
 */
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2651 2652
		uint32_t offset, int data_len, const uint8_t *buf,
		int oob_required, int page, int cached, int raw)
2653
{
2654 2655 2656 2657 2658 2659 2660
	int status, subpage;

	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
		chip->ecc.write_subpage)
		subpage = offset || (data_len < mtd->writesize);
	else
		subpage = 0;
2661

2662 2663
	if (nand_standard_page_accessors(&chip->ecc))
		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2664

2665
	if (unlikely(raw))
2666
		status = chip->ecc.write_page_raw(mtd, chip, buf,
2667
						  oob_required, page);
2668 2669
	else if (subpage)
		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2670
						 buf, oob_required, page);
2671
	else
2672 2673
		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
					      page);
2674 2675 2676

	if (status < 0)
		return status;
2677 2678

	/*
2679
	 * Cached progamming disabled for now. Not sure if it's worth the
2680
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2681 2682 2683
	 */
	cached = 0;

2684
	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2685

2686 2687
		if (nand_standard_page_accessors(&chip->ecc))
			chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2688
		status = chip->waitfunc(mtd, chip);
2689 2690
		/*
		 * See if operation failed and additional status checks are
2691
		 * available.
2692 2693 2694 2695 2696 2697 2698 2699 2700
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2701
		status = chip->waitfunc(mtd, chip);
2702 2703 2704
	}

	return 0;
L
Linus Torvalds 已提交
2705 2706
}

2707
/**
2708
 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2709
 * @mtd: MTD device structure
2710 2711 2712
 * @oob: oob data buffer
 * @len: oob data write length
 * @ops: oob ops structure
2713
 */
2714 2715
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
			      struct mtd_oob_ops *ops)
2716
{
2717
	struct nand_chip *chip = mtd_to_nand(mtd);
2718
	int ret;
2719 2720 2721 2722 2723 2724 2725

	/*
	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
	 * data from a previous OOB read.
	 */
	memset(chip->oob_poi, 0xff, mtd->oobsize);

2726
	switch (ops->mode) {
2727

2728 2729
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
2730 2731 2732
		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
		return oob + len;

2733 2734 2735 2736 2737 2738
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

2739 2740 2741 2742 2743 2744
	default:
		BUG();
	}
	return NULL;
}

2745
#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
L
Linus Torvalds 已提交
2746 2747

/**
2748
 * nand_do_write_ops - [INTERN] NAND write with ECC
2749 2750 2751
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2752
 *
2753
 * NAND write with ECC.
L
Linus Torvalds 已提交
2754
 */
2755 2756
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2757
{
2758
	int chipnr, realpage, page, blockmask, column;
2759
	struct nand_chip *chip = mtd_to_nand(mtd);
2760
	uint32_t writelen = ops->len;
2761 2762

	uint32_t oobwritelen = ops->ooblen;
2763
	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2764

2765 2766
	uint8_t *oob = ops->oobbuf;
	uint8_t *buf = ops->datbuf;
2767
	int ret;
2768
	int oob_required = oob ? 1 : 0;
L
Linus Torvalds 已提交
2769

2770
	ops->retlen = 0;
2771 2772
	if (!writelen)
		return 0;
L
Linus Torvalds 已提交
2773

2774
	/* Reject writes, which are not page aligned */
2775
	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2776 2777
		pr_notice("%s: attempt to write non page aligned data\n",
			   __func__);
L
Linus Torvalds 已提交
2778 2779 2780
		return -EINVAL;
	}

2781
	column = to & (mtd->writesize - 1);
L
Linus Torvalds 已提交
2782

2783 2784 2785
	chipnr = (int)(to >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);

L
Linus Torvalds 已提交
2786
	/* Check, if it is write protected */
2787 2788 2789 2790
	if (nand_check_wp(mtd)) {
		ret = -EIO;
		goto err_out;
	}
L
Linus Torvalds 已提交
2791

2792 2793 2794 2795 2796
	realpage = (int)(to >> chip->page_shift);
	page = realpage & chip->pagemask;
	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;

	/* Invalidate the page cache, when we write to the cached page */
2797 2798
	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2799
		chip->pagebuf = -1;
2800

2801
	/* Don't allow multipage oob writes with offset */
2802 2803 2804 2805
	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
		ret = -EINVAL;
		goto err_out;
	}
2806

2807
	while (1) {
2808
		int bytes = mtd->writesize;
2809
		int cached = writelen > bytes && page != blockmask;
2810
		uint8_t *wbuf = buf;
2811
		int use_bufpoi;
2812
		int part_pagewr = (column || writelen < mtd->writesize);
2813 2814 2815 2816 2817 2818 2819

		if (part_pagewr)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;
2820

2821 2822 2823 2824
		/* Partial page write?, or need to use bounce buffer */
		if (use_bufpoi) {
			pr_debug("%s: using write bounce buffer for buf@%p\n",
					 __func__, buf);
2825
			cached = 0;
2826 2827
			if (part_pagewr)
				bytes = min_t(int, bytes - column, writelen);
2828 2829 2830 2831 2832
			chip->pagebuf = -1;
			memset(chip->buffers->databuf, 0xff, mtd->writesize);
			memcpy(&chip->buffers->databuf[column], buf, bytes);
			wbuf = chip->buffers->databuf;
		}
L
Linus Torvalds 已提交
2833

2834 2835
		if (unlikely(oob)) {
			size_t len = min(oobwritelen, oobmaxlen);
2836
			oob = nand_fill_oob(mtd, oob, len, ops);
2837
			oobwritelen -= len;
2838 2839 2840
		} else {
			/* We still need to erase leftover OOB data */
			memset(chip->oob_poi, 0xff, mtd->oobsize);
2841
		}
2842 2843 2844
		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
					oob_required, page, cached,
					(ops->mode == MTD_OPS_RAW));
2845 2846 2847 2848 2849 2850 2851
		if (ret)
			break;

		writelen -= bytes;
		if (!writelen)
			break;

2852
		column = 0;
2853 2854 2855 2856 2857 2858 2859 2860 2861
		buf += bytes;
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2862 2863
		}
	}
2864 2865

	ops->retlen = ops->len - writelen;
2866 2867
	if (unlikely(oob))
		ops->oobretlen = ops->ooblen;
2868 2869 2870

err_out:
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2871 2872 2873
	return ret;
}

2874 2875
/**
 * panic_nand_write - [MTD Interface] NAND write with ECC
2876 2877 2878 2879 2880
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2881 2882 2883 2884 2885 2886 2887
 *
 * NAND write with ECC. Used when performing writes in interrupt context, this
 * may for example be called by mtdoops when writing an oops while in panic.
 */
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, const uint8_t *buf)
{
2888
	struct nand_chip *chip = mtd_to_nand(mtd);
2889
	struct mtd_oob_ops ops;
2890 2891
	int ret;

2892
	/* Wait for the device to get ready */
2893 2894
	panic_nand_wait(mtd, chip, 400);

2895
	/* Grab the device */
2896 2897
	panic_nand_get_device(chip, mtd, FL_WRITING);

2898
	memset(&ops, 0, sizeof(ops));
2899 2900
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2901
	ops.mode = MTD_OPS_PLACE_OOB;
2902

2903
	ret = nand_do_write_ops(mtd, to, &ops);
2904

2905
	*retlen = ops.retlen;
2906 2907 2908
	return ret;
}

2909
/**
2910
 * nand_write - [MTD Interface] NAND write with ECC
2911 2912 2913 2914 2915
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2916
 *
2917
 * NAND write with ECC.
2918
 */
2919 2920
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			  size_t *retlen, const uint8_t *buf)
2921
{
2922
	struct mtd_oob_ops ops;
2923 2924
	int ret;

2925
	nand_get_device(mtd, FL_WRITING);
2926
	memset(&ops, 0, sizeof(ops));
2927 2928
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2929
	ops.mode = MTD_OPS_PLACE_OOB;
2930 2931
	ret = nand_do_write_ops(mtd, to, &ops);
	*retlen = ops.retlen;
2932
	nand_release_device(mtd);
2933
	return ret;
2934
}
2935

L
Linus Torvalds 已提交
2936
/**
2937
 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2938 2939 2940
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2941
 *
2942
 * NAND write out-of-band.
L
Linus Torvalds 已提交
2943
 */
2944 2945
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2946
{
2947
	int chipnr, page, status, len;
2948
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
2949

2950
	pr_debug("%s: to = 0x%08x, len = %i\n",
2951
			 __func__, (unsigned int)to, (int)ops->ooblen);
L
Linus Torvalds 已提交
2952

2953
	len = mtd_oobavail(mtd, ops);
2954

L
Linus Torvalds 已提交
2955
	/* Do not allow write past end of page */
2956
	if ((ops->ooboffs + ops->ooblen) > len) {
2957 2958
		pr_debug("%s: attempt to write past end of page\n",
				__func__);
L
Linus Torvalds 已提交
2959 2960 2961
		return -EINVAL;
	}

2962
	if (unlikely(ops->ooboffs >= len)) {
2963 2964
		pr_debug("%s: attempt to start write outside oob\n",
				__func__);
2965 2966 2967
		return -EINVAL;
	}

2968
	/* Do not allow write past end of device */
2969 2970 2971 2972
	if (unlikely(to >= mtd->size ||
		     ops->ooboffs + ops->ooblen >
			((mtd->size >> chip->page_shift) -
			 (to >> chip->page_shift)) * len)) {
2973 2974
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
2975 2976 2977
		return -EINVAL;
	}

2978 2979 2980 2981 2982 2983 2984 2985
	chipnr = (int)(to >> chip->chip_shift);

	/*
	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
	 * of my DiskOnChip 2000 test units) will clear the whole data page too
	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
	 * it in the doc2000 driver in August 1999.  dwmw2.
	 */
2986 2987 2988 2989 2990 2991
	nand_reset(chip, chipnr);

	chip->select_chip(mtd, chipnr);

	/* Shift to get page */
	page = (int)(to >> chip->page_shift);
L
Linus Torvalds 已提交
2992 2993

	/* Check, if it is write protected */
2994 2995
	if (nand_check_wp(mtd)) {
		chip->select_chip(mtd, -1);
2996
		return -EROFS;
2997
	}
2998

L
Linus Torvalds 已提交
2999
	/* Invalidate the page cache, if we write to the cached page */
3000 3001
	if (page == chip->pagebuf)
		chip->pagebuf = -1;
L
Linus Torvalds 已提交
3002

3003
	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
3004

3005
	if (ops->mode == MTD_OPS_RAW)
3006 3007 3008
		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
	else
		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
L
Linus Torvalds 已提交
3009

3010 3011
	chip->select_chip(mtd, -1);

3012 3013
	if (status)
		return status;
L
Linus Torvalds 已提交
3014

3015
	ops->oobretlen = ops->ooblen;
L
Linus Torvalds 已提交
3016

3017
	return 0;
3018 3019 3020 3021
}

/**
 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3022 3023 3024
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
3025 3026 3027 3028 3029 3030 3031 3032 3033
 */
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
			  struct mtd_oob_ops *ops)
{
	int ret = -ENOTSUPP;

	ops->retlen = 0;

	/* Do not allow writes past end of device */
3034
	if (ops->datbuf && (to + ops->len) > mtd->size) {
3035 3036
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
3037 3038 3039
		return -EINVAL;
	}

3040
	nand_get_device(mtd, FL_WRITING);
3041

3042
	switch (ops->mode) {
3043 3044 3045
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_AUTO_OOB:
	case MTD_OPS_RAW:
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
		break;

	default:
		goto out;
	}

	if (!ops->datbuf)
		ret = nand_do_write_oob(mtd, to, ops);
	else
		ret = nand_do_write_ops(mtd, to, ops);

3057
out:
L
Linus Torvalds 已提交
3058 3059 3060 3061 3062
	nand_release_device(mtd);
	return ret;
}

/**
3063
 * single_erase - [GENERIC] NAND standard block erase command function
3064 3065
 * @mtd: MTD device structure
 * @page: the page address of the block which will be erased
L
Linus Torvalds 已提交
3066
 *
3067
 * Standard erase command for NAND chips. Returns NAND status.
L
Linus Torvalds 已提交
3068
 */
3069
static int single_erase(struct mtd_info *mtd, int page)
L
Linus Torvalds 已提交
3070
{
3071
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
3072
	/* Send commands to erase a block */
3073 3074
	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
3075 3076

	return chip->waitfunc(mtd, chip);
L
Linus Torvalds 已提交
3077 3078 3079 3080
}

/**
 * nand_erase - [MTD Interface] erase block(s)
3081 3082
 * @mtd: MTD device structure
 * @instr: erase instruction
L
Linus Torvalds 已提交
3083
 *
3084
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3085
 */
3086
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
L
Linus Torvalds 已提交
3087
{
3088
	return nand_erase_nand(mtd, instr, 0);
L
Linus Torvalds 已提交
3089
}
3090

L
Linus Torvalds 已提交
3091
/**
3092
 * nand_erase_nand - [INTERN] erase block(s)
3093 3094 3095
 * @mtd: MTD device structure
 * @instr: erase instruction
 * @allowbbt: allow erasing the bbt area
L
Linus Torvalds 已提交
3096
 *
3097
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3098
 */
3099 3100
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
		    int allowbbt)
L
Linus Torvalds 已提交
3101
{
3102
	int page, status, pages_per_block, ret, chipnr;
3103
	struct nand_chip *chip = mtd_to_nand(mtd);
3104
	loff_t len;
L
Linus Torvalds 已提交
3105

3106 3107 3108
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
			__func__, (unsigned long long)instr->addr,
			(unsigned long long)instr->len);
L
Linus Torvalds 已提交
3109

3110
	if (check_offs_len(mtd, instr->addr, instr->len))
L
Linus Torvalds 已提交
3111 3112 3113
		return -EINVAL;

	/* Grab the lock and see if the device is available */
3114
	nand_get_device(mtd, FL_ERASING);
L
Linus Torvalds 已提交
3115 3116

	/* Shift to get first page */
3117 3118
	page = (int)(instr->addr >> chip->page_shift);
	chipnr = (int)(instr->addr >> chip->chip_shift);
L
Linus Torvalds 已提交
3119 3120

	/* Calculate pages in each block */
3121
	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
L
Linus Torvalds 已提交
3122 3123

	/* Select the NAND device */
3124
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3125 3126 3127

	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
3128 3129
		pr_debug("%s: device is write protected!\n",
				__func__);
L
Linus Torvalds 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
		instr->state = MTD_ERASE_FAILED;
		goto erase_exit;
	}

	/* Loop through the pages */
	len = instr->len;

	instr->state = MTD_ERASING;

	while (len) {
W
Wolfram Sang 已提交
3140
		/* Check if we have a bad block, we do not erase bad blocks! */
3141
		if (nand_block_checkbad(mtd, ((loff_t) page) <<
3142
					chip->page_shift, allowbbt)) {
3143 3144
			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
				    __func__, page);
L
Linus Torvalds 已提交
3145 3146 3147
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
3148

3149 3150
		/*
		 * Invalidate the page cache, if we erase the block which
3151
		 * contains the current cached page.
3152 3153 3154 3155
		 */
		if (page <= chip->pagebuf && chip->pagebuf <
		    (page + pages_per_block))
			chip->pagebuf = -1;
L
Linus Torvalds 已提交
3156

3157
		status = chip->erase(mtd, page & chip->pagemask);
L
Linus Torvalds 已提交
3158

3159 3160 3161 3162 3163 3164 3165
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_ERASING,
					       status, page);
3166

L
Linus Torvalds 已提交
3167
		/* See if block erase succeeded */
3168
		if (status & NAND_STATUS_FAIL) {
3169 3170
			pr_debug("%s: failed erase, page 0x%08x\n",
					__func__, page);
L
Linus Torvalds 已提交
3171
			instr->state = MTD_ERASE_FAILED;
3172 3173
			instr->fail_addr =
				((loff_t)page << chip->page_shift);
L
Linus Torvalds 已提交
3174 3175
			goto erase_exit;
		}
3176

L
Linus Torvalds 已提交
3177
		/* Increment page address and decrement length */
3178
		len -= (1ULL << chip->phys_erase_shift);
L
Linus Torvalds 已提交
3179 3180 3181
		page += pages_per_block;

		/* Check, if we cross a chip boundary */
3182
		if (len && !(page & chip->pagemask)) {
L
Linus Torvalds 已提交
3183
			chipnr++;
3184 3185
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3186 3187 3188 3189
		}
	}
	instr->state = MTD_ERASE_DONE;

3190
erase_exit:
L
Linus Torvalds 已提交
3191 3192 3193 3194

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;

	/* Deselect and wake up anyone waiting on the device */
3195
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
3196 3197
	nand_release_device(mtd);

3198 3199 3200 3201
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207
	/* Return more or less happy */
	return ret;
}

/**
 * nand_sync - [MTD Interface] sync
3208
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
3209
 *
3210
 * Sync is actually a wait for chip ready function.
L
Linus Torvalds 已提交
3211
 */
3212
static void nand_sync(struct mtd_info *mtd)
L
Linus Torvalds 已提交
3213
{
3214
	pr_debug("%s: called\n", __func__);
L
Linus Torvalds 已提交
3215 3216

	/* Grab the lock and see if the device is available */
3217
	nand_get_device(mtd, FL_SYNCING);
L
Linus Torvalds 已提交
3218
	/* Release it and go back */
3219
	nand_release_device(mtd);
L
Linus Torvalds 已提交
3220 3221 3222
}

/**
3223
 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3224 3225
 * @mtd: MTD device structure
 * @offs: offset relative to mtd start
L
Linus Torvalds 已提交
3226
 */
3227
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
L
Linus Torvalds 已提交
3228
{
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	struct nand_chip *chip = mtd_to_nand(mtd);
	int chipnr = (int)(offs >> chip->chip_shift);
	int ret;

	/* Select the NAND device */
	nand_get_device(mtd, FL_READING);
	chip->select_chip(mtd, chipnr);

	ret = nand_block_checkbad(mtd, offs, 0);

	chip->select_chip(mtd, -1);
	nand_release_device(mtd);

	return ret;
L
Linus Torvalds 已提交
3243 3244 3245
}

/**
3246
 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3247 3248
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
L
Linus Torvalds 已提交
3249
 */
3250
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
3251 3252 3253
{
	int ret;

3254 3255
	ret = nand_block_isbad(mtd, ofs);
	if (ret) {
3256
		/* If it was bad already, return success and do nothing */
L
Linus Torvalds 已提交
3257 3258
		if (ret > 0)
			return 0;
3259 3260
		return ret;
	}
L
Linus Torvalds 已提交
3261

3262
	return nand_block_markbad_lowlevel(mtd, ofs);
L
Linus Torvalds 已提交
3263 3264
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
/**
 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
 * @len: length of mtd
 */
static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	u32 part_start_block;
	u32 part_end_block;
	u32 part_start_die;
	u32 part_end_die;

	/*
	 * max_bb_per_die and blocks_per_die used to determine
	 * the maximum bad block count.
	 */
	if (!chip->max_bb_per_die || !chip->blocks_per_die)
		return -ENOTSUPP;

	/* Get the start and end of the partition in erase blocks. */
	part_start_block = mtd_div_by_eb(ofs, mtd);
	part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;

	/* Get the start and end LUNs of the partition. */
	part_start_die = part_start_block / chip->blocks_per_die;
	part_end_die = part_end_block / chip->blocks_per_die;

	/*
	 * Look up the bad blocks per unit and multiply by the number of units
	 * that the partition spans.
	 */
	return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/**
 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
	int status;
3312
	int i;
3313

3314 3315 3316
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3317 3318 3319
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3320 3321 3322
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		chip->write_byte(mtd, subfeature_param[i]);

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	status = chip->waitfunc(mtd, chip);
	if (status & NAND_STATUS_FAIL)
		return -EIO;
	return 0;
}

/**
 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
3339 3340
	int i;

3341 3342 3343
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3344 3345 3346
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3347 3348
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		*subfeature_param++ = chip->read_byte(mtd);
3349 3350 3351
	return 0;
}

3352 3353
/**
 * nand_suspend - [MTD Interface] Suspend the NAND flash
3354
 * @mtd: MTD device structure
3355 3356 3357
 */
static int nand_suspend(struct mtd_info *mtd)
{
3358
	return nand_get_device(mtd, FL_PM_SUSPENDED);
3359 3360 3361 3362
}

/**
 * nand_resume - [MTD Interface] Resume the NAND flash
3363
 * @mtd: MTD device structure
3364 3365 3366
 */
static void nand_resume(struct mtd_info *mtd)
{
3367
	struct nand_chip *chip = mtd_to_nand(mtd);
3368

3369
	if (chip->state == FL_PM_SUSPENDED)
3370 3371
		nand_release_device(mtd);
	else
3372 3373
		pr_err("%s called for a chip which is not in suspended state\n",
			__func__);
3374 3375
}

S
Scott Branden 已提交
3376 3377 3378 3379 3380 3381 3382
/**
 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
 *                 prevent further operations
 * @mtd: MTD device structure
 */
static void nand_shutdown(struct mtd_info *mtd)
{
3383
	nand_get_device(mtd, FL_PM_SUSPENDED);
S
Scott Branden 已提交
3384 3385
}

3386
/* Set default functions */
3387
static void nand_set_defaults(struct nand_chip *chip, int busw)
T
Thomas Gleixner 已提交
3388
{
L
Linus Torvalds 已提交
3389
	/* check for proper chip_delay setup, set 20us if not */
3390 3391
	if (!chip->chip_delay)
		chip->chip_delay = 20;
L
Linus Torvalds 已提交
3392 3393

	/* check, if a user supplied command function given */
3394 3395
	if (chip->cmdfunc == NULL)
		chip->cmdfunc = nand_command;
L
Linus Torvalds 已提交
3396 3397

	/* check, if a user supplied wait function given */
3398 3399 3400 3401 3402
	if (chip->waitfunc == NULL)
		chip->waitfunc = nand_wait;

	if (!chip->select_chip)
		chip->select_chip = nand_select_chip;
3403

3404 3405 3406 3407 3408 3409
	/* set for ONFI nand */
	if (!chip->onfi_set_features)
		chip->onfi_set_features = nand_onfi_set_features;
	if (!chip->onfi_get_features)
		chip->onfi_get_features = nand_onfi_get_features;

3410 3411
	/* If called twice, pointers that depend on busw may need to be reset */
	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3412 3413 3414 3415 3416 3417 3418
		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
	if (!chip->read_word)
		chip->read_word = nand_read_word;
	if (!chip->block_bad)
		chip->block_bad = nand_block_bad;
	if (!chip->block_markbad)
		chip->block_markbad = nand_default_block_markbad;
3419
	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3420
		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3421 3422
	if (!chip->write_byte || chip->write_byte == nand_write_byte)
		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3423
	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3424 3425 3426
		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
	if (!chip->scan_bbt)
		chip->scan_bbt = nand_default_bbt;
3427 3428 3429

	if (!chip->controller) {
		chip->controller = &chip->hwcontrol;
3430
		nand_hw_control_init(chip->controller);
3431 3432
	}

T
Thomas Gleixner 已提交
3433 3434
}

3435
/* Sanitize ONFI strings so we can safely print them */
3436 3437 3438 3439
static void sanitize_string(uint8_t *s, size_t len)
{
	ssize_t i;

3440
	/* Null terminate */
3441 3442
	s[len - 1] = 0;

3443
	/* Remove non printable chars */
3444 3445 3446 3447 3448
	for (i = 0; i < len - 1; i++) {
		if (s[i] < ' ' || s[i] > 127)
			s[i] = '?';
	}

3449
	/* Remove trailing spaces */
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	strim(s);
}

static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
	int i;
	while (len--) {
		crc ^= *p++ << 8;
		for (i = 0; i < 8; i++)
			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
	}

	return crc;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/* Parse the Extended Parameter Page. */
static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
		struct nand_chip *chip, struct nand_onfi_params *p)
{
	struct onfi_ext_param_page *ep;
	struct onfi_ext_section *s;
	struct onfi_ext_ecc_info *ecc;
	uint8_t *cursor;
	int ret = -EINVAL;
	int len;
	int i;

	len = le16_to_cpu(p->ext_param_page_length) * 16;
	ep = kmalloc(len, GFP_KERNEL);
3479 3480
	if (!ep)
		return -ENOMEM;
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521

	/* Send our own NAND_CMD_PARAM. */
	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);

	/* Use the Change Read Column command to skip the ONFI param pages. */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
			sizeof(*p) * p->num_of_param_pages , -1);

	/* Read out the Extended Parameter Page. */
	chip->read_buf(mtd, (uint8_t *)ep, len);
	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
		!= le16_to_cpu(ep->crc))) {
		pr_debug("fail in the CRC.\n");
		goto ext_out;
	}

	/*
	 * Check the signature.
	 * Do not strictly follow the ONFI spec, maybe changed in future.
	 */
	if (strncmp(ep->sig, "EPPS", 4)) {
		pr_debug("The signature is invalid.\n");
		goto ext_out;
	}

	/* find the ECC section. */
	cursor = (uint8_t *)(ep + 1);
	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
		s = ep->sections + i;
		if (s->type == ONFI_SECTION_TYPE_2)
			break;
		cursor += s->length * 16;
	}
	if (i == ONFI_EXT_SECTION_MAX) {
		pr_debug("We can not find the ECC section.\n");
		goto ext_out;
	}

	/* get the info we want. */
	ecc = (struct onfi_ext_ecc_info *)cursor;

3522 3523 3524
	if (!ecc->codeword_size) {
		pr_debug("Invalid codeword size\n");
		goto ext_out;
3525 3526
	}

3527 3528
	chip->ecc_strength_ds = ecc->ecc_bits;
	chip->ecc_step_ds = 1 << ecc->codeword_size;
3529
	ret = 0;
3530 3531 3532 3533 3534 3535

ext_out:
	kfree(ep);
	return ret;
}

3536 3537
static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
{
3538
	struct nand_chip *chip = mtd_to_nand(mtd);
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
			feature);
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static void nand_onfi_detect_micron(struct nand_chip *chip,
		struct nand_onfi_params *p)
{
	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;

	if (le16_to_cpu(p->vendor_revision) < 1)
		return;

	chip->read_retries = micron->read_retry_options;
	chip->setup_read_retry = nand_setup_read_retry_micron;
}

3560
/*
3561
 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3562 3563
 */
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3564
					int *busw)
3565 3566
{
	struct nand_onfi_params *p = &chip->onfi_params;
3567
	int i, j;
3568 3569
	int val;

3570
	/* Try ONFI for unknown chip or LP */
3571 3572 3573 3574 3575 3576 3577
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
	for (i = 0; i < 3; i++) {
3578 3579
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);
3580 3581 3582 3583 3584 3585
		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
				le16_to_cpu(p->crc)) {
			break;
		}
	}

3586 3587
	if (i == 3) {
		pr_err("Could not find valid ONFI parameter page; aborting\n");
3588
		return 0;
3589
	}
3590

3591
	/* Check version */
3592
	val = le16_to_cpu(p->revision);
3593 3594 3595
	if (val & (1 << 5))
		chip->onfi_version = 23;
	else if (val & (1 << 4))
3596 3597 3598 3599 3600
		chip->onfi_version = 22;
	else if (val & (1 << 3))
		chip->onfi_version = 21;
	else if (val & (1 << 2))
		chip->onfi_version = 20;
3601
	else if (val & (1 << 1))
3602
		chip->onfi_version = 10;
3603 3604

	if (!chip->onfi_version) {
3605
		pr_info("unsupported ONFI version: %d\n", val);
3606 3607
		return 0;
	}
3608 3609 3610 3611 3612

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;
3613

3614
	mtd->writesize = le32_to_cpu(p->byte_per_page);
3615 3616 3617 3618 3619 3620 3621 3622 3623

	/*
	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
	 * (don't ask me who thought of this...). MTD assumes that these
	 * dimensions will be power-of-2, so just truncate the remaining area.
	 */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

3624
	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3625 3626 3627

	/* See erasesize comment */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3628
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3629
	chip->bits_per_cell = p->bits_per_cell;
3630 3631

	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3632
		*busw = NAND_BUSWIDTH_16;
3633 3634
	else
		*busw = 0;
3635

3636 3637 3638
	if (p->ecc_bits != 0xff) {
		chip->ecc_strength_ds = p->ecc_bits;
		chip->ecc_step_ds = 512;
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	} else if (chip->onfi_version >= 21 &&
		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {

		/*
		 * The nand_flash_detect_ext_param_page() uses the
		 * Change Read Column command which maybe not supported
		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
		 * now. We do not replace user supplied command function.
		 */
		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
			chip->cmdfunc = nand_command_lp;

		/* The Extended Parameter Page is supported since ONFI 2.1. */
		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3653 3654 3655
			pr_warn("Failed to detect ONFI extended param page\n");
	} else {
		pr_warn("Could not retrieve ONFI ECC requirements\n");
3656 3657
	}

3658 3659 3660
	if (p->jedec_id == NAND_MFR_MICRON)
		nand_onfi_detect_micron(chip, p);

3661 3662 3663
	return 1;
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
/*
 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
 */
static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
					int *busw)
{
	struct nand_jedec_params *p = &chip->jedec_params;
	struct jedec_ecc_info *ecc;
	int val;
	int i, j;

	/* Try JEDEC for unknown chip or LP */
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'C')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
	for (i = 0; i < 3; i++) {
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);

		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
				le16_to_cpu(p->crc))
			break;
	}

	if (i == 3) {
		pr_err("Could not find valid JEDEC parameter page; aborting\n");
		return 0;
	}

	/* Check version */
	val = le16_to_cpu(p->revision);
	if (val & (1 << 2))
		chip->jedec_version = 10;
	else if (val & (1 << 1))
		chip->jedec_version = 1; /* vendor specific version */

	if (!chip->jedec_version) {
		pr_info("unsupported JEDEC version: %d\n", val);
		return 0;
	}

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;

	mtd->writesize = le32_to_cpu(p->byte_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
	chip->bits_per_cell = p->bits_per_cell;

	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
		*busw = NAND_BUSWIDTH_16;
	else
		*busw = 0;

	/* ECC info */
	ecc = &p->ecc_info[0];

	if (ecc->codeword_size >= 9) {
		chip->ecc_strength_ds = ecc->ecc_bits;
		chip->ecc_step_ds = 1 << ecc->codeword_size;
	} else {
		pr_warn("Invalid codeword size\n");
	}

	return 1;
}

3745 3746 3747 3748 3749 3750 3751 3752
/*
 * nand_id_has_period - Check if an ID string has a given wraparound period
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array
 * @period: the period of repitition
 *
 * Check if an ID string is repeated within a given sequence of bytes at
 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3753
 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
 * if the repetition has a period of @period; otherwise, returns zero.
 */
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
	int i, j;
	for (i = 0; i < period; i++)
		for (j = i + period; j < arrlen; j += period)
			if (id_data[i] != id_data[j])
				return 0;
	return 1;
}

/*
 * nand_id_len - Get the length of an ID string returned by CMD_READID
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array

 * Returns the length of the ID string, according to known wraparound/trailing
 * zero patterns. If no pattern exists, returns the length of the array.
 */
static int nand_id_len(u8 *id_data, int arrlen)
{
	int last_nonzero, period;

	/* Find last non-zero byte */
	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
		if (id_data[last_nonzero])
			break;

	/* All zeros */
	if (last_nonzero < 0)
		return 0;

	/* Calculate wraparound period */
	for (period = 1; period < arrlen; period++)
		if (nand_id_has_period(id_data, arrlen, period))
			break;

	/* There's a repeated pattern */
	if (period < arrlen)
		return period;

	/* There are trailing zeros */
	if (last_nonzero < arrlen - 1)
		return last_nonzero + 1;

	/* No pattern detected */
	return arrlen;
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
	int bits;

	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
	bits >>= NAND_CI_CELLTYPE_SHIFT;
	return bits + 1;
}

3814 3815 3816 3817 3818 3819 3820 3821
/*
 * Many new NAND share similar device ID codes, which represent the size of the
 * chip. The rest of the parameters must be decoded according to generic or
 * manufacturer-specific "extended ID" decoding patterns.
 */
static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
				u8 id_data[8], int *busw)
{
3822
	int extid, id_len;
3823
	/* The 3rd id byte holds MLC / multichip data */
3824
	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3825 3826 3827
	/* The 4th id byte is the important one */
	extid = id_data[3];

3828 3829
	id_len = nand_id_len(id_data, 8);

3830 3831 3832
	/*
	 * Field definitions are in the following datasheets:
	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3833
	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3834
	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3835
	 *
3836 3837
	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
	 * ID to decide what to do.
3838
	 */
3839
	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3840
			!nand_is_slc(chip) && id_data[5] != 0x00) {
3841 3842 3843 3844
		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
3845
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3846 3847 3848 3849 3850 3851 3852 3853 3854
		case 1:
			mtd->oobsize = 128;
			break;
		case 2:
			mtd->oobsize = 218;
			break;
		case 3:
			mtd->oobsize = 400;
			break;
3855
		case 4:
3856 3857
			mtd->oobsize = 436;
			break;
3858 3859 3860 3861 3862 3863
		case 5:
			mtd->oobsize = 512;
			break;
		case 6:
			mtd->oobsize = 640;
			break;
3864 3865 3866 3867
		case 7:
		default: /* Other cases are "reserved" (unknown) */
			mtd->oobsize = 1024;
			break;
3868 3869 3870 3871 3872 3873
		}
		extid >>= 2;
		/* Calc blocksize */
		mtd->erasesize = (128 * 1024) <<
			(((extid >> 1) & 0x04) | (extid & 0x03));
		*busw = 0;
3874
	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3875
			!nand_is_slc(chip)) {
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
		unsigned int tmp;

		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
		case 0:
			mtd->oobsize = 128;
			break;
		case 1:
			mtd->oobsize = 224;
			break;
		case 2:
			mtd->oobsize = 448;
			break;
		case 3:
			mtd->oobsize = 64;
			break;
		case 4:
			mtd->oobsize = 32;
			break;
		case 5:
			mtd->oobsize = 16;
			break;
		default:
			mtd->oobsize = 640;
			break;
		}
		extid >>= 2;
		/* Calc blocksize */
		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
		if (tmp < 0x03)
			mtd->erasesize = (128 * 1024) << tmp;
		else if (tmp == 0x03)
			mtd->erasesize = 768 * 1024;
		else
			mtd->erasesize = (64 * 1024) << tmp;
		*busw = 0;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	} else {
		/* Calc pagesize */
		mtd->writesize = 1024 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		mtd->oobsize = (8 << (extid & 0x01)) *
			(mtd->writesize >> 9);
		extid >>= 2;
		/* Calc blocksize. Blocksize is multiples of 64KiB */
		mtd->erasesize = (64 * 1024) << (extid & 0x03);
		extid >>= 2;
		/* Get buswidth information */
		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937

		/*
		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
		 * follows:
		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
		 *                         110b -> 24nm
		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
		 */
		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3938
				nand_is_slc(chip) &&
3939 3940 3941 3942 3943
				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
				!(id_data[4] & 0x80) /* !BENAND */) {
			mtd->oobsize = 32 * mtd->writesize >> 9;
		}

3944 3945 3946
	}
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
/*
 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
 * decodes a matching ID table entry and assigns the MTD size parameters for
 * the chip.
 */
static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
				struct nand_flash_dev *type, u8 id_data[8],
				int *busw)
{
	int maf_id = id_data[0];

	mtd->erasesize = type->erasesize;
	mtd->writesize = type->pagesize;
	mtd->oobsize = mtd->writesize / 32;
	*busw = type->options & NAND_BUSWIDTH_16;

3963 3964 3965
	/* All legacy ID NAND are small-page, SLC */
	chip->bits_per_cell = 1;

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	/*
	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
	 * some Spansion chips have erasesize that conflicts with size
	 * listed in nand_ids table.
	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
	 */
	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
			&& id_data[6] == 0x00 && id_data[7] == 0x00
			&& mtd->writesize == 512) {
		mtd->erasesize = 128 * 1024;
		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
	}
}

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
/*
 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
 * heuristic patterns using various detected parameters (e.g., manufacturer,
 * page size, cell-type information).
 */
static void nand_decode_bbm_options(struct mtd_info *mtd,
				    struct nand_chip *chip, u8 id_data[8])
{
	int maf_id = id_data[0];

	/* Set the bad block position */
	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
	else
		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;

	/*
	 * Bad block marker is stored in the last page of each block on Samsung
	 * and Hynix MLC devices; stored in first two pages of each block on
	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
	 * AMD/Spansion, and Macronix.  All others scan only the first page.
	 */
4002
	if (!nand_is_slc(chip) &&
4003 4004 4005
			(maf_id == NAND_MFR_SAMSUNG ||
			 maf_id == NAND_MFR_HYNIX))
		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
4006
	else if ((nand_is_slc(chip) &&
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
				(maf_id == NAND_MFR_SAMSUNG ||
				 maf_id == NAND_MFR_HYNIX ||
				 maf_id == NAND_MFR_TOSHIBA ||
				 maf_id == NAND_MFR_AMD ||
				 maf_id == NAND_MFR_MACRONIX)) ||
			(mtd->writesize == 2048 &&
			 maf_id == NAND_MFR_MICRON))
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
	return type->id_len;
}

static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
		   struct nand_flash_dev *type, u8 *id_data, int *busw)
{
	if (!strncmp(type->id, id_data, type->id_len)) {
		mtd->writesize = type->pagesize;
		mtd->erasesize = type->erasesize;
		mtd->oobsize = type->oobsize;

4030
		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4031 4032
		chip->chipsize = (uint64_t)type->chipsize << 20;
		chip->options |= type->options;
4033 4034
		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
		chip->ecc_step_ds = NAND_ECC_STEP(type);
4035 4036
		chip->onfi_timing_mode_default =
					type->onfi_timing_mode_default;
4037 4038 4039

		*busw = type->options & NAND_BUSWIDTH_16;

4040 4041 4042
		if (!mtd->name)
			mtd->name = type->name;

4043 4044 4045 4046 4047
		return true;
	}
	return false;
}

T
Thomas Gleixner 已提交
4048
/*
4049
 * Get the flash and manufacturer id and lookup if the type is supported.
T
Thomas Gleixner 已提交
4050
 */
4051 4052 4053
static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip,
			       int *maf_id, int *dev_id,
			       struct nand_flash_dev *type)
T
Thomas Gleixner 已提交
4054
{
4055
	int busw;
4056
	int i, maf_idx;
4057
	u8 id_data[8];
L
Linus Torvalds 已提交
4058

4059 4060
	/*
	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4061
	 * after power-up.
4062
	 */
4063 4064 4065 4066
	nand_reset(chip, 0);

	/* Select the device */
	chip->select_chip(mtd, 0);
4067

L
Linus Torvalds 已提交
4068
	/* Send the command for reading device ID */
4069
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4070 4071

	/* Read manufacturer and device IDs */
4072
	*maf_id = chip->read_byte(mtd);
4073
	*dev_id = chip->read_byte(mtd);
L
Linus Torvalds 已提交
4074

4075 4076
	/*
	 * Try again to make sure, as some systems the bus-hold or other
4077 4078 4079 4080 4081 4082 4083
	 * interface concerns can cause random data which looks like a
	 * possibly credible NAND flash to appear. If the two results do
	 * not match, ignore the device completely.
	 */

	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

4084 4085
	/* Read entire ID string */
	for (i = 0; i < 8; i++)
4086
		id_data[i] = chip->read_byte(mtd);
4087

4088
	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
4089
		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4090
			*maf_id, *dev_id, id_data[0], id_data[1]);
4091
		return -ENODEV;
4092 4093
	}

T
Thomas Gleixner 已提交
4094
	if (!type)
4095 4096
		type = nand_flash_ids;

4097 4098 4099 4100 4101
	for (; type->name != NULL; type++) {
		if (is_full_id_nand(type)) {
			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
				goto ident_done;
		} else if (*dev_id == type->dev_id) {
4102
			break;
4103 4104
		}
	}
4105

4106 4107
	chip->onfi_version = 0;
	if (!type->name || !type->pagesize) {
4108
		/* Check if the chip is ONFI compliant */
4109
		if (nand_flash_detect_onfi(mtd, chip, &busw))
4110
			goto ident_done;
4111 4112 4113 4114

		/* Check if the chip is JEDEC compliant */
		if (nand_flash_detect_jedec(mtd, chip, &busw))
			goto ident_done;
4115 4116
	}

4117
	if (!type->name)
4118
		return -ENODEV;
T
Thomas Gleixner 已提交
4119

4120 4121 4122
	if (!mtd->name)
		mtd->name = type->name;

4123
	chip->chipsize = (uint64_t)type->chipsize << 20;
T
Thomas Gleixner 已提交
4124

4125
	if (!type->pagesize) {
4126 4127
		/* Decode parameters from extended ID */
		nand_decode_ext_id(mtd, chip, id_data, &busw);
T
Thomas Gleixner 已提交
4128
	} else {
4129
		nand_decode_id(mtd, chip, type, id_data, &busw);
T
Thomas Gleixner 已提交
4130
	}
4131 4132
	/* Get chip options */
	chip->options |= type->options;
4133

4134 4135 4136
	/*
	 * Check if chip is not a Samsung device. Do not clear the
	 * options for chips which do not have an extended id.
4137 4138 4139 4140 4141
	 */
	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:

T
Thomas Gleixner 已提交
4142
	/* Try to identify manufacturer */
4143
	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
T
Thomas Gleixner 已提交
4144 4145 4146
		if (nand_manuf_ids[maf_idx].id == *maf_id)
			break;
	}
4147

4148 4149 4150 4151 4152 4153 4154 4155 4156
	if (chip->options & NAND_BUSWIDTH_AUTO) {
		WARN_ON(chip->options & NAND_BUSWIDTH_16);
		chip->options |= busw;
		nand_set_defaults(chip, busw);
	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
		/*
		 * Check, if buswidth is correct. Hardware drivers should set
		 * chip correct!
		 */
4157 4158 4159 4160
		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
			*maf_id, *dev_id);
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
		pr_warn("bus width %d instead %d bit\n",
4161 4162
			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
			   busw ? 16 : 8);
4163
		return -EINVAL;
T
Thomas Gleixner 已提交
4164
	}
4165

4166 4167
	nand_decode_bbm_options(mtd, chip, id_data);

T
Thomas Gleixner 已提交
4168
	/* Calculate the address shift from the page size */
4169
	chip->page_shift = ffs(mtd->writesize) - 1;
4170
	/* Convert chipsize to number of pages per chip -1 */
4171
	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4172

4173
	chip->bbt_erase_shift = chip->phys_erase_shift =
T
Thomas Gleixner 已提交
4174
		ffs(mtd->erasesize) - 1;
4175 4176
	if (chip->chipsize & 0xffffffff)
		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4177 4178 4179 4180
	else {
		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
		chip->chip_shift += 32 - 1;
	}
L
Linus Torvalds 已提交
4181

A
Artem Bityutskiy 已提交
4182
	chip->badblockbits = 8;
4183
	chip->erase = single_erase;
T
Thomas Gleixner 已提交
4184

4185
	/* Do not replace user supplied command function! */
4186 4187
	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
		chip->cmdfunc = nand_command_lp;
T
Thomas Gleixner 已提交
4188

4189 4190
	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
		*maf_id, *dev_id);
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

	if (chip->onfi_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->onfi_params.model);
	else if (chip->jedec_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->jedec_params.model);
	else
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				type->name);

4202
	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4203
		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4204
		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4205
	return 0;
T
Thomas Gleixner 已提交
4206 4207
}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
static const char * const nand_ecc_modes[] = {
	[NAND_ECC_NONE]		= "none",
	[NAND_ECC_SOFT]		= "soft",
	[NAND_ECC_HW]		= "hw",
	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
};

static int of_get_nand_ecc_mode(struct device_node *np)
{
	const char *pm;
	int err, i;

	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
		if (!strcasecmp(pm, nand_ecc_modes[i]))
			return i;

4229 4230 4231 4232 4233 4234 4235 4236
	/*
	 * For backward compatibility we support few obsoleted values that don't
	 * have their mappings into nand_ecc_modes_t anymore (they were merged
	 * with other enums).
	 */
	if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_SOFT;

4237 4238 4239
	return -ENODEV;
}

4240 4241 4242 4243 4244
static const char * const nand_ecc_algos[] = {
	[NAND_ECC_HAMMING]	= "hamming",
	[NAND_ECC_BCH]		= "bch",
};

4245 4246 4247
static int of_get_nand_ecc_algo(struct device_node *np)
{
	const char *pm;
4248
	int err, i;
4249

4250 4251 4252 4253 4254 4255 4256
	err = of_property_read_string(np, "nand-ecc-algo", &pm);
	if (!err) {
		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
			if (!strcasecmp(pm, nand_ecc_algos[i]))
				return i;
		return -ENODEV;
	}
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312

	/*
	 * For backward compatibility we also read "nand-ecc-mode" checking
	 * for some obsoleted values that were specifying ECC algorithm.
	 */
	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	if (!strcasecmp(pm, "soft"))
		return NAND_ECC_HAMMING;
	else if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_BCH;

	return -ENODEV;
}

static int of_get_nand_ecc_step_size(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
	return ret ? ret : val;
}

static int of_get_nand_ecc_strength(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
	return ret ? ret : val;
}

static int of_get_nand_bus_width(struct device_node *np)
{
	u32 val;

	if (of_property_read_u32(np, "nand-bus-width", &val))
		return 8;

	switch (val) {
	case 8:
	case 16:
		return val;
	default:
		return -EIO;
	}
}

static bool of_get_nand_on_flash_bbt(struct device_node *np)
{
	return of_property_read_bool(np, "nand-on-flash-bbt");
}

4313
static int nand_dt_init(struct nand_chip *chip)
4314
{
4315
	struct device_node *dn = nand_get_flash_node(chip);
4316
	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4317

4318 4319 4320
	if (!dn)
		return 0;

4321 4322 4323 4324 4325 4326 4327
	if (of_get_nand_bus_width(dn) == 16)
		chip->options |= NAND_BUSWIDTH_16;

	if (of_get_nand_on_flash_bbt(dn))
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	ecc_mode = of_get_nand_ecc_mode(dn);
4328
	ecc_algo = of_get_nand_ecc_algo(dn);
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	ecc_strength = of_get_nand_ecc_strength(dn);
	ecc_step = of_get_nand_ecc_step_size(dn);

	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
		pr_err("must set both strength and step size in DT\n");
		return -EINVAL;
	}

	if (ecc_mode >= 0)
		chip->ecc.mode = ecc_mode;

4341 4342 4343
	if (ecc_algo >= 0)
		chip->ecc.algo = ecc_algo;

4344 4345 4346 4347 4348 4349
	if (ecc_strength >= 0)
		chip->ecc.strength = ecc_strength;

	if (ecc_step > 0)
		chip->ecc.size = ecc_step;

4350 4351 4352
	if (of_property_read_bool(dn, "nand-ecc-maximize"))
		chip->ecc.options |= NAND_ECC_MAXIMIZE;

4353 4354 4355
	return 0;
}

T
Thomas Gleixner 已提交
4356
/**
4357
 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4358 4359 4360
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
 * @table: alternative NAND ID table
T
Thomas Gleixner 已提交
4361
 *
4362 4363
 * This is the first phase of the normal nand_scan() function. It reads the
 * flash ID and sets up MTD fields accordingly.
T
Thomas Gleixner 已提交
4364 4365
 *
 */
4366 4367
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
		    struct nand_flash_dev *table)
T
Thomas Gleixner 已提交
4368
{
4369
	int i, nand_maf_id, nand_dev_id;
4370
	struct nand_chip *chip = mtd_to_nand(mtd);
4371 4372
	int ret;

4373 4374 4375
	ret = nand_dt_init(chip);
	if (ret)
		return ret;
T
Thomas Gleixner 已提交
4376

4377 4378 4379
	if (!mtd->name && mtd->dev.parent)
		mtd->name = dev_name(mtd->dev.parent);

4380 4381 4382 4383 4384 4385 4386 4387 4388
	if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
		/*
		 * Default functions assigned for chip_select() and
		 * cmdfunc() both expect cmd_ctrl() to be populated,
		 * so we need to check that that's the case
		 */
		pr_err("chip.cmd_ctrl() callback is not provided");
		return -EINVAL;
	}
T
Thomas Gleixner 已提交
4389
	/* Set the default functions */
4390
	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
T
Thomas Gleixner 已提交
4391 4392

	/* Read the flash type */
4393 4394
	ret = nand_get_flash_type(mtd, chip, &nand_maf_id, &nand_dev_id, table);
	if (ret) {
4395
		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4396
			pr_warn("No NAND device found\n");
4397
		chip->select_chip(mtd, -1);
4398
		return ret;
L
Linus Torvalds 已提交
4399 4400
	}

4401
	/* Initialize the ->data_interface field. */
4402 4403 4404 4405
	ret = nand_init_data_interface(chip);
	if (ret)
		return ret;

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	/*
	 * Setup the data interface correctly on the chip and controller side.
	 * This explicit call to nand_setup_data_interface() is only required
	 * for the first die, because nand_reset() has been called before
	 * ->data_interface and ->default_onfi_timing_mode were set.
	 * For the other dies, nand_reset() will automatically switch to the
	 * best mode for us.
	 */
	ret = nand_setup_data_interface(chip);
	if (ret)
		return ret;

4418 4419
	chip->select_chip(mtd, -1);

T
Thomas Gleixner 已提交
4420
	/* Check for a chip array */
4421
	for (i = 1; i < maxchips; i++) {
4422
		/* See comment in nand_get_flash_type for reset */
4423 4424 4425
		nand_reset(chip, i);

		chip->select_chip(mtd, i);
L
Linus Torvalds 已提交
4426
		/* Send the command for reading device ID */
4427
		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4428
		/* Read manufacturer and device IDs */
4429
		if (nand_maf_id != chip->read_byte(mtd) ||
4430 4431
		    nand_dev_id != chip->read_byte(mtd)) {
			chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4432
			break;
4433 4434
		}
		chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4435 4436
	}
	if (i > 1)
4437
		pr_info("%d chips detected\n", i);
4438

L
Linus Torvalds 已提交
4439
	/* Store the number of chips and calc total size for mtd */
4440 4441
	chip->numchips = i;
	mtd->size = i * chip->chipsize;
T
Thomas Gleixner 已提交
4442

4443 4444
	return 0;
}
4445
EXPORT_SYMBOL(nand_scan_ident);
4446

4447 4448 4449 4450 4451
static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

4452
	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
		return -EINVAL;

	switch (ecc->algo) {
	case NAND_ECC_HAMMING:
		ecc->calculate = nand_calculate_ecc;
		ecc->correct = nand_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
		if (!ecc->size)
			ecc->size = 256;
		ecc->bytes = 3;
		ecc->strength = 1;
		return 0;
	case NAND_ECC_BCH:
		if (!mtd_nand_has_bch()) {
			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
			return -EINVAL;
		}
		ecc->calculate = nand_bch_calculate_ecc;
		ecc->correct = nand_bch_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
4485

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
		/*
		* Board driver should supply ecc.size and ecc.strength
		* values to select how many bits are correctable.
		* Otherwise, default to 4 bits for large page devices.
		*/
		if (!ecc->size && (mtd->oobsize >= 64)) {
			ecc->size = 512;
			ecc->strength = 4;
		}

		/*
		 * if no ecc placement scheme was provided pickup the default
		 * large page one.
		 */
		if (!mtd->ooblayout) {
			/* handle large page devices only */
			if (mtd->oobsize < 64) {
				WARN(1, "OOB layout is required when using software BCH on small pages\n");
				return -EINVAL;
			}

			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526

		}

		/*
		 * We can only maximize ECC config when the default layout is
		 * used, otherwise we don't know how many bytes can really be
		 * used.
		 */
		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
		    ecc->options & NAND_ECC_MAXIMIZE) {
			int steps, bytes;

			/* Always prefer 1k blocks over 512bytes ones */
			ecc->size = 1024;
			steps = mtd->writesize / ecc->size;

			/* Reserve 2 bytes for the BBM */
			bytes = (mtd->oobsize - 2) / steps;
			ecc->strength = bytes * 8 / fls(8 * ecc->size);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
		}

		/* See nand_bch_init() for details. */
		ecc->bytes = 0;
		ecc->priv = nand_bch_init(mtd);
		if (!ecc->priv) {
			WARN(1, "BCH ECC initialization failed!\n");
			return -EINVAL;
		}
		return 0;
	default:
		WARN(1, "Unsupported ECC algorithm!\n");
		return -EINVAL;
	}
}

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
/*
 * Check if the chip configuration meet the datasheet requirements.

 * If our configuration corrects A bits per B bytes and the minimum
 * required correction level is X bits per Y bytes, then we must ensure
 * both of the following are true:
 *
 * (1) A / B >= X / Y
 * (2) A >= X
 *
 * Requirement (1) ensures we can correct for the required bitflip density.
 * Requirement (2) ensures we can correct even when all bitflips are clumped
 * in the same sector.
 */
static bool nand_ecc_strength_good(struct mtd_info *mtd)
{
4559
	struct nand_chip *chip = mtd_to_nand(mtd);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int corr, ds_corr;

	if (ecc->size == 0 || chip->ecc_step_ds == 0)
		/* Not enough information */
		return true;

	/*
	 * We get the number of corrected bits per page to compare
	 * the correction density.
	 */
	corr = (mtd->writesize * ecc->strength) / ecc->size;
	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;

	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
}
4576

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
static bool invalid_ecc_page_accessors(struct nand_chip *chip)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;

	if (nand_standard_page_accessors(ecc))
		return false;

	/*
	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
	 * controller driver implements all the page accessors because
	 * default helpers are not suitable when the core does not
	 * send the READ0/PAGEPROG commands.
	 */
	return (!ecc->read_page || !ecc->write_page ||
		!ecc->read_page_raw || !ecc->write_page_raw ||
		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
		 ecc->hwctl && ecc->calculate));
}

4597 4598
/**
 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4599
 * @mtd: MTD device structure
4600
 *
4601 4602 4603
 * This is the second phase of the normal nand_scan() function. It fills out
 * all the uninitialized function pointers with the defaults and scans for a
 * bad block table if appropriate.
4604 4605 4606
 */
int nand_scan_tail(struct mtd_info *mtd)
{
4607
	struct nand_chip *chip = mtd_to_nand(mtd);
4608
	struct nand_ecc_ctrl *ecc = &chip->ecc;
4609
	struct nand_buffers *nbuf;
4610
	int ret;
4611

4612
	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
4613 4614 4615
	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
		   !(chip->bbt_options & NAND_BBT_USE_FLASH)))
		return -EINVAL;
4616

4617 4618 4619 4620 4621
	if (invalid_ecc_page_accessors(chip)) {
		pr_err("Invalid ECC page accessors setup\n");
		return -EINVAL;
	}

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	if (!(chip->options & NAND_OWN_BUFFERS)) {
		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
				+ mtd->oobsize * 3, GFP_KERNEL);
		if (!nbuf)
			return -ENOMEM;
		nbuf->ecccalc = (uint8_t *)(nbuf + 1);
		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
		nbuf->databuf = nbuf->ecccode + mtd->oobsize;

		chip->buffers = nbuf;
	} else {
		if (!chip->buffers)
			return -ENOMEM;
	}
4636

4637
	/* Set the internal oob buffer location, just after the page data */
4638
	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
L
Linus Torvalds 已提交
4639

T
Thomas Gleixner 已提交
4640
	/*
4641
	 * If no default placement scheme is given, select an appropriate one.
T
Thomas Gleixner 已提交
4642
	 */
4643
	if (!mtd->ooblayout &&
4644
	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4645
		switch (mtd->oobsize) {
L
Linus Torvalds 已提交
4646 4647
		case 8:
		case 16:
4648
			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
L
Linus Torvalds 已提交
4649 4650
			break;
		case 64:
4651
		case 128:
4652
			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4653
			break;
L
Linus Torvalds 已提交
4654
		default:
4655 4656 4657 4658
			WARN(1, "No oob scheme defined for oobsize %d\n",
				mtd->oobsize);
			ret = -EINVAL;
			goto err_free;
L
Linus Torvalds 已提交
4659 4660
		}
	}
4661

4662 4663 4664
	if (!chip->write_page)
		chip->write_page = nand_write_page;

4665
	/*
4666
	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
T
Thomas Gleixner 已提交
4667
	 * selected and we have 256 byte pagesize fallback to software ECC
4668
	 */
4669

4670
	switch (ecc->mode) {
4671 4672
	case NAND_ECC_HW_OOB_FIRST:
		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4673
		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4674 4675 4676
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
4677
		}
4678 4679
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc_oob_first;
4680

T
Thomas Gleixner 已提交
4681
	case NAND_ECC_HW:
4682
		/* Use standard hwecc read page function? */
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_hwecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_std;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_std;
		if (!ecc->read_subpage)
			ecc->read_subpage = nand_read_subpage;
4697
		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4698
			ecc->write_subpage = nand_write_subpage_hwecc;
4699

T
Thomas Gleixner 已提交
4700
	case NAND_ECC_HW_SYNDROME:
4701 4702 4703 4704 4705
		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
		    (!ecc->read_page ||
		     ecc->read_page == nand_read_page_hwecc ||
		     !ecc->write_page ||
		     ecc->write_page == nand_write_page_hwecc)) {
4706 4707 4708
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
T
Thomas Gleixner 已提交
4709
		}
4710
		/* Use standard syndrome read/write page function? */
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_syndrome;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_syndrome;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw_syndrome;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw_syndrome;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_syndrome;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_syndrome;

		if (mtd->writesize >= ecc->size) {
			if (!ecc->strength) {
4726 4727 4728
				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
				ret = -EINVAL;
				goto err_free;
4729
			}
T
Thomas Gleixner 已提交
4730
			break;
4731
		}
4732 4733
		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
			ecc->size, mtd->writesize);
4734
		ecc->mode = NAND_ECC_SOFT;
4735
		ecc->algo = NAND_ECC_HAMMING;
4736

T
Thomas Gleixner 已提交
4737
	case NAND_ECC_SOFT:
4738 4739
		ret = nand_set_ecc_soft_ops(mtd);
		if (ret) {
4740 4741
			ret = -EINVAL;
			goto err_free;
4742 4743 4744
		}
		break;

4745
	case NAND_ECC_NONE:
4746
		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4747 4748 4749 4750 4751 4752 4753 4754 4755
		ecc->read_page = nand_read_page_raw;
		ecc->write_page = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->write_oob = nand_write_oob_std;
		ecc->size = mtd->writesize;
		ecc->bytes = 0;
		ecc->strength = 0;
L
Linus Torvalds 已提交
4756
		break;
4757

L
Linus Torvalds 已提交
4758
	default:
4759 4760 4761
		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4762
	}
4763

4764
	/* For many systems, the standard OOB write also works for raw */
4765 4766 4767 4768
	if (!ecc->read_oob_raw)
		ecc->read_oob_raw = ecc->read_oob;
	if (!ecc->write_oob_raw)
		ecc->write_oob_raw = ecc->write_oob;
4769

4770 4771 4772
	/* propagate ecc info to mtd_info */
	mtd->ecc_strength = ecc->strength;
	mtd->ecc_step_size = ecc->size;
4773

T
Thomas Gleixner 已提交
4774 4775
	/*
	 * Set the number of read / write steps for one page depending on ECC
4776
	 * mode.
T
Thomas Gleixner 已提交
4777
	 */
4778 4779
	ecc->steps = mtd->writesize / ecc->size;
	if (ecc->steps * ecc->size != mtd->writesize) {
4780 4781 4782
		WARN(1, "Invalid ECC parameters\n");
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4783
	}
4784
	ecc->total = ecc->steps * ecc->bytes;
4785

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area.
	 */
	ret = mtd_ooblayout_count_freebytes(mtd);
	if (ret < 0)
		ret = 0;

	mtd->oobavail = ret;

	/* ECC sanity check: warn if it's too weak */
	if (!nand_ecc_strength_good(mtd))
		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
			mtd->name);

4801
	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4802
	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4803
		switch (ecc->steps) {
4804 4805 4806 4807 4808
		case 2:
			mtd->subpage_sft = 1;
			break;
		case 4:
		case 8:
4809
		case 16:
4810 4811 4812 4813 4814 4815
			mtd->subpage_sft = 2;
			break;
		}
	}
	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;

4816
	/* Initialize state */
4817
	chip->state = FL_READY;
L
Linus Torvalds 已提交
4818 4819

	/* Invalidate the pagebuffer reference */
4820
	chip->pagebuf = -1;
L
Linus Torvalds 已提交
4821

4822
	/* Large page NAND with SOFT_ECC should support subpage reads */
4823 4824 4825 4826 4827 4828 4829 4830 4831
	switch (ecc->mode) {
	case NAND_ECC_SOFT:
		if (chip->page_shift > 9)
			chip->options |= NAND_SUBPAGE_READ;
		break;

	default:
		break;
	}
4832

L
Linus Torvalds 已提交
4833
	/* Fill in remaining MTD driver data */
4834
	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4835 4836
	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
						MTD_CAP_NANDFLASH;
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
	mtd->_erase = nand_erase;
	mtd->_point = NULL;
	mtd->_unpoint = NULL;
	mtd->_read = nand_read;
	mtd->_write = nand_write;
	mtd->_panic_write = panic_nand_write;
	mtd->_read_oob = nand_read_oob;
	mtd->_write_oob = nand_write_oob;
	mtd->_sync = nand_sync;
	mtd->_lock = NULL;
	mtd->_unlock = NULL;
	mtd->_suspend = nand_suspend;
	mtd->_resume = nand_resume;
S
Scott Branden 已提交
4850
	mtd->_reboot = nand_shutdown;
4851
	mtd->_block_isreserved = nand_block_isreserved;
4852 4853
	mtd->_block_isbad = nand_block_isbad;
	mtd->_block_markbad = nand_block_markbad;
4854
	mtd->_max_bad_blocks = nand_max_bad_blocks;
4855
	mtd->writebufsize = mtd->writesize;
L
Linus Torvalds 已提交
4856

4857 4858 4859 4860 4861 4862
	/*
	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
	 * properly set.
	 */
	if (!mtd->bitflip_threshold)
4863
		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
L
Linus Torvalds 已提交
4864

4865
	/* Check, if we should skip the bad block table scan */
4866
	if (chip->options & NAND_SKIP_BBTSCAN)
4867
		return 0;
L
Linus Torvalds 已提交
4868 4869

	/* Build bad block table */
4870
	return chip->scan_bbt(mtd);
4871 4872 4873 4874
err_free:
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
	return ret;
L
Linus Torvalds 已提交
4875
}
4876
EXPORT_SYMBOL(nand_scan_tail);
L
Linus Torvalds 已提交
4877

4878 4879
/*
 * is_module_text_address() isn't exported, and it's mostly a pointless
4880
 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4881 4882
 * to call us from in-kernel code if the core NAND support is modular.
 */
4883 4884 4885 4886
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() \
4887
	is_module_text_address((unsigned long)__builtin_return_address(0))
4888 4889 4890 4891
#endif

/**
 * nand_scan - [NAND Interface] Scan for the NAND device
4892 4893
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
4894
 *
4895 4896
 * This fills out all the uninitialized function pointers with the defaults.
 * The flash ID is read and the mtd/chip structures are filled with the
4897
 * appropriate values.
4898 4899 4900 4901 4902
 */
int nand_scan(struct mtd_info *mtd, int maxchips)
{
	int ret;

4903
	ret = nand_scan_ident(mtd, maxchips, NULL);
4904 4905 4906 4907
	if (!ret)
		ret = nand_scan_tail(mtd);
	return ret;
}
4908
EXPORT_SYMBOL(nand_scan);
4909

L
Linus Torvalds 已提交
4910
/**
4911 4912
 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
 * @chip: NAND chip object
4913
 */
4914
void nand_cleanup(struct nand_chip *chip)
L
Linus Torvalds 已提交
4915
{
4916
	if (chip->ecc.mode == NAND_ECC_SOFT &&
4917
	    chip->ecc.algo == NAND_ECC_BCH)
4918 4919
		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);

4920 4921
	nand_release_data_interface(chip);

J
Jesper Juhl 已提交
4922
	/* Free bad block table memory */
4923
	kfree(chip->bbt);
4924 4925
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
4926 4927 4928 4929 4930

	/* Free bad block descriptor memory */
	if (chip->badblock_pattern && chip->badblock_pattern->options
			& NAND_BBT_DYNAMICSTRUCT)
		kfree(chip->badblock_pattern);
L
Linus Torvalds 已提交
4931
}
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
EXPORT_SYMBOL_GPL(nand_cleanup);

/**
 * nand_release - [NAND Interface] Unregister the MTD device and free resources
 *		  held by the NAND device
 * @mtd: MTD device structure
 */
void nand_release(struct mtd_info *mtd)
{
	mtd_device_unregister(mtd);
	nand_cleanup(mtd_to_nand(mtd));
}
4944
EXPORT_SYMBOL_GPL(nand_release);
4945

4946
MODULE_LICENSE("GPL");
4947 4948
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4949
MODULE_DESCRIPTION("Generic NAND flash driver code");