timer.c 56.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched/signal.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/sched/nohz.h>
44
#include <linux/sched/debug.h>
45
#include <linux/slab.h>
46
#include <linux/compat.h>
L
Linus Torvalds 已提交
47

48
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
49 50 51 52 53
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

54 55
#include "tick-internal.h"

56 57 58
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
59
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
60 61 62

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
63
/*
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
 * level has a different granularity.
 *
 * The level granularity is:		LVL_CLK_DIV ^ lvl
 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
 *
 * The array level of a newly armed timer depends on the relative expiry
 * time. The farther the expiry time is away the higher the array level and
 * therefor the granularity becomes.
 *
 * Contrary to the original timer wheel implementation, which aims for 'exact'
 * expiry of the timers, this implementation removes the need for recascading
 * the timers into the lower array levels. The previous 'classic' timer wheel
 * implementation of the kernel already violated the 'exact' expiry by adding
 * slack to the expiry time to provide batched expiration. The granularity
 * levels provide implicit batching.
 *
 * This is an optimization of the original timer wheel implementation for the
 * majority of the timer wheel use cases: timeouts. The vast majority of
 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
 * the timeout expires it indicates that normal operation is disturbed, so it
 * does not matter much whether the timeout comes with a slight delay.
 *
 * The only exception to this are networking timers with a small expiry
 * time. They rely on the granularity. Those fit into the first wheel level,
 * which has HZ granularity.
 *
 * We don't have cascading anymore. timers with a expiry time above the
 * capacity of the last wheel level are force expired at the maximum timeout
 * value of the last wheel level. From data sampling we know that the maximum
 * value observed is 5 days (network connection tracking), so this should not
 * be an issue.
 *
 * The currently chosen array constants values are a good compromise between
 * array size and granularity.
 *
 * This results in the following granularity and range levels:
 *
 * HZ 1000 steps
 * Level Offset  Granularity            Range
 *  0      0         1 ms                0 ms -         63 ms
 *  1     64         8 ms               64 ms -        511 ms
 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 *
 * HZ  300
 * Level Offset  Granularity            Range
 *  0	   0         3 ms                0 ms -        210 ms
 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 *
 * HZ  250
 * Level Offset  Granularity            Range
 *  0	   0         4 ms                0 ms -        255 ms
 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 *
 * HZ  100
 * Level Offset  Granularity            Range
 *  0	   0         10 ms               0 ms -        630 ms
 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
L
Linus Torvalds 已提交
149 150
 */

151 152 153 154 155 156
/* Clock divisor for the next level */
#define LVL_CLK_SHIFT	3
#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
L
Linus Torvalds 已提交
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * The time start value for each level to select the bucket at enqueue
 * time.
 */
#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))

/* Size of each clock level */
#define LVL_BITS	6
#define LVL_SIZE	(1UL << LVL_BITS)
#define LVL_MASK	(LVL_SIZE - 1)
#define LVL_OFFS(n)	((n) * LVL_SIZE)

/* Level depth */
#if HZ > 100
# define LVL_DEPTH	9
# else
# define LVL_DEPTH	8
#endif

/* The cutoff (max. capacity of the wheel) */
#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))

/*
 * The resulting wheel size. If NOHZ is configured we allocate two
 * wheels so we have a separate storage for the deferrable timers.
 */
#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)

#ifdef CONFIG_NO_HZ_COMMON
# define NR_BASES	2
# define BASE_STD	0
# define BASE_DEF	1
#else
# define NR_BASES	1
# define BASE_STD	0
# define BASE_DEF	0
#endif
L
Linus Torvalds 已提交
196

197
struct timer_base {
198
	raw_spinlock_t		lock;
199 200
	struct timer_list	*running_timer;
	unsigned long		clk;
201
	unsigned long		next_expiry;
202 203 204
	unsigned int		cpu;
	bool			migration_enabled;
	bool			nohz_active;
205
	bool			is_idle;
206
	bool			must_forward_clk;
207 208
	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
	struct hlist_head	vectors[WHEEL_SIZE];
209
} ____cacheline_aligned;
210

211
static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
212

213 214 215
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;

216
void timers_update_migration(bool update_nohz)
217 218 219 220 221
{
	bool on = sysctl_timer_migration && tick_nohz_active;
	unsigned int cpu;

	/* Avoid the loop, if nothing to update */
222
	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
223 224 225
		return;

	for_each_possible_cpu(cpu) {
226 227
		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
228
		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
229 230
		if (!update_nohz)
			continue;
231 232
		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
233
		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
234 235 236 237 238 239 240 241 242 243 244
	}
}

int timer_migration_handler(struct ctl_table *table, int write,
			    void __user *buffer, size_t *lenp,
			    loff_t *ppos)
{
	static DEFINE_MUTEX(mutex);
	int ret;

	mutex_lock(&mutex);
245
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246
	if (!ret && write)
247
		timers_update_migration(false);
248 249 250 251 252
	mutex_unlock(&mutex);
	return ret;
}
#endif

253 254
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
276
	 * But never round down if @force_up is set.
277
	 */
278
	if (rem < HZ/4 && !force_up) /* round down */
279 280 281 282 283 284 285
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

286 287 288 289 290
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
291
}
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
317 318 319 320 321 322 323
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
324
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
325 326 327 328 329 330 331 332 333 334 335 336
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
337
 * The return value is the rounded version of the @j parameter.
338 339 340
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
341 342 343 344
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
345 346 347 348 349 350 351
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
352
 * round_jiffies() rounds an absolute time in the future (in jiffies)
353 354 355 356 357 358 359 360
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
361
 * The return value is the rounded version of the @j parameter.
362 363 364
 */
unsigned long round_jiffies(unsigned long j)
{
365
	return round_jiffies_common(j, raw_smp_processor_id(), false);
366 367 368 369 370 371 372
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
373
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
374 375 376 377 378 379 380 381
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
382
 * The return value is the rounded version of the @j parameter.
383 384 385 386 387 388 389
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

455

456
static inline unsigned int timer_get_idx(struct timer_list *timer)
457
{
458
	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
459 460
}

461
static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
L
Linus Torvalds 已提交
462
{
463 464 465
	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
			idx << TIMER_ARRAYSHIFT;
}
L
Linus Torvalds 已提交
466

467 468 469 470 471 472 473 474 475 476
/*
 * Helper function to calculate the array index for a given expiry
 * time.
 */
static inline unsigned calc_index(unsigned expires, unsigned lvl)
{
	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
	return LVL_OFFS(lvl) + (expires & LVL_MASK);
}

477
static int calc_wheel_index(unsigned long expires, unsigned long clk)
L
Linus Torvalds 已提交
478
{
479
	unsigned long delta = expires - clk;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	unsigned int idx;

	if (delta < LVL_START(1)) {
		idx = calc_index(expires, 0);
	} else if (delta < LVL_START(2)) {
		idx = calc_index(expires, 1);
	} else if (delta < LVL_START(3)) {
		idx = calc_index(expires, 2);
	} else if (delta < LVL_START(4)) {
		idx = calc_index(expires, 3);
	} else if (delta < LVL_START(5)) {
		idx = calc_index(expires, 4);
	} else if (delta < LVL_START(6)) {
		idx = calc_index(expires, 5);
	} else if (delta < LVL_START(7)) {
		idx = calc_index(expires, 6);
	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
		idx = calc_index(expires, 7);
	} else if ((long) delta < 0) {
499
		idx = clk & LVL_MASK;
L
Linus Torvalds 已提交
500
	} else {
501 502 503
		/*
		 * Force expire obscene large timeouts to expire at the
		 * capacity limit of the wheel.
L
Linus Torvalds 已提交
504
		 */
505 506
		if (expires >= WHEEL_TIMEOUT_CUTOFF)
			expires = WHEEL_TIMEOUT_MAX;
T
Thomas Gleixner 已提交
507

508
		idx = calc_index(expires, LVL_DEPTH - 1);
L
Linus Torvalds 已提交
509
	}
510 511
	return idx;
}
T
Thomas Gleixner 已提交
512

513 514 515 516 517 518 519 520
/*
 * Enqueue the timer into the hash bucket, mark it pending in
 * the bitmap and store the index in the timer flags.
 */
static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
			  unsigned int idx)
{
	hlist_add_head(&timer->entry, base->vectors + idx);
521 522
	__set_bit(idx, base->pending_map);
	timer_set_idx(timer, idx);
L
Linus Torvalds 已提交
523 524
}

525 526
static void
__internal_add_timer(struct timer_base *base, struct timer_list *timer)
527
{
528 529 530 531 532
	unsigned int idx;

	idx = calc_wheel_index(timer->expires, base->clk);
	enqueue_timer(base, timer, idx);
}
533

534 535 536
static void
trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
{
537 538
	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
		return;
539

540
	/*
541 542
	 * TODO: This wants some optimizing similar to the code below, but we
	 * will do that when we switch from push to pull for deferrable timers.
543
	 */
544 545
	if (timer->flags & TIMER_DEFERRABLE) {
		if (tick_nohz_full_cpu(base->cpu))
546
			wake_up_nohz_cpu(base->cpu);
547
		return;
548
	}
549 550

	/*
551 552 553
	 * We might have to IPI the remote CPU if the base is idle and the
	 * timer is not deferrable. If the other CPU is on the way to idle
	 * then it can't set base->is_idle as we hold the base lock:
554
	 */
555 556 557 558 559 560 561 562 563 564 565 566
	if (!base->is_idle)
		return;

	/* Check whether this is the new first expiring timer: */
	if (time_after_eq(timer->expires, base->next_expiry))
		return;

	/*
	 * Set the next expiry time and kick the CPU so it can reevaluate the
	 * wheel:
	 */
	base->next_expiry = timer->expires;
567 568 569 570 571 572 573 574
		wake_up_nohz_cpu(base->cpu);
}

static void
internal_add_timer(struct timer_base *base, struct timer_list *timer)
{
	__internal_add_timer(base, timer);
	trigger_dyntick_cpu(base, timer);
575 576
}

577 578 579 580
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

581 582 583 584 585
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

586 587 588 589 590 591 592 593
static bool timer_is_static_object(void *addr)
{
	struct timer_list *timer = addr;

	return (timer->entry.pprev == NULL &&
		timer->entry.next == TIMER_ENTRY_STATIC);
}

594 595 596
/*
 * fixup_init is called when:
 * - an active object is initialized
597
 */
598
static bool timer_fixup_init(void *addr, enum debug_obj_state state)
599 600 601 602 603 604 605
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
606
		return true;
607
	default:
608
		return false;
609 610 611
	}
}

612
/* Stub timer callback for improperly used timers. */
613
static void stub_timer(struct timer_list *unused)
614 615 616 617
{
	WARN_ON(1);
}

618 619 620
/*
 * fixup_activate is called when:
 * - an active object is activated
621
 * - an unknown non-static object is activated
622
 */
623
static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
624 625 626 627 628
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
629
		timer_setup(timer, stub_timer, 0);
630
		return true;
631 632 633 634 635

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
636
		return false;
637 638 639 640 641 642 643
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
644
static bool timer_fixup_free(void *addr, enum debug_obj_state state)
645 646 647 648 649 650 651
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
652
		return true;
653
	default:
654
		return false;
655 656 657
	}
}

658 659 660 661
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
662
static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
663 664 665 666 667
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
668
		timer_setup(timer, stub_timer, 0);
669
		return true;
670
	default:
671
		return false;
672 673 674
	}
}

675
static struct debug_obj_descr timer_debug_descr = {
676 677
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
678
	.is_static_object	= timer_is_static_object,
679 680 681 682
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

705 706 707 708 709
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

710 711 712
static void do_init_timer(struct timer_list *timer,
			  void (*func)(struct timer_list *),
			  unsigned int flags,
T
Tejun Heo 已提交
713
			  const char *name, struct lock_class_key *key);
714

715 716 717
void init_timer_on_stack_key(struct timer_list *timer,
			     void (*func)(struct timer_list *),
			     unsigned int flags,
T
Tejun Heo 已提交
718
			     const char *name, struct lock_class_key *key)
719 720
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
721
	do_init_timer(timer, func, flags, name, key);
722
}
723
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
724 725 726 727 728 729 730 731 732 733 734

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
735
static inline void debug_timer_assert_init(struct timer_list *timer) { }
736 737
#endif

738 739 740 741 742 743 744 745 746 747
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
748
	trace_timer_start(timer, expires, timer->flags);
749 750 751 752 753 754 755 756
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

757 758 759 760 761
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

762 763 764
static void do_init_timer(struct timer_list *timer,
			  void (*func)(struct timer_list *),
			  unsigned int flags,
T
Tejun Heo 已提交
765
			  const char *name, struct lock_class_key *key)
766
{
767
	timer->entry.pprev = NULL;
768
	timer->function = func;
769
	timer->flags = flags | raw_smp_processor_id();
770
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
771
}
772 773

/**
R
Randy Dunlap 已提交
774
 * init_timer_key - initialize a timer
775
 * @timer: the timer to be initialized
776
 * @func: timer callback function
T
Tejun Heo 已提交
777
 * @flags: timer flags
R
Randy Dunlap 已提交
778 779 780
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
781
 *
R
Randy Dunlap 已提交
782
 * init_timer_key() must be done to a timer prior calling *any* of the
783 784
 * other timer functions.
 */
785 786
void init_timer_key(struct timer_list *timer,
		    void (*func)(struct timer_list *), unsigned int flags,
T
Tejun Heo 已提交
787
		    const char *name, struct lock_class_key *key)
788
{
789
	debug_init(timer);
790
	do_init_timer(timer, func, flags, name, key);
791
}
792
EXPORT_SYMBOL(init_timer_key);
793

794
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
795
{
796
	struct hlist_node *entry = &timer->entry;
797

798
	debug_deactivate(timer);
799

800
	__hlist_del(entry);
801
	if (clear_pending)
802 803
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
804 805
}

806
static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
807 808
			     bool clear_pending)
{
809 810
	unsigned idx = timer_get_idx(timer);

811 812 813
	if (!timer_pending(timer))
		return 0;

814 815 816
	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
		__clear_bit(idx, base->pending_map);

817 818 819 820
	detach_timer(timer, clear_pending);
	return 1;
}

821 822 823 824 825
static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
{
	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);

	/*
826 827
	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
	 * to use the deferrable base.
828
	 */
829
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
830 831 832 833 834 835 836 837 838
		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
	return base;
}

static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
839 840
	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
	 * to use the deferrable base.
841
	 */
842
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
843 844 845 846 847 848 849 850 851
		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
	return base;
}

static inline struct timer_base *get_timer_base(u32 tflags)
{
	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
}

852 853
#ifdef CONFIG_NO_HZ_COMMON
static inline struct timer_base *
854
get_target_base(struct timer_base *base, unsigned tflags)
855
{
856
#ifdef CONFIG_SMP
857 858 859 860 861 862 863 864
	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
		return get_timer_this_cpu_base(tflags);
	return get_timer_cpu_base(tflags, get_nohz_timer_target());
#else
	return get_timer_this_cpu_base(tflags);
#endif
}

865 866
static inline void forward_timer_base(struct timer_base *base)
{
867
	unsigned long jnow;
868

869
	/*
870 871 872
	 * We only forward the base when we are idle or have just come out of
	 * idle (must_forward_clk logic), and have a delta between base clock
	 * and jiffies. In the common case, run_timers will take care of it.
873
	 */
874 875 876 877 878 879
	if (likely(!base->must_forward_clk))
		return;

	jnow = READ_ONCE(jiffies);
	base->must_forward_clk = base->is_idle;
	if ((long)(jnow - base->clk) < 2)
880 881 882 883 884 885
		return;

	/*
	 * If the next expiry value is > jiffies, then we fast forward to
	 * jiffies otherwise we forward to the next expiry value.
	 */
886 887
	if (time_after(base->next_expiry, jnow))
		base->clk = jnow;
888 889 890 891 892
	else
		base->clk = base->next_expiry;
}
#else
static inline struct timer_base *
893
get_target_base(struct timer_base *base, unsigned tflags)
894 895 896 897 898 899 900 901
{
	return get_timer_this_cpu_base(tflags);
}

static inline void forward_timer_base(struct timer_base *base) { }
#endif


902
/*
903 904 905
 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 * that all timers which are tied to this base are locked, and the base itself
 * is locked too.
906 907
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
908
 * be found in the base->vectors array.
909
 *
910 911
 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 * to wait until the migration is done.
912
 */
913
static struct timer_base *lock_timer_base(struct timer_list *timer,
914
					  unsigned long *flags)
915
	__acquires(timer->base->lock)
916 917
{
	for (;;) {
918
		struct timer_base *base;
919 920 921 922 923 924 925 926
		u32 tf;

		/*
		 * We need to use READ_ONCE() here, otherwise the compiler
		 * might re-read @tf between the check for TIMER_MIGRATING
		 * and spin_lock().
		 */
		tf = READ_ONCE(timer->flags);
927 928

		if (!(tf & TIMER_MIGRATING)) {
929
			base = get_timer_base(tf);
930
			raw_spin_lock_irqsave(&base->lock, *flags);
931
			if (timer->flags == tf)
932
				return base;
933
			raw_spin_unlock_irqrestore(&base->lock, *flags);
934 935 936 937 938
		}
		cpu_relax();
	}
}

939 940 941
#define MOD_TIMER_PENDING_ONLY		0x01
#define MOD_TIMER_REDUCE		0x02

I
Ingo Molnar 已提交
942
static inline int
943
__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
L
Linus Torvalds 已提交
944
{
945
	struct timer_base *base, *new_base;
946 947
	unsigned int idx = UINT_MAX;
	unsigned long clk = 0, flags;
948
	int ret = 0;
L
Linus Torvalds 已提交
949

950 951
	BUG_ON(!timer->function);

952
	/*
953 954 955
	 * This is a common optimization triggered by the networking code - if
	 * the timer is re-modified to have the same timeout or ends up in the
	 * same array bucket then just return:
956 957
	 */
	if (timer_pending(timer)) {
958 959 960 961 962
		/*
		 * The downside of this optimization is that it can result in
		 * larger granularity than you would get from adding a new
		 * timer with this expiry.
		 */
963 964 965 966 967
		long diff = timer->expires - expires;

		if (!diff)
			return 1;
		if (options & MOD_TIMER_REDUCE && diff <= 0)
968
			return 1;
969

970
		/*
971 972 973 974
		 * We lock timer base and calculate the bucket index right
		 * here. If the timer ends up in the same bucket, then we
		 * just update the expiry time and avoid the whole
		 * dequeue/enqueue dance.
975
		 */
976
		base = lock_timer_base(timer, &flags);
977
		forward_timer_base(base);
978

979 980 981 982 983 984
		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
		    time_before_eq(timer->expires, expires)) {
			ret = 1;
			goto out_unlock;
		}

985
		clk = base->clk;
986 987 988 989 990 991 992 993
		idx = calc_wheel_index(expires, clk);

		/*
		 * Retrieve and compare the array index of the pending
		 * timer. If it matches set the expiry to the new value so a
		 * subsequent call will exit in the expires check above.
		 */
		if (idx == timer_get_idx(timer)) {
994 995 996 997
			if (!(options & MOD_TIMER_REDUCE))
				timer->expires = expires;
			else if (time_after(timer->expires, expires))
				timer->expires = expires;
998 999
			ret = 1;
			goto out_unlock;
1000
		}
1001 1002
	} else {
		base = lock_timer_base(timer, &flags);
1003
		forward_timer_base(base);
1004 1005
	}

1006
	ret = detach_if_pending(timer, base, false);
1007
	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1008
		goto out_unlock;
1009

1010
	debug_activate(timer, expires);
1011

1012
	new_base = get_target_base(base, timer->flags);
1013

1014
	if (base != new_base) {
L
Linus Torvalds 已提交
1015
		/*
1016
		 * We are trying to schedule the timer on the new base.
1017 1018
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
1019 1020
		 * handler yet has not finished. This also guarantees that the
		 * timer is serialized wrt itself.
L
Linus Torvalds 已提交
1021
		 */
1022
		if (likely(base->running_timer != timer)) {
1023
			/* See the comment in lock_timer_base() */
1024 1025
			timer->flags |= TIMER_MIGRATING;

1026
			raw_spin_unlock(&base->lock);
1027
			base = new_base;
1028
			raw_spin_lock(&base->lock);
1029 1030
			WRITE_ONCE(timer->flags,
				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1031
			forward_timer_base(base);
L
Linus Torvalds 已提交
1032 1033 1034 1035
		}
	}

	timer->expires = expires;
1036 1037
	/*
	 * If 'idx' was calculated above and the base time did not advance
1038 1039 1040 1041
	 * between calculating 'idx' and possibly switching the base, only
	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
	 * we need to (re)calculate the wheel index via
	 * internal_add_timer().
1042 1043 1044 1045 1046 1047 1048
	 */
	if (idx != UINT_MAX && clk == base->clk) {
		enqueue_timer(base, timer, idx);
		trigger_dyntick_cpu(base, timer);
	} else {
		internal_add_timer(base, timer);
	}
I
Ingo Molnar 已提交
1049 1050

out_unlock:
1051
	raw_spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
1052 1053 1054 1055

	return ret;
}

1056
/**
I
Ingo Molnar 已提交
1057 1058 1059
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1060
 *
I
Ingo Molnar 已提交
1061 1062 1063 1064
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
1065
 */
I
Ingo Molnar 已提交
1066
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
1067
{
1068
	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
L
Linus Torvalds 已提交
1069
}
I
Ingo Molnar 已提交
1070
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
1071

1072
/**
L
Linus Torvalds 已提交
1073 1074
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
1075
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1076
 *
1077
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
1094
	return __mod_timer(timer, expires, 0);
L
Linus Torvalds 已提交
1095 1096 1097
}
EXPORT_SYMBOL(mod_timer);

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/**
 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
 * @timer:	The timer to be modified
 * @expires:	New timeout in jiffies
 *
 * timer_reduce() is very similar to mod_timer(), except that it will only
 * modify a running timer if that would reduce the expiration time (it will
 * start a timer that isn't running).
 */
int timer_reduce(struct timer_list *timer, unsigned long expires)
{
	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
}
EXPORT_SYMBOL(timer_reduce);

I
Ingo Molnar 已提交
1113 1114 1115 1116
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
1117
 * The kernel will do a ->function(@timer) callback from the
I
Ingo Molnar 已提交
1118 1119 1120
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
1121 1122
 * The timer's ->expires, ->function fields must be set prior calling this
 * function.
I
Ingo Molnar 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
1143
	struct timer_base *new_base, *base;
I
Ingo Molnar 已提交
1144 1145 1146
	unsigned long flags;

	BUG_ON(timer_pending(timer) || !timer->function);
1147

1148 1149
	new_base = get_timer_cpu_base(timer->flags, cpu);

1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * If @timer was on a different CPU, it should be migrated with the
	 * old base locked to prevent other operations proceeding with the
	 * wrong base locked.  See lock_timer_base().
	 */
	base = lock_timer_base(timer, &flags);
	if (base != new_base) {
		timer->flags |= TIMER_MIGRATING;

1159
		raw_spin_unlock(&base->lock);
1160
		base = new_base;
1161
		raw_spin_lock(&base->lock);
1162 1163 1164
		WRITE_ONCE(timer->flags,
			   (timer->flags & ~TIMER_BASEMASK) | cpu);
	}
1165
	forward_timer_base(base);
1166

1167
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
1168
	internal_add_timer(base, timer);
1169
	raw_spin_unlock_irqrestore(&base->lock, flags);
I
Ingo Molnar 已提交
1170
}
A
Andi Kleen 已提交
1171
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
1172

1173
/**
1174
 * del_timer - deactivate a timer.
L
Linus Torvalds 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
1186
	struct timer_base *base;
L
Linus Torvalds 已提交
1187
	unsigned long flags;
1188
	int ret = 0;
L
Linus Torvalds 已提交
1189

1190 1191
	debug_assert_init(timer);

1192 1193
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1194
		ret = detach_if_pending(timer, base, true);
1195
		raw_spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
1196 1197
	}

1198
	return ret;
L
Linus Torvalds 已提交
1199 1200 1201
}
EXPORT_SYMBOL(del_timer);

1202 1203
/**
 * try_to_del_timer_sync - Try to deactivate a timer
1204
 * @timer: timer to delete
1205
 *
1206 1207 1208 1209 1210
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1211
	struct timer_base *base;
1212 1213 1214
	unsigned long flags;
	int ret = -1;

1215 1216
	debug_assert_init(timer);

1217 1218
	base = lock_timer_base(timer, &flags);

K
Kees Cook 已提交
1219
	if (base->running_timer != timer)
1220
		ret = detach_if_pending(timer, base, true);
K
Kees Cook 已提交
1221

1222
	raw_spin_unlock_irqrestore(&base->lock, flags);
1223 1224 1225

	return ret;
}
1226 1227
EXPORT_SYMBOL(try_to_del_timer_sync);

1228
#ifdef CONFIG_SMP
1229
/**
L
Linus Torvalds 已提交
1230 1231 1232 1233 1234 1235 1236
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1237
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1238
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1239 1240 1241 1242
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1243
 *
T
Tejun Heo 已提交
1244 1245 1246
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1263 1264 1265 1266
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1267
#ifdef CONFIG_LOCKDEP
1268 1269
	unsigned long flags;

1270 1271 1272 1273
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1274
	local_irq_save(flags);
1275 1276
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1277
	local_irq_restore(flags);
1278
#endif
1279 1280 1281 1282
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1283
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1284 1285 1286 1287
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1288
		cpu_relax();
1289
	}
L
Linus Torvalds 已提交
1290
}
1291
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1292 1293
#endif

1294
static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *))
1295
{
1296
	int count = preempt_count();
1297 1298 1299 1300 1301 1302 1303 1304 1305

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1306 1307 1308
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1309 1310 1311 1312 1313 1314 1315 1316 1317
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
1318
	fn(timer);
1319 1320 1321 1322
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1323
	if (count != preempt_count()) {
1324
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1325
			  fn, count, preempt_count());
1326 1327 1328 1329 1330 1331
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1332
		preempt_count_set(count);
1333 1334 1335
	}
}

1336
static void expire_timers(struct timer_base *base, struct hlist_head *head)
L
Linus Torvalds 已提交
1337
{
1338 1339
	while (!hlist_empty(head)) {
		struct timer_list *timer;
1340
		void (*fn)(struct timer_list *);
L
Linus Torvalds 已提交
1341

1342
		timer = hlist_entry(head->first, struct timer_list, entry);
1343

1344 1345
		base->running_timer = timer;
		detach_timer(timer, true);
1346

1347 1348 1349
		fn = timer->function;

		if (timer->flags & TIMER_IRQSAFE) {
1350
			raw_spin_unlock(&base->lock);
1351
			call_timer_fn(timer, fn);
1352
			raw_spin_lock(&base->lock);
1353
		} else {
1354
			raw_spin_unlock_irq(&base->lock);
1355
			call_timer_fn(timer, fn);
1356
			raw_spin_lock_irq(&base->lock);
1357
		}
1358 1359
	}
}
1360

1361 1362
static int __collect_expired_timers(struct timer_base *base,
				    struct hlist_head *heads)
1363 1364 1365 1366 1367
{
	unsigned long clk = base->clk;
	struct hlist_head *vec;
	int i, levels = 0;
	unsigned int idx;
1368

1369 1370 1371 1372 1373 1374 1375
	for (i = 0; i < LVL_DEPTH; i++) {
		idx = (clk & LVL_MASK) + i * LVL_SIZE;

		if (__test_and_clear_bit(idx, base->pending_map)) {
			vec = base->vectors + idx;
			hlist_move_list(vec, heads++);
			levels++;
L
Linus Torvalds 已提交
1376
		}
1377 1378 1379 1380 1381
		/* Is it time to look at the next level? */
		if (clk & LVL_CLK_MASK)
			break;
		/* Shift clock for the next level granularity */
		clk >>= LVL_CLK_SHIFT;
L
Linus Torvalds 已提交
1382
	}
1383
	return levels;
L
Linus Torvalds 已提交
1384 1385
}

1386
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1387
/*
1388 1389 1390
 * Find the next pending bucket of a level. Search from level start (@offset)
 * + @clk upwards and if nothing there, search from start of the level
 * (@offset) up to @offset + clk.
L
Linus Torvalds 已提交
1391
 */
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static int next_pending_bucket(struct timer_base *base, unsigned offset,
			       unsigned clk)
{
	unsigned pos, start = offset + clk;
	unsigned end = offset + LVL_SIZE;

	pos = find_next_bit(base->pending_map, end, start);
	if (pos < end)
		return pos - start;

	pos = find_next_bit(base->pending_map, start, offset);
	return pos < start ? pos + LVL_SIZE - start : -1;
}

/*
1407 1408
 * Search the first expiring timer in the various clock levels. Caller must
 * hold base->lock.
L
Linus Torvalds 已提交
1409
 */
1410
static unsigned long __next_timer_interrupt(struct timer_base *base)
L
Linus Torvalds 已提交
1411
{
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	unsigned long clk, next, adj;
	unsigned lvl, offset = 0;

	next = base->clk + NEXT_TIMER_MAX_DELTA;
	clk = base->clk;
	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);

		if (pos >= 0) {
			unsigned long tmp = clk + (unsigned long) pos;

			tmp <<= LVL_SHIFT(lvl);
			if (time_before(tmp, next))
				next = tmp;
L
Linus Torvalds 已提交
1426
		}
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		/*
		 * Clock for the next level. If the current level clock lower
		 * bits are zero, we look at the next level as is. If not we
		 * need to advance it by one because that's going to be the
		 * next expiring bucket in that level. base->clk is the next
		 * expiring jiffie. So in case of:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    0
		 *
		 * we have to look at all levels @index 0. With
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    2
		 *
		 * LVL0 has the next expiring bucket @index 2. The upper
		 * levels have the next expiring bucket @index 1.
		 *
		 * In case that the propagation wraps the next level the same
		 * rules apply:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    F    2
		 *
		 * So after looking at LVL0 we get:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1
		 *  0    0    0    1    0
		 *
		 * So no propagation from LVL1 to LVL2 because that happened
		 * with the add already, but then we need to propagate further
		 * from LVL2 to LVL3.
		 *
		 * So the simple check whether the lower bits of the current
		 * level are 0 or not is sufficient for all cases.
		 */
		adj = clk & LVL_CLK_MASK ? 1 : 0;
		clk >>= LVL_CLK_SHIFT;
		clk += adj;
L
Linus Torvalds 已提交
1466
	}
1467
	return next;
1468
}
1469

1470 1471 1472 1473
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1474
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1475
{
1476
	u64 nextevt = hrtimer_get_next_event();
1477

1478
	/*
1479 1480
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1481
	 */
1482 1483
	if (expires <= nextevt)
		return expires;
1484 1485

	/*
1486 1487
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1488
	 */
1489 1490
	if (nextevt <= basem)
		return basem;
1491

1492
	/*
1493 1494 1495 1496 1497 1498
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1499
	 */
1500
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1501
}
1502 1503

/**
1504 1505 1506 1507 1508 1509
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1510
 */
1511
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1512
{
1513
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1514 1515
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1516
	bool is_max_delta;
1517

1518 1519 1520 1521 1522
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1523 1524
		return expires;

1525
	raw_spin_lock(&base->lock);
1526
	nextevt = __next_timer_interrupt(base);
1527
	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1528 1529
	base->next_expiry = nextevt;
	/*
1530 1531 1532
	 * We have a fresh next event. Check whether we can forward the
	 * base. We can only do that when @basej is past base->clk
	 * otherwise we might rewind base->clk.
1533
	 */
1534 1535 1536 1537 1538 1539
	if (time_after(basej, base->clk)) {
		if (time_after(nextevt, basej))
			base->clk = basej;
		else if (time_after(nextevt, base->clk))
			base->clk = nextevt;
	}
1540

1541
	if (time_before_eq(nextevt, basej)) {
1542
		expires = basem;
1543 1544
		base->is_idle = false;
	} else {
1545
		if (!is_max_delta)
1546
			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1547
		/*
1548 1549 1550 1551 1552
		 * If we expect to sleep more than a tick, mark the base idle.
		 * Also the tick is stopped so any added timer must forward
		 * the base clk itself to keep granularity small. This idle
		 * logic is only maintained for the BASE_STD base, deferrable
		 * timers may still see large granularity skew (by design).
1553
		 */
1554 1555
		if ((expires - basem) > TICK_NSEC) {
			base->must_forward_clk = true;
1556
			base->is_idle = true;
1557
		}
1558
	}
1559
	raw_spin_unlock(&base->lock);
1560

1561
	return cmp_next_hrtimer_event(basem, expires);
1562
}
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
/**
 * timer_clear_idle - Clear the idle state of the timer base
 *
 * Called with interrupts disabled
 */
void timer_clear_idle(void)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
	 * We do this unlocked. The worst outcome is a remote enqueue sending
	 * a pointless IPI, but taking the lock would just make the window for
	 * sending the IPI a few instructions smaller for the cost of taking
	 * the lock in the exit from idle path.
	 */
	base->is_idle = false;
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
static int collect_expired_timers(struct timer_base *base,
				  struct hlist_head *heads)
{
	/*
	 * NOHZ optimization. After a long idle sleep we need to forward the
	 * base to current jiffies. Avoid a loop by searching the bitfield for
	 * the next expiring timer.
	 */
	if ((long)(jiffies - base->clk) > 2) {
		unsigned long next = __next_timer_interrupt(base);

		/*
		 * If the next timer is ahead of time forward to current
1595
		 * jiffies, otherwise forward to the next expiry time:
1596 1597
		 */
		if (time_after(next, jiffies)) {
1598 1599 1600 1601 1602
			/*
			 * The call site will increment base->clk and then
			 * terminate the expiry loop immediately.
			 */
			base->clk = jiffies;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
			return 0;
		}
		base->clk = next;
	}
	return __collect_expired_timers(base, heads);
}
#else
static inline int collect_expired_timers(struct timer_base *base,
					 struct hlist_head *heads)
{
	return __collect_expired_timers(base, heads);
}
L
Linus Torvalds 已提交
1615 1616 1617
#endif

/*
D
Daniel Walker 已提交
1618
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624 1625
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1626
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1627
	run_local_timers();
1628
	rcu_check_callbacks(user_tick);
1629 1630
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1631
		irq_work_tick();
1632
#endif
L
Linus Torvalds 已提交
1633
	scheduler_tick();
1634 1635
	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
		run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1636 1637
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
/**
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 */
static inline void __run_timers(struct timer_base *base)
{
	struct hlist_head heads[LVL_DEPTH];
	int levels;

	if (!time_after_eq(jiffies, base->clk))
		return;

1650
	raw_spin_lock_irq(&base->lock);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	while (time_after_eq(jiffies, base->clk)) {

		levels = collect_expired_timers(base, heads);
		base->clk++;

		while (levels--)
			expire_timers(base, heads + levels);
	}
	base->running_timer = NULL;
1661
	raw_spin_unlock_irq(&base->lock);
1662 1663
}

L
Linus Torvalds 已提交
1664 1665 1666
/*
 * This function runs timers and the timer-tq in bottom half context.
 */
1667
static __latent_entropy void run_timer_softirq(struct softirq_action *h)
L
Linus Torvalds 已提交
1668
{
1669
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
L
Linus Torvalds 已提交
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	/*
	 * must_forward_clk must be cleared before running timers so that any
	 * timer functions that call mod_timer will not try to forward the
	 * base. idle trcking / clock forwarding logic is only used with
	 * BASE_STD timers.
	 *
	 * The deferrable base does not do idle tracking at all, so we do
	 * not forward it. This can result in very large variations in
	 * granularity for deferrable timers, but they can be deferred for
	 * long periods due to idle.
	 */
	base->must_forward_clk = false;

1684
	__run_timers(base);
1685
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1686
		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1694 1695
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

1696
	hrtimer_run_queues();
1697 1698 1699 1700 1701 1702 1703 1704 1705
	/* Raise the softirq only if required. */
	if (time_before(jiffies, base->clk)) {
		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
			return;
		/* CPU is awake, so check the deferrable base. */
		base++;
		if (time_before(jiffies, base->clk))
			return;
	}
L
Linus Torvalds 已提交
1706 1707 1708
	raise_softirq(TIMER_SOFTIRQ);
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/*
 * Since schedule_timeout()'s timer is defined on the stack, it must store
 * the target task on the stack as well.
 */
struct process_timer {
	struct timer_list timer;
	struct task_struct *task;
};

static void process_timeout(struct timer_list *t)
L
Linus Torvalds 已提交
1719
{
1720 1721 1722
	struct process_timer *timeout = from_timer(timeout, t, timer);

	wake_up_process(timeout->task);
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1736 1737
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process())".
L
Linus Torvalds 已提交
1738 1739
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1740 1741
 * delivered to the current task or the current task is explicitly woken
 * up.
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747 1748 1749
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
1750 1751 1752
 * Returns 0 when the timer has expired otherwise the remaining time in
 * jiffies will be returned.  In all cases the return value is guaranteed
 * to be non-negative.
L
Linus Torvalds 已提交
1753
 */
1754
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1755
{
1756
	struct process_timer timer;
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1779
		if (timeout < 0) {
L
Linus Torvalds 已提交
1780
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1781 1782
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787 1788 1789
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1790 1791
	timer.task = current;
	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1792
	__mod_timer(&timer.timer, expire, 0);
L
Linus Torvalds 已提交
1793
	schedule();
1794
	del_singleshot_timer_sync(&timer.timer);
L
Linus Torvalds 已提交
1795

1796
	/* Remove the timer from the object tracker */
1797
	destroy_timer_on_stack(&timer.timer);
1798

L
Linus Torvalds 已提交
1799 1800 1801 1802 1803 1804 1805
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1806 1807 1808 1809
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1810 1811
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1812 1813
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1814 1815 1816
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1817 1818 1819 1820 1821 1822 1823
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1824 1825
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1826 1827
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1828 1829 1830
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
/*
 * Like schedule_timeout_uninterruptible(), except this task will not contribute
 * to load average.
 */
signed long __sched schedule_timeout_idle(signed long timeout)
{
	__set_current_state(TASK_IDLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);

L
Linus Torvalds 已提交
1842
#ifdef CONFIG_HOTPLUG_CPU
1843
static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1844 1845
{
	struct timer_list *timer;
1846
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1847

1848 1849
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1850
		detach_timer(timer, false);
1851
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1852 1853 1854 1855
		internal_add_timer(new_base, timer);
	}
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
int timers_prepare_cpu(unsigned int cpu)
{
	struct timer_base *base;
	int b;

	for (b = 0; b < NR_BASES; b++) {
		base = per_cpu_ptr(&timer_bases[b], cpu);
		base->clk = jiffies;
		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
		base->is_idle = false;
		base->must_forward_clk = true;
	}
	return 0;
}

1871
int timers_dead_cpu(unsigned int cpu)
L
Linus Torvalds 已提交
1872
{
1873 1874
	struct timer_base *old_base;
	struct timer_base *new_base;
1875
	int b, i;
L
Linus Torvalds 已提交
1876 1877

	BUG_ON(cpu_online(cpu));
1878

1879 1880 1881 1882 1883 1884 1885
	for (b = 0; b < NR_BASES; b++) {
		old_base = per_cpu_ptr(&timer_bases[b], cpu);
		new_base = get_cpu_ptr(&timer_bases[b]);
		/*
		 * The caller is globally serialized and nobody else
		 * takes two locks at once, deadlock is not possible.
		 */
1886 1887
		raw_spin_lock_irq(&new_base->lock);
		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1888 1889 1890 1891 1892

		BUG_ON(old_base->running_timer);

		for (i = 0; i < WHEEL_SIZE; i++)
			migrate_timer_list(new_base, old_base->vectors + i);
1893

1894 1895
		raw_spin_unlock(&old_base->lock);
		raw_spin_unlock_irq(&new_base->lock);
1896 1897
		put_cpu_ptr(&timer_bases);
	}
1898
	return 0;
L
Linus Torvalds 已提交
1899 1900
}

1901
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1902

1903
static void __init init_timer_cpu(int cpu)
1904
{
1905 1906
	struct timer_base *base;
	int i;
1907

1908 1909 1910
	for (i = 0; i < NR_BASES; i++) {
		base = per_cpu_ptr(&timer_bases[i], cpu);
		base->cpu = cpu;
1911
		raw_spin_lock_init(&base->lock);
1912 1913
		base->clk = jiffies;
	}
1914 1915 1916
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1917
{
1918 1919
	int cpu;

1920 1921
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1922
}
1923

1924 1925 1926
void __init init_timers(void)
{
	init_timer_cpus();
1927
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1938 1939
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944
}

EXPORT_SYMBOL(msleep);

/**
1945
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1952 1953
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1954 1955 1956 1957
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1958 1959

/**
1960
 * usleep_range - Sleep for an approximate time
1961 1962
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
1963 1964 1965 1966 1967 1968
 *
 * In non-atomic context where the exact wakeup time is flexible, use
 * usleep_range() instead of udelay().  The sleep improves responsiveness
 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
 * power usage by allowing hrtimers to take advantage of an already-
 * scheduled interrupt instead of scheduling a new one just for this sleep.
1969
 */
1970
void __sched usleep_range(unsigned long min, unsigned long max)
1971
{
1972 1973 1974 1975 1976 1977 1978 1979 1980
	ktime_t exp = ktime_add_us(ktime_get(), min);
	u64 delta = (u64)(max - min) * NSEC_PER_USEC;

	for (;;) {
		__set_current_state(TASK_UNINTERRUPTIBLE);
		/* Do not return before the requested sleep time has elapsed */
		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
			break;
	}
1981 1982
}
EXPORT_SYMBOL(usleep_range);