timer.c 46.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53 54
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
55
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
56 57 58

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
68
#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
L
Linus Torvalds 已提交
69

70
struct tvec {
L
Linus Torvalds 已提交
71
	struct list_head vec[TVN_SIZE];
72
};
L
Linus Torvalds 已提交
73

74
struct tvec_root {
L
Linus Torvalds 已提交
75
	struct list_head vec[TVR_SIZE];
76
};
L
Linus Torvalds 已提交
77

78
struct tvec_base {
79 80
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
81
	unsigned long timer_jiffies;
82
	unsigned long next_timer;
83
	unsigned long active_timers;
84
	unsigned long all_timers;
85
	int cpu;
86 87 88 89 90
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
91
} ____cacheline_aligned;
L
Linus Torvalds 已提交
92

93 94 95 96 97 98 99 100 101
/*
 * __TIMER_INITIALIZER() needs to set ->base to a valid pointer (because we've
 * made NULL special, hint: lock_timer_base()) and we cannot get a compile time
 * pointer to per-cpu entries because we don't know where we'll map the section,
 * even for the boot cpu.
 *
 * And so we use boot_tvec_bases for boot CPU and per-cpu __tvec_bases for the
 * rest of them.
 */
102
struct tvec_base boot_tvec_bases;
103
EXPORT_SYMBOL(boot_tvec_bases);
104 105
static DEFINE_PER_CPU(struct tvec_base, __tvec_bases);

106
static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
107

108
/* Functions below help us manage 'deferrable' flag */
109
static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
110
{
111
	return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
112 113
}

T
Tejun Heo 已提交
114 115 116 117 118
static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
{
	return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
}

119
static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
120
{
121
	return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
122 123 124
}

static inline void
125
timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
126
{
127 128 129
	unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;

	timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
130 131
}

132 133
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
155
	 * But never round down if @force_up is set.
156
	 */
157
	if (rem < HZ/4 && !force_up) /* round down */
158 159 160 161 162 163 164
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

165 166 167 168 169
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
170
}
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
196 197 198 199 200 201 202
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
203
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
204 205 206 207 208 209 210 211 212 213 214 215
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
216
 * The return value is the rounded version of the @j parameter.
217 218 219
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
220 221 222 223
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
224 225 226 227 228 229 230
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
231
 * round_jiffies() rounds an absolute time in the future (in jiffies)
232 233 234 235 236 237 238 239
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
240
 * The return value is the rounded version of the @j parameter.
241 242 243
 */
unsigned long round_jiffies(unsigned long j)
{
244
	return round_jiffies_common(j, raw_smp_processor_id(), false);
245 246 247 248 249 250 251
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
252
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
253 254 255 256 257 258 259 260
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
261
 * The return value is the rounded version of the @j parameter.
262 263 264 265 266 267 268
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

334 335
/**
 * set_timer_slack - set the allowed slack for a timer
336
 * @timer: the timer to be modified
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 *
 * Set the amount of time, in jiffies, that a certain timer has
 * in terms of slack. By setting this value, the timer subsystem
 * will schedule the actual timer somewhere between
 * the time mod_timer() asks for, and that time plus the slack.
 *
 * By setting the slack to -1, a percentage of the delay is used
 * instead.
 */
void set_timer_slack(struct timer_list *timer, int slack_hz)
{
	timer->slack = slack_hz;
}
EXPORT_SYMBOL_GPL(set_timer_slack);

353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 * If the list is empty, catch up ->timer_jiffies to the current time.
 * The caller must hold the tvec_base lock.  Returns true if the list
 * was empty and therefore ->timer_jiffies was updated.
 */
static bool catchup_timer_jiffies(struct tvec_base *base)
{
	if (!base->all_timers) {
		base->timer_jiffies = jiffies;
		return true;
	}
	return false;
}

367 368
static void
__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
394 395 396
		/* If the timeout is larger than MAX_TVAL (on 64-bit
		 * architectures or with CONFIG_BASE_SMALL=1) then we
		 * use the maximum timeout.
L
Linus Torvalds 已提交
397
		 */
398 399
		if (idx > MAX_TVAL) {
			idx = MAX_TVAL;
L
Linus Torvalds 已提交
400 401 402 403 404 405 406 407 408 409 410
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

411 412
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
{
413
	(void)catchup_timer_jiffies(base);
414 415
	__internal_add_timer(base, timer);
	/*
416
	 * Update base->active_timers and base->next_timer
417
	 */
418
	if (!tbase_get_deferrable(timer->base)) {
419 420
		if (!base->active_timers++ ||
		    time_before(timer->expires, base->next_timer))
421 422
			base->next_timer = timer->expires;
	}
423
	base->all_timers++;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

	/*
	 * Check whether the other CPU is in dynticks mode and needs
	 * to be triggered to reevaluate the timer wheel.
	 * We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to stop its tick can not
	 * evaluate the timer wheel.
	 *
	 * Spare the IPI for deferrable timers on idle targets though.
	 * The next busy ticks will take care of it. Except full dynticks
	 * require special care against races with idle_cpu(), lets deal
	 * with that later.
	 */
	if (!tbase_get_deferrable(base) || tick_nohz_full_cpu(base->cpu))
		wake_up_nohz_cpu(base->cpu);
440 441
}

442 443 444 445 446 447 448 449 450 451
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
452 453 454 455 456

static void timer_stats_account_timer(struct timer_list *timer)
{
	unsigned int flag = 0;

457 458
	if (likely(!timer->start_site))
		return;
459 460 461 462 463 464 465 466 467
	if (unlikely(tbase_get_deferrable(timer->base)))
		flag |= TIMER_STATS_FLAG_DEFERRABLE;

	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, flag);
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
468 469
#endif

470 471 472 473
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

474 475 476 477 478
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

479 480 481
/*
 * fixup_init is called when:
 * - an active object is initialized
482
 */
483 484 485 486 487 488 489 490 491 492 493 494 495 496
static int timer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

497 498 499 500 501 502
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int timer_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The timer was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
		if (timer->entry.next == NULL &&
		    timer->entry.prev == TIMER_ENTRY_STATIC) {
			debug_object_init(timer, &timer_debug_descr);
			debug_object_activate(timer, &timer_debug_descr);
			return 0;
		} else {
526 527
			setup_timer(timer, stub_timer, 0);
			return 1;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		}
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int timer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
		if (timer->entry.prev == TIMER_ENTRY_STATIC) {
			/*
			 * This is not really a fixup. The timer was
			 * statically initialized. We just make sure that it
			 * is tracked in the object tracker.
			 */
			debug_object_init(timer, &timer_debug_descr);
			return 0;
		} else {
			setup_timer(timer, stub_timer, 0);
			return 1;
		}
	default:
		return 0;
	}
}

584
static struct debug_obj_descr timer_debug_descr = {
585 586 587 588 589 590
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

613 614 615 616 617
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
618 619
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
620

T
Tejun Heo 已提交
621 622
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
623 624
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
625
	do_init_timer(timer, flags, name, key);
626
}
627
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
628 629 630 631 632 633 634 635 636 637 638

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
639
static inline void debug_timer_assert_init(struct timer_list *timer) { }
640 641
#endif

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
	trace_timer_start(timer, expires);
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

661 662 663 664 665
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
666 667
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
668
{
669
	struct tvec_base *base = raw_cpu_read(tvec_bases);
T
Tejun Heo 已提交
670

671
	timer->entry.next = NULL;
T
Tejun Heo 已提交
672
	timer->base = (void *)((unsigned long)base | flags);
673
	timer->slack = -1;
674 675 676 677 678
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
679
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
680
}
681 682

/**
R
Randy Dunlap 已提交
683
 * init_timer_key - initialize a timer
684
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
685
 * @flags: timer flags
R
Randy Dunlap 已提交
686 687 688
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
689
 *
R
Randy Dunlap 已提交
690
 * init_timer_key() must be done to a timer prior calling *any* of the
691 692
 * other timer functions.
 */
T
Tejun Heo 已提交
693 694
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
695
{
696
	debug_init(timer);
T
Tejun Heo 已提交
697
	do_init_timer(timer, flags, name, key);
698
}
699
EXPORT_SYMBOL(init_timer_key);
700

701
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
702 703 704
{
	struct list_head *entry = &timer->entry;

705
	debug_deactivate(timer);
706

707 708 709 710 711 712
	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

713 714 715 716 717
static inline void
detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
{
	detach_timer(timer, true);
	if (!tbase_get_deferrable(timer->base))
718
		base->active_timers--;
719
	base->all_timers--;
720
	(void)catchup_timer_jiffies(base);
721 722
}

723 724 725 726 727 728 729
static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
			     bool clear_pending)
{
	if (!timer_pending(timer))
		return 0;

	detach_timer(timer, clear_pending);
730
	if (!tbase_get_deferrable(timer->base)) {
731
		base->active_timers--;
732 733 734
		if (timer->expires == base->next_timer)
			base->next_timer = base->timer_jiffies;
	}
735
	base->all_timers--;
736
	(void)catchup_timer_jiffies(base);
737 738 739
	return 1;
}

740
/*
741
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
742 743 744 745 746 747 748 749 750 751
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
752
static struct tvec_base *lock_timer_base(struct timer_list *timer,
753
					unsigned long *flags)
754
	__acquires(timer->base->lock)
755
{
756
	struct tvec_base *base;
757 758

	for (;;) {
759
		struct tvec_base *prelock_base = timer->base;
760
		base = tbase_get_base(prelock_base);
761 762
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
763
			if (likely(prelock_base == timer->base))
764 765 766 767 768 769 770 771
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
772
static inline int
773 774
__mod_timer(struct timer_list *timer, unsigned long expires,
						bool pending_only, int pinned)
L
Linus Torvalds 已提交
775
{
776
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
777
	unsigned long flags;
778
	int ret = 0 , cpu;
L
Linus Torvalds 已提交
779

780
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
781 782
	BUG_ON(!timer->function);

783 784
	base = lock_timer_base(timer, &flags);

785 786 787
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
788

789
	debug_activate(timer, expires);
790

791
	cpu = get_nohz_timer_target(pinned);
792 793
	new_base = per_cpu(tvec_bases, cpu);

794
	if (base != new_base) {
L
Linus Torvalds 已提交
795
		/*
796 797 798 799 800
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
801
		 */
802
		if (likely(base->running_timer != timer)) {
803
			/* See the comment in lock_timer_base() */
804
			timer_set_base(timer, NULL);
805
			spin_unlock(&base->lock);
806 807
			base = new_base;
			spin_lock(&base->lock);
808
			timer_set_base(timer, base);
L
Linus Torvalds 已提交
809 810 811 812
		}
	}

	timer->expires = expires;
813
	internal_add_timer(base, timer);
I
Ingo Molnar 已提交
814 815

out_unlock:
816
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
817 818 819 820

	return ret;
}

821
/**
I
Ingo Molnar 已提交
822 823 824
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
825
 *
I
Ingo Molnar 已提交
826 827 828 829
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
830
 */
I
Ingo Molnar 已提交
831
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
832
{
833
	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
834
}
I
Ingo Molnar 已提交
835
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
/*
 * Decide where to put the timer while taking the slack into account
 *
 * Algorithm:
 *   1) calculate the maximum (absolute) time
 *   2) calculate the highest bit where the expires and new max are different
 *   3) use this bit to make a mask
 *   4) use the bitmask to round down the maximum time, so that all last
 *      bits are zeros
 */
static inline
unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
{
	unsigned long expires_limit, mask;
	int bit;

853
	if (timer->slack >= 0) {
854
		expires_limit = expires + timer->slack;
855
	} else {
856 857 858 859
		long delta = expires - jiffies;

		if (delta < 256)
			return expires;
860

861
		expires_limit = expires + delta / 256;
862
	}
863 864 865 866 867 868
	mask = expires ^ expires_limit;
	if (mask == 0)
		return expires;

	bit = find_last_bit(&mask, BITS_PER_LONG);

869
	mask = (1UL << bit) - 1;
870 871 872 873 874 875

	expires_limit = expires_limit & ~(mask);

	return expires_limit;
}

876
/**
L
Linus Torvalds 已提交
877 878
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
879
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
880
 *
881
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
898 899
	expires = apply_slack(timer, expires);

L
Linus Torvalds 已提交
900 901 902 903 904
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
905
	if (timer_pending(timer) && timer->expires == expires)
L
Linus Torvalds 已提交
906 907
		return 1;

908
	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
909 910 911
}
EXPORT_SYMBOL(mod_timer);

912 913 914 915 916 917 918
/**
 * mod_timer_pinned - modify a timer's timeout
 * @timer: the timer to be modified
 * @expires: new timeout in jiffies
 *
 * mod_timer_pinned() is a way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
919 920 921 922 923 924 925
 * and to ensure that the timer is scheduled on the current CPU.
 *
 * Note that this does not prevent the timer from being migrated
 * when the current CPU goes offline.  If this is a problem for
 * you, use CPU-hotplug notifiers to handle it correctly, for
 * example, cancelling the timer when the corresponding CPU goes
 * offline.
926 927 928 929 930 931 932 933 934 935 936 937 938 939
 *
 * mod_timer_pinned(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 */
int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
{
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires, false, TIMER_PINNED);
}
EXPORT_SYMBOL(mod_timer_pinned);

I
Ingo Molnar 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
	struct tvec_base *base = per_cpu(tvec_bases, cpu);
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
	spin_lock_irqsave(&base->lock, flags);
	timer_set_base(timer, base);
977
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
978 979 980
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
981
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
982

983
/**
L
Linus Torvalds 已提交
984 985 986 987 988 989 990 991 992 993 994 995
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
996
	struct tvec_base *base;
L
Linus Torvalds 已提交
997
	unsigned long flags;
998
	int ret = 0;
L
Linus Torvalds 已提交
999

1000 1001
	debug_assert_init(timer);

1002
	timer_stats_timer_clear_start_info(timer);
1003 1004
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1005
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
1006 1007 1008
		spin_unlock_irqrestore(&base->lock, flags);
	}

1009
	return ret;
L
Linus Torvalds 已提交
1010 1011 1012
}
EXPORT_SYMBOL(del_timer);

1013 1014 1015 1016
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
1017 1018 1019 1020 1021
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1022
	struct tvec_base *base;
1023 1024 1025
	unsigned long flags;
	int ret = -1;

1026 1027
	debug_assert_init(timer);

1028 1029
	base = lock_timer_base(timer, &flags);

1030 1031 1032
	if (base->running_timer != timer) {
		timer_stats_timer_clear_start_info(timer);
		ret = detach_if_pending(timer, base, true);
1033 1034 1035 1036 1037
	}
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1038 1039
EXPORT_SYMBOL(try_to_del_timer_sync);

1040
#ifdef CONFIG_SMP
1041
/**
L
Linus Torvalds 已提交
1042 1043 1044 1045 1046 1047 1048
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1049
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1050
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1051 1052 1053 1054
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1055
 *
T
Tejun Heo 已提交
1056 1057 1058
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1075 1076 1077 1078
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1079
#ifdef CONFIG_LOCKDEP
1080 1081
	unsigned long flags;

1082 1083 1084 1085
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1086
	local_irq_save(flags);
1087 1088
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1089
	local_irq_restore(flags);
1090
#endif
1091 1092 1093 1094
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
T
Tejun Heo 已提交
1095
	WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1096 1097 1098 1099
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1100
		cpu_relax();
1101
	}
L
Linus Torvalds 已提交
1102
}
1103
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1104 1105
#endif

1106
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
1107 1108
{
	/* cascade all the timers from tv up one level */
1109 1110 1111 1112
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
1113 1114

	/*
1115 1116
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
1117
	 */
1118
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1119
		BUG_ON(tbase_get_base(timer->base) != base);
1120 1121
		/* No accounting, while moving them */
		__internal_add_timer(base, timer);
L
Linus Torvalds 已提交
1122 1123 1124 1125 1126
	}

	return index;
}

1127 1128 1129
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1130
	int count = preempt_count();
1131 1132 1133 1134 1135 1136 1137 1138 1139

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1140 1141 1142
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1157
	if (count != preempt_count()) {
1158
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1159
			  fn, count, preempt_count());
1160 1161 1162 1163 1164 1165
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1166
		preempt_count_set(count);
1167 1168 1169
	}
}

1170 1171 1172
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
1173 1174 1175 1176 1177 1178
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
1179
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
1180 1181 1182
{
	struct timer_list *timer;

1183
	spin_lock_irq(&base->lock);
1184 1185 1186 1187
	if (catchup_timer_jiffies(base)) {
		spin_unlock_irq(&base->lock);
		return;
	}
L
Linus Torvalds 已提交
1188
	while (time_after_eq(jiffies, base->timer_jiffies)) {
1189
		struct list_head work_list;
L
Linus Torvalds 已提交
1190
		struct list_head *head = &work_list;
1191
		int index = base->timer_jiffies & TVR_MASK;
1192

L
Linus Torvalds 已提交
1193 1194 1195 1196 1197 1198 1199 1200
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
1201
		++base->timer_jiffies;
1202
		list_replace_init(base->tv1.vec + index, head);
1203
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
1204 1205
			void (*fn)(unsigned long);
			unsigned long data;
T
Tejun Heo 已提交
1206
			bool irqsafe;
L
Linus Torvalds 已提交
1207

1208
			timer = list_first_entry(head, struct timer_list,entry);
1209 1210
			fn = timer->function;
			data = timer->data;
T
Tejun Heo 已提交
1211
			irqsafe = tbase_get_irqsafe(timer->base);
L
Linus Torvalds 已提交
1212

1213 1214
			timer_stats_account_timer(timer);

1215
			base->running_timer = timer;
1216
			detach_expired_timer(timer, base);
1217

T
Tejun Heo 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226
			if (irqsafe) {
				spin_unlock(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock(&base->lock);
			} else {
				spin_unlock_irq(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock_irq(&base->lock);
			}
L
Linus Torvalds 已提交
1227 1228
		}
	}
1229
	base->running_timer = NULL;
1230
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
1231 1232
}

1233
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1234 1235
/*
 * Find out when the next timer event is due to happen. This
R
Randy Dunlap 已提交
1236 1237
 * is used on S/390 to stop all activity when a CPU is idle.
 * This function needs to be called with interrupts disabled.
L
Linus Torvalds 已提交
1238
 */
1239
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
1240
{
1241
	unsigned long timer_jiffies = base->timer_jiffies;
1242
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1243
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
1244
	struct timer_list *nte;
1245
	struct tvec *varray[4];
L
Linus Torvalds 已提交
1246 1247

	/* Look for timer events in tv1. */
1248
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
1249
	do {
1250
		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1251 1252
			if (tbase_get_deferrable(nte->base))
				continue;
1253

1254
			found = 1;
L
Linus Torvalds 已提交
1255
			expires = nte->expires;
1256 1257 1258 1259
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
1260
		}
1261 1262 1263 1264 1265 1266 1267 1268
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
1269 1270 1271 1272 1273 1274

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
1275 1276

	for (array = 0; array < 4; array++) {
1277
		struct tvec *varp = varray[array];
1278 1279

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
1280
		do {
1281
			list_for_each_entry(nte, varp->vec + slot, entry) {
1282 1283 1284
				if (tbase_get_deferrable(nte->base))
					continue;

1285
				found = 1;
L
Linus Torvalds 已提交
1286 1287
				if (time_before(nte->expires, expires))
					expires = nte->expires;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
1305
	}
1306 1307
	return expires;
}
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
static unsigned long cmp_next_hrtimer_event(unsigned long now,
					    unsigned long expires)
{
	ktime_t hr_delta = hrtimer_get_next_event();
	struct timespec tsdelta;
1318
	unsigned long delta;
1319 1320 1321

	if (hr_delta.tv64 == KTIME_MAX)
		return expires;
1322

1323 1324 1325 1326 1327
	/*
	 * Expired timer available, let it expire in the next tick
	 */
	if (hr_delta.tv64 <= 0)
		return now + 1;
1328

1329
	tsdelta = ktime_to_timespec(hr_delta);
1330
	delta = timespec_to_jiffies(&tsdelta);
1331 1332 1333 1334 1335 1336 1337 1338

	/*
	 * Limit the delta to the max value, which is checked in
	 * tick_nohz_stop_sched_tick():
	 */
	if (delta > NEXT_TIMER_MAX_DELTA)
		delta = NEXT_TIMER_MAX_DELTA;

1339 1340 1341 1342 1343 1344 1345 1346 1347
	/*
	 * Take rounding errors in to account and make sure, that it
	 * expires in the next tick. Otherwise we go into an endless
	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
	 * the timer softirq
	 */
	if (delta < 1)
		delta = 1;
	now += delta;
1348 1349
	if (time_before(now, expires))
		return now;
L
Linus Torvalds 已提交
1350 1351
	return expires;
}
1352 1353

/**
1354
 * get_next_timer_interrupt - return the jiffy of the next pending timer
1355
 * @now: current time (in jiffies)
1356
 */
1357
unsigned long get_next_timer_interrupt(unsigned long now)
1358
{
C
Christoph Lameter 已提交
1359
	struct tvec_base *base = __this_cpu_read(tvec_bases);
1360
	unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1361

1362 1363 1364 1365 1366
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1367 1368
		return expires;

1369
	spin_lock(&base->lock);
1370 1371 1372 1373 1374
	if (base->active_timers) {
		if (time_before_eq(base->next_timer, base->timer_jiffies))
			base->next_timer = __next_timer_interrupt(base);
		expires = base->next_timer;
	}
1375 1376 1377 1378 1379 1380 1381
	spin_unlock(&base->lock);

	if (time_before_eq(expires, now))
		return now;

	return cmp_next_hrtimer_event(now, expires);
}
L
Linus Torvalds 已提交
1382 1383 1384
#endif

/*
D
Daniel Walker 已提交
1385
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1386 1387 1388 1389 1390 1391 1392
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1393
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1394
	run_local_timers();
1395
	rcu_check_callbacks(user_tick);
1396 1397
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1398
		irq_work_tick();
1399
#endif
L
Linus Torvalds 已提交
1400
	scheduler_tick();
1401
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1402 1403 1404 1405 1406 1407 1408
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
C
Christoph Lameter 已提交
1409
	struct tvec_base *base = __this_cpu_read(tvec_bases);
L
Linus Torvalds 已提交
1410

1411
	hrtimer_run_pending();
1412

L
Linus Torvalds 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1422
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1432
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1433
{
1434
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440
}

#endif

static void process_timeout(unsigned long __data)
{
1441
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1470
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1495
		if (timeout < 0) {
L
Linus Torvalds 已提交
1496
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1497 1498
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503 1504 1505
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1506
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1507
	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
1508 1509 1510
	schedule();
	del_singleshot_timer_sync(&timer);

1511 1512 1513
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519 1520
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1521 1522 1523 1524
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1525 1526
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1527 1528
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1529 1530 1531
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1532 1533 1534 1535 1536 1537 1538
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1539 1540
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1541 1542
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1543 1544 1545
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1546
#ifdef CONFIG_HOTPLUG_CPU
1547
static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1548 1549 1550 1551
{
	struct timer_list *timer;

	while (!list_empty(head)) {
1552
		timer = list_first_entry(head, struct timer_list, entry);
1553
		/* We ignore the accounting on the dying cpu */
1554
		detach_timer(timer, false);
1555
		timer_set_base(timer, new_base);
L
Linus Torvalds 已提交
1556 1557 1558 1559
		internal_add_timer(new_base, timer);
	}
}

1560
static void migrate_timers(int cpu)
L
Linus Torvalds 已提交
1561
{
1562 1563
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1564 1565 1566
	int i;

	BUG_ON(cpu_online(cpu));
1567 1568
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
1569 1570 1571 1572 1573
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1574
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1575 1576

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1577 1578

	for (i = 0; i < TVR_SIZE; i++)
1579 1580 1581 1582 1583 1584 1585 1586
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1587 1588 1589
	old_base->active_timers = 0;
	old_base->all_timers = 0;

1590
	spin_unlock(&old_base->lock);
1591
	spin_unlock_irq(&new_base->lock);
L
Linus Torvalds 已提交
1592 1593 1594 1595
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1596
static int timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1597 1598 1599
				unsigned long action, void *hcpu)
{
#ifdef CONFIG_HOTPLUG_CPU
1600
	switch (action) {
L
Linus Torvalds 已提交
1601
	case CPU_DEAD:
1602
	case CPU_DEAD_FROZEN:
1603
		migrate_timers((long)hcpu);
L
Linus Torvalds 已提交
1604 1605 1606 1607
		break;
	default:
		break;
	}
1608
#endif
L
Linus Torvalds 已提交
1609 1610 1611
	return NOTIFY_OK;
}

1612
static struct notifier_block timers_nb = {
L
Linus Torvalds 已提交
1613 1614 1615
	.notifier_call	= timer_cpu_notify,
};

1616 1617 1618
static void __init init_timer_cpu(struct tvec_base *base, int cpu)
{
	int j;
L
Linus Torvalds 已提交
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	base->cpu = cpu;
	per_cpu(tvec_bases, cpu) = base;
	spin_lock_init(&base->lock);

	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
	base->next_timer = base->timer_jiffies;
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1638
{
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	struct tvec_base *base;
	int local_cpu = smp_processor_id();
	int cpu;

	for_each_possible_cpu(cpu) {
		if (cpu == local_cpu)
			base = &boot_tvec_bases;
		else
			base = per_cpu_ptr(&__tvec_bases, cpu);

		init_timer_cpu(base, cpu);
	}
}
1652

1653 1654
void __init init_timers(void)
{
1655 1656
	/* ensure there are enough low bits for flags in timer->base pointer */
	BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1657

1658
	init_timer_cpus();
1659
	init_timer_stats();
L
Linus Torvalds 已提交
1660
	register_cpu_notifier(&timers_nb);
1661
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1672 1673
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678
}

EXPORT_SYMBOL(msleep);

/**
1679
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1680 1681 1682 1683 1684 1685
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1686 1687
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1688 1689 1690 1691
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

static int __sched do_usleep_range(unsigned long min, unsigned long max)
{
	ktime_t kmin;
	unsigned long delta;

	kmin = ktime_set(0, min * NSEC_PER_USEC);
	delta = (max - min) * NSEC_PER_USEC;
	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
}

/**
 * usleep_range - Drop in replacement for udelay where wakeup is flexible
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
 */
void usleep_range(unsigned long min, unsigned long max)
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);