timer.c 53.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched/signal.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45

46
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
47 48 49 50 51
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53
#include "tick-internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
57
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
58 59 60

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
61
/*
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
 * level has a different granularity.
 *
 * The level granularity is:		LVL_CLK_DIV ^ lvl
 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
 *
 * The array level of a newly armed timer depends on the relative expiry
 * time. The farther the expiry time is away the higher the array level and
 * therefor the granularity becomes.
 *
 * Contrary to the original timer wheel implementation, which aims for 'exact'
 * expiry of the timers, this implementation removes the need for recascading
 * the timers into the lower array levels. The previous 'classic' timer wheel
 * implementation of the kernel already violated the 'exact' expiry by adding
 * slack to the expiry time to provide batched expiration. The granularity
 * levels provide implicit batching.
 *
 * This is an optimization of the original timer wheel implementation for the
 * majority of the timer wheel use cases: timeouts. The vast majority of
 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
 * the timeout expires it indicates that normal operation is disturbed, so it
 * does not matter much whether the timeout comes with a slight delay.
 *
 * The only exception to this are networking timers with a small expiry
 * time. They rely on the granularity. Those fit into the first wheel level,
 * which has HZ granularity.
 *
 * We don't have cascading anymore. timers with a expiry time above the
 * capacity of the last wheel level are force expired at the maximum timeout
 * value of the last wheel level. From data sampling we know that the maximum
 * value observed is 5 days (network connection tracking), so this should not
 * be an issue.
 *
 * The currently chosen array constants values are a good compromise between
 * array size and granularity.
 *
 * This results in the following granularity and range levels:
 *
 * HZ 1000 steps
 * Level Offset  Granularity            Range
 *  0      0         1 ms                0 ms -         63 ms
 *  1     64         8 ms               64 ms -        511 ms
 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 *
 * HZ  300
 * Level Offset  Granularity            Range
 *  0	   0         3 ms                0 ms -        210 ms
 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 *
 * HZ  250
 * Level Offset  Granularity            Range
 *  0	   0         4 ms                0 ms -        255 ms
 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 *
 * HZ  100
 * Level Offset  Granularity            Range
 *  0	   0         10 ms               0 ms -        630 ms
 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
L
Linus Torvalds 已提交
147 148
 */

149 150 151 152 153 154
/* Clock divisor for the next level */
#define LVL_CLK_SHIFT	3
#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
L
Linus Torvalds 已提交
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * The time start value for each level to select the bucket at enqueue
 * time.
 */
#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))

/* Size of each clock level */
#define LVL_BITS	6
#define LVL_SIZE	(1UL << LVL_BITS)
#define LVL_MASK	(LVL_SIZE - 1)
#define LVL_OFFS(n)	((n) * LVL_SIZE)

/* Level depth */
#if HZ > 100
# define LVL_DEPTH	9
# else
# define LVL_DEPTH	8
#endif

/* The cutoff (max. capacity of the wheel) */
#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))

/*
 * The resulting wheel size. If NOHZ is configured we allocate two
 * wheels so we have a separate storage for the deferrable timers.
 */
#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)

#ifdef CONFIG_NO_HZ_COMMON
# define NR_BASES	2
# define BASE_STD	0
# define BASE_DEF	1
#else
# define NR_BASES	1
# define BASE_STD	0
# define BASE_DEF	0
#endif
L
Linus Torvalds 已提交
194

195
struct timer_base {
196 197 198
	spinlock_t		lock;
	struct timer_list	*running_timer;
	unsigned long		clk;
199
	unsigned long		next_expiry;
200 201 202
	unsigned int		cpu;
	bool			migration_enabled;
	bool			nohz_active;
203
	bool			is_idle;
204 205
	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
	struct hlist_head	vectors[WHEEL_SIZE];
206
} ____cacheline_aligned;
207

208
static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
209

210 211 212
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;

213
void timers_update_migration(bool update_nohz)
214 215 216 217 218
{
	bool on = sysctl_timer_migration && tick_nohz_active;
	unsigned int cpu;

	/* Avoid the loop, if nothing to update */
219
	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
220 221 222
		return;

	for_each_possible_cpu(cpu) {
223 224
		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
225
		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
226 227
		if (!update_nohz)
			continue;
228 229
		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
230
		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
231 232 233 234 235 236 237 238 239 240 241 242 243
	}
}

int timer_migration_handler(struct ctl_table *table, int write,
			    void __user *buffer, size_t *lenp,
			    loff_t *ppos)
{
	static DEFINE_MUTEX(mutex);
	int ret;

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (!ret && write)
244
		timers_update_migration(false);
245 246 247 248 249
	mutex_unlock(&mutex);
	return ret;
}
#endif

250 251
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
273
	 * But never round down if @force_up is set.
274
	 */
275
	if (rem < HZ/4 && !force_up) /* round down */
276 277 278 279 280 281 282
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

283 284 285 286 287
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
288
}
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
314 315 316 317 318 319 320
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
321
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
322 323 324 325 326 327 328 329 330 331 332 333
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
334
 * The return value is the rounded version of the @j parameter.
335 336 337
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
338 339 340 341
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
342 343 344 345 346 347 348
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
349
 * round_jiffies() rounds an absolute time in the future (in jiffies)
350 351 352 353 354 355 356 357
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
358
 * The return value is the rounded version of the @j parameter.
359 360 361
 */
unsigned long round_jiffies(unsigned long j)
{
362
	return round_jiffies_common(j, raw_smp_processor_id(), false);
363 364 365 366 367 368 369
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
370
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
371 372 373 374 375 376 377 378
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
379
 * The return value is the rounded version of the @j parameter.
380 381 382 383 384 385 386
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

452

453
static inline unsigned int timer_get_idx(struct timer_list *timer)
454
{
455
	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
456 457
}

458
static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
L
Linus Torvalds 已提交
459
{
460 461 462
	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
			idx << TIMER_ARRAYSHIFT;
}
L
Linus Torvalds 已提交
463

464 465 466 467 468 469 470 471 472 473
/*
 * Helper function to calculate the array index for a given expiry
 * time.
 */
static inline unsigned calc_index(unsigned expires, unsigned lvl)
{
	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
	return LVL_OFFS(lvl) + (expires & LVL_MASK);
}

474
static int calc_wheel_index(unsigned long expires, unsigned long clk)
L
Linus Torvalds 已提交
475
{
476
	unsigned long delta = expires - clk;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	unsigned int idx;

	if (delta < LVL_START(1)) {
		idx = calc_index(expires, 0);
	} else if (delta < LVL_START(2)) {
		idx = calc_index(expires, 1);
	} else if (delta < LVL_START(3)) {
		idx = calc_index(expires, 2);
	} else if (delta < LVL_START(4)) {
		idx = calc_index(expires, 3);
	} else if (delta < LVL_START(5)) {
		idx = calc_index(expires, 4);
	} else if (delta < LVL_START(6)) {
		idx = calc_index(expires, 5);
	} else if (delta < LVL_START(7)) {
		idx = calc_index(expires, 6);
	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
		idx = calc_index(expires, 7);
	} else if ((long) delta < 0) {
496
		idx = clk & LVL_MASK;
L
Linus Torvalds 已提交
497
	} else {
498 499 500
		/*
		 * Force expire obscene large timeouts to expire at the
		 * capacity limit of the wheel.
L
Linus Torvalds 已提交
501
		 */
502 503
		if (expires >= WHEEL_TIMEOUT_CUTOFF)
			expires = WHEEL_TIMEOUT_MAX;
T
Thomas Gleixner 已提交
504

505
		idx = calc_index(expires, LVL_DEPTH - 1);
L
Linus Torvalds 已提交
506
	}
507 508
	return idx;
}
T
Thomas Gleixner 已提交
509

510 511 512 513 514 515 516 517
/*
 * Enqueue the timer into the hash bucket, mark it pending in
 * the bitmap and store the index in the timer flags.
 */
static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
			  unsigned int idx)
{
	hlist_add_head(&timer->entry, base->vectors + idx);
518 519
	__set_bit(idx, base->pending_map);
	timer_set_idx(timer, idx);
L
Linus Torvalds 已提交
520 521
}

522 523
static void
__internal_add_timer(struct timer_base *base, struct timer_list *timer)
524
{
525 526 527 528 529
	unsigned int idx;

	idx = calc_wheel_index(timer->expires, base->clk);
	enqueue_timer(base, timer, idx);
}
530

531 532 533
static void
trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
{
534 535
	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
		return;
536

537
	/*
538 539
	 * TODO: This wants some optimizing similar to the code below, but we
	 * will do that when we switch from push to pull for deferrable timers.
540
	 */
541 542
	if (timer->flags & TIMER_DEFERRABLE) {
		if (tick_nohz_full_cpu(base->cpu))
543
			wake_up_nohz_cpu(base->cpu);
544
		return;
545
	}
546 547

	/*
548 549 550
	 * We might have to IPI the remote CPU if the base is idle and the
	 * timer is not deferrable. If the other CPU is on the way to idle
	 * then it can't set base->is_idle as we hold the base lock:
551
	 */
552 553 554 555 556 557 558 559 560 561 562 563
	if (!base->is_idle)
		return;

	/* Check whether this is the new first expiring timer: */
	if (time_after_eq(timer->expires, base->next_expiry))
		return;

	/*
	 * Set the next expiry time and kick the CPU so it can reevaluate the
	 * wheel:
	 */
	base->next_expiry = timer->expires;
564 565 566 567 568 569 570 571
		wake_up_nohz_cpu(base->cpu);
}

static void
internal_add_timer(struct timer_base *base, struct timer_list *timer)
{
	__internal_add_timer(base, timer);
	trigger_dyntick_cpu(base, timer);
572 573
}

574 575 576 577
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

578 579 580 581 582
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

583 584 585 586 587 588 589 590
static bool timer_is_static_object(void *addr)
{
	struct timer_list *timer = addr;

	return (timer->entry.pprev == NULL &&
		timer->entry.next == TIMER_ENTRY_STATIC);
}

591 592 593
/*
 * fixup_init is called when:
 * - an active object is initialized
594
 */
595
static bool timer_fixup_init(void *addr, enum debug_obj_state state)
596 597 598 599 600 601 602
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
603
		return true;
604
	default:
605
		return false;
606 607 608
	}
}

609 610 611 612 613 614
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

615 616 617
/*
 * fixup_activate is called when:
 * - an active object is activated
618
 * - an unknown non-static object is activated
619
 */
620
static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
621 622 623 624 625
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
626 627
		setup_timer(timer, stub_timer, 0);
		return true;
628 629 630 631 632

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
633
		return false;
634 635 636 637 638 639 640
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
641
static bool timer_fixup_free(void *addr, enum debug_obj_state state)
642 643 644 645 646 647 648
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
649
		return true;
650
	default:
651
		return false;
652 653 654
	}
}

655 656 657 658
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
659
static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
660 661 662 663 664
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
665 666
		setup_timer(timer, stub_timer, 0);
		return true;
667
	default:
668
		return false;
669 670 671
	}
}

672
static struct debug_obj_descr timer_debug_descr = {
673 674
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
675
	.is_static_object	= timer_is_static_object,
676 677 678 679
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

702 703 704 705 706
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
707 708
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
709

T
Tejun Heo 已提交
710 711
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
712 713
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
714
	do_init_timer(timer, flags, name, key);
715
}
716
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
717 718 719 720 721 722 723 724 725 726 727

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
728
static inline void debug_timer_assert_init(struct timer_list *timer) { }
729 730
#endif

731 732 733 734 735 736 737 738 739 740
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
741
	trace_timer_start(timer, expires, timer->flags);
742 743 744 745 746 747 748 749
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

750 751 752 753 754
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
755 756
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
757
{
758
	timer->entry.pprev = NULL;
759
	timer->flags = flags | raw_smp_processor_id();
760
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
761
}
762 763

/**
R
Randy Dunlap 已提交
764
 * init_timer_key - initialize a timer
765
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
766
 * @flags: timer flags
R
Randy Dunlap 已提交
767 768 769
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
770
 *
R
Randy Dunlap 已提交
771
 * init_timer_key() must be done to a timer prior calling *any* of the
772 773
 * other timer functions.
 */
T
Tejun Heo 已提交
774 775
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
776
{
777
	debug_init(timer);
T
Tejun Heo 已提交
778
	do_init_timer(timer, flags, name, key);
779
}
780
EXPORT_SYMBOL(init_timer_key);
781

782
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
783
{
784
	struct hlist_node *entry = &timer->entry;
785

786
	debug_deactivate(timer);
787

788
	__hlist_del(entry);
789
	if (clear_pending)
790 791
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
792 793
}

794
static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
795 796
			     bool clear_pending)
{
797 798
	unsigned idx = timer_get_idx(timer);

799 800 801
	if (!timer_pending(timer))
		return 0;

802 803 804
	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
		__clear_bit(idx, base->pending_map);

805 806 807 808
	detach_timer(timer, clear_pending);
	return 1;
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
{
	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);

	/*
	 * If the timer is deferrable and nohz is active then we need to use
	 * the deferrable base.
	 */
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
	    (tflags & TIMER_DEFERRABLE))
		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
	return base;
}

static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
	 * If the timer is deferrable and nohz is active then we need to use
	 * the deferrable base.
	 */
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
	    (tflags & TIMER_DEFERRABLE))
		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
	return base;
}

static inline struct timer_base *get_timer_base(u32 tflags)
{
	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
}

842 843
#ifdef CONFIG_NO_HZ_COMMON
static inline struct timer_base *
844
get_target_base(struct timer_base *base, unsigned tflags)
845
{
846
#ifdef CONFIG_SMP
847 848 849 850 851 852 853 854
	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
		return get_timer_this_cpu_base(tflags);
	return get_timer_cpu_base(tflags, get_nohz_timer_target());
#else
	return get_timer_this_cpu_base(tflags);
#endif
}

855 856
static inline void forward_timer_base(struct timer_base *base)
{
857 858
	unsigned long jnow = READ_ONCE(jiffies);

859 860 861 862
	/*
	 * We only forward the base when it's idle and we have a delta between
	 * base clock and jiffies.
	 */
863
	if (!base->is_idle || (long) (jnow - base->clk) < 2)
864 865 866 867 868 869
		return;

	/*
	 * If the next expiry value is > jiffies, then we fast forward to
	 * jiffies otherwise we forward to the next expiry value.
	 */
870 871
	if (time_after(base->next_expiry, jnow))
		base->clk = jnow;
872 873 874 875 876
	else
		base->clk = base->next_expiry;
}
#else
static inline struct timer_base *
877
get_target_base(struct timer_base *base, unsigned tflags)
878 879 880 881 882 883 884 885
{
	return get_timer_this_cpu_base(tflags);
}

static inline void forward_timer_base(struct timer_base *base) { }
#endif


886
/*
887 888 889
 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 * that all timers which are tied to this base are locked, and the base itself
 * is locked too.
890 891
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
892
 * be found in the base->vectors array.
893
 *
894 895
 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 * to wait until the migration is done.
896
 */
897
static struct timer_base *lock_timer_base(struct timer_list *timer,
898
					  unsigned long *flags)
899
	__acquires(timer->base->lock)
900 901
{
	for (;;) {
902
		struct timer_base *base;
903 904 905 906 907 908 909 910
		u32 tf;

		/*
		 * We need to use READ_ONCE() here, otherwise the compiler
		 * might re-read @tf between the check for TIMER_MIGRATING
		 * and spin_lock().
		 */
		tf = READ_ONCE(timer->flags);
911 912

		if (!(tf & TIMER_MIGRATING)) {
913
			base = get_timer_base(tf);
914
			spin_lock_irqsave(&base->lock, *flags);
915
			if (timer->flags == tf)
916 917 918 919 920 921 922
				return base;
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
923
static inline int
924
__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
L
Linus Torvalds 已提交
925
{
926
	struct timer_base *base, *new_base;
927 928
	unsigned int idx = UINT_MAX;
	unsigned long clk = 0, flags;
929
	int ret = 0;
L
Linus Torvalds 已提交
930

931 932
	BUG_ON(!timer->function);

933
	/*
934 935 936
	 * This is a common optimization triggered by the networking code - if
	 * the timer is re-modified to have the same timeout or ends up in the
	 * same array bucket then just return:
937 938 939 940
	 */
	if (timer_pending(timer)) {
		if (timer->expires == expires)
			return 1;
941

942
		/*
943 944 945 946
		 * We lock timer base and calculate the bucket index right
		 * here. If the timer ends up in the same bucket, then we
		 * just update the expiry time and avoid the whole
		 * dequeue/enqueue dance.
947
		 */
948
		base = lock_timer_base(timer, &flags);
949

950
		clk = base->clk;
951 952 953 954 955 956 957 958 959
		idx = calc_wheel_index(expires, clk);

		/*
		 * Retrieve and compare the array index of the pending
		 * timer. If it matches set the expiry to the new value so a
		 * subsequent call will exit in the expires check above.
		 */
		if (idx == timer_get_idx(timer)) {
			timer->expires = expires;
960 961
			ret = 1;
			goto out_unlock;
962
		}
963 964
	} else {
		base = lock_timer_base(timer, &flags);
965 966
	}

967 968 969
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
970

971
	debug_activate(timer, expires);
972

973
	new_base = get_target_base(base, timer->flags);
974

975
	if (base != new_base) {
L
Linus Torvalds 已提交
976
		/*
977
		 * We are trying to schedule the timer on the new base.
978 979
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
980 981
		 * handler yet has not finished. This also guarantees that the
		 * timer is serialized wrt itself.
L
Linus Torvalds 已提交
982
		 */
983
		if (likely(base->running_timer != timer)) {
984
			/* See the comment in lock_timer_base() */
985 986
			timer->flags |= TIMER_MIGRATING;

987
			spin_unlock(&base->lock);
988 989
			base = new_base;
			spin_lock(&base->lock);
990 991
			WRITE_ONCE(timer->flags,
				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
L
Linus Torvalds 已提交
992 993 994
		}
	}

995 996 997
	/* Try to forward a stale timer base clock */
	forward_timer_base(base);

L
Linus Torvalds 已提交
998
	timer->expires = expires;
999 1000
	/*
	 * If 'idx' was calculated above and the base time did not advance
1001 1002 1003 1004
	 * between calculating 'idx' and possibly switching the base, only
	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
	 * we need to (re)calculate the wheel index via
	 * internal_add_timer().
1005 1006 1007 1008 1009 1010 1011
	 */
	if (idx != UINT_MAX && clk == base->clk) {
		enqueue_timer(base, timer, idx);
		trigger_dyntick_cpu(base, timer);
	} else {
		internal_add_timer(base, timer);
	}
I
Ingo Molnar 已提交
1012 1013

out_unlock:
1014
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
1015 1016 1017 1018

	return ret;
}

1019
/**
I
Ingo Molnar 已提交
1020 1021 1022
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1023
 *
I
Ingo Molnar 已提交
1024 1025 1026 1027
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
1028
 */
I
Ingo Molnar 已提交
1029
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
1030
{
1031
	return __mod_timer(timer, expires, true);
L
Linus Torvalds 已提交
1032
}
I
Ingo Molnar 已提交
1033
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
1034

1035
/**
L
Linus Torvalds 已提交
1036 1037
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
1038
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1039
 *
1040
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
1057
	return __mod_timer(timer, expires, false);
L
Linus Torvalds 已提交
1058 1059 1060
}
EXPORT_SYMBOL(mod_timer);

I
Ingo Molnar 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
1091
	struct timer_base *new_base, *base;
I
Ingo Molnar 已提交
1092 1093 1094
	unsigned long flags;

	BUG_ON(timer_pending(timer) || !timer->function);
1095

1096 1097
	new_base = get_timer_cpu_base(timer->flags, cpu);

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	/*
	 * If @timer was on a different CPU, it should be migrated with the
	 * old base locked to prevent other operations proceeding with the
	 * wrong base locked.  See lock_timer_base().
	 */
	base = lock_timer_base(timer, &flags);
	if (base != new_base) {
		timer->flags |= TIMER_MIGRATING;

		spin_unlock(&base->lock);
		base = new_base;
		spin_lock(&base->lock);
		WRITE_ONCE(timer->flags,
			   (timer->flags & ~TIMER_BASEMASK) | cpu);
	}

1114
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
1115 1116 1117
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
1118
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
1119

1120
/**
L
Linus Torvalds 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
1133
	struct timer_base *base;
L
Linus Torvalds 已提交
1134
	unsigned long flags;
1135
	int ret = 0;
L
Linus Torvalds 已提交
1136

1137 1138
	debug_assert_init(timer);

1139 1140
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1141
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
1142 1143 1144
		spin_unlock_irqrestore(&base->lock, flags);
	}

1145
	return ret;
L
Linus Torvalds 已提交
1146 1147 1148
}
EXPORT_SYMBOL(del_timer);

1149 1150 1151 1152
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
1153 1154 1155 1156 1157
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1158
	struct timer_base *base;
1159 1160 1161
	unsigned long flags;
	int ret = -1;

1162 1163
	debug_assert_init(timer);

1164 1165
	base = lock_timer_base(timer, &flags);

K
Kees Cook 已提交
1166
	if (base->running_timer != timer)
1167
		ret = detach_if_pending(timer, base, true);
K
Kees Cook 已提交
1168

1169 1170 1171 1172
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1173 1174
EXPORT_SYMBOL(try_to_del_timer_sync);

1175
#ifdef CONFIG_SMP
1176
/**
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181 1182 1183
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1184
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1185
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1186 1187 1188 1189
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1190
 *
T
Tejun Heo 已提交
1191 1192 1193
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1210 1211 1212 1213
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1214
#ifdef CONFIG_LOCKDEP
1215 1216
	unsigned long flags;

1217 1218 1219 1220
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1221
	local_irq_save(flags);
1222 1223
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1224
	local_irq_restore(flags);
1225
#endif
1226 1227 1228 1229
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1230
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1231 1232 1233 1234
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1235
		cpu_relax();
1236
	}
L
Linus Torvalds 已提交
1237
}
1238
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1239 1240
#endif

1241 1242 1243
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1244
	int count = preempt_count();
1245 1246 1247 1248 1249 1250 1251 1252 1253

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1254 1255 1256
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1271
	if (count != preempt_count()) {
1272
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1273
			  fn, count, preempt_count());
1274 1275 1276 1277 1278 1279
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1280
		preempt_count_set(count);
1281 1282 1283
	}
}

1284
static void expire_timers(struct timer_base *base, struct hlist_head *head)
L
Linus Torvalds 已提交
1285
{
1286 1287 1288 1289
	while (!hlist_empty(head)) {
		struct timer_list *timer;
		void (*fn)(unsigned long);
		unsigned long data;
L
Linus Torvalds 已提交
1290

1291
		timer = hlist_entry(head->first, struct timer_list, entry);
1292

1293 1294
		base->running_timer = timer;
		detach_timer(timer, true);
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		fn = timer->function;
		data = timer->data;

		if (timer->flags & TIMER_IRQSAFE) {
			spin_unlock(&base->lock);
			call_timer_fn(timer, fn, data);
			spin_lock(&base->lock);
		} else {
			spin_unlock_irq(&base->lock);
			call_timer_fn(timer, fn, data);
			spin_lock_irq(&base->lock);
1307
		}
1308 1309
	}
}
1310

1311 1312
static int __collect_expired_timers(struct timer_base *base,
				    struct hlist_head *heads)
1313 1314 1315 1316 1317
{
	unsigned long clk = base->clk;
	struct hlist_head *vec;
	int i, levels = 0;
	unsigned int idx;
1318

1319 1320 1321 1322 1323 1324 1325
	for (i = 0; i < LVL_DEPTH; i++) {
		idx = (clk & LVL_MASK) + i * LVL_SIZE;

		if (__test_and_clear_bit(idx, base->pending_map)) {
			vec = base->vectors + idx;
			hlist_move_list(vec, heads++);
			levels++;
L
Linus Torvalds 已提交
1326
		}
1327 1328 1329 1330 1331
		/* Is it time to look at the next level? */
		if (clk & LVL_CLK_MASK)
			break;
		/* Shift clock for the next level granularity */
		clk >>= LVL_CLK_SHIFT;
L
Linus Torvalds 已提交
1332
	}
1333
	return levels;
L
Linus Torvalds 已提交
1334 1335
}

1336
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1337
/*
1338 1339 1340
 * Find the next pending bucket of a level. Search from level start (@offset)
 * + @clk upwards and if nothing there, search from start of the level
 * (@offset) up to @offset + clk.
L
Linus Torvalds 已提交
1341
 */
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static int next_pending_bucket(struct timer_base *base, unsigned offset,
			       unsigned clk)
{
	unsigned pos, start = offset + clk;
	unsigned end = offset + LVL_SIZE;

	pos = find_next_bit(base->pending_map, end, start);
	if (pos < end)
		return pos - start;

	pos = find_next_bit(base->pending_map, start, offset);
	return pos < start ? pos + LVL_SIZE - start : -1;
}

/*
1357 1358
 * Search the first expiring timer in the various clock levels. Caller must
 * hold base->lock.
L
Linus Torvalds 已提交
1359
 */
1360
static unsigned long __next_timer_interrupt(struct timer_base *base)
L
Linus Torvalds 已提交
1361
{
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	unsigned long clk, next, adj;
	unsigned lvl, offset = 0;

	next = base->clk + NEXT_TIMER_MAX_DELTA;
	clk = base->clk;
	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);

		if (pos >= 0) {
			unsigned long tmp = clk + (unsigned long) pos;

			tmp <<= LVL_SHIFT(lvl);
			if (time_before(tmp, next))
				next = tmp;
L
Linus Torvalds 已提交
1376
		}
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		/*
		 * Clock for the next level. If the current level clock lower
		 * bits are zero, we look at the next level as is. If not we
		 * need to advance it by one because that's going to be the
		 * next expiring bucket in that level. base->clk is the next
		 * expiring jiffie. So in case of:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    0
		 *
		 * we have to look at all levels @index 0. With
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    2
		 *
		 * LVL0 has the next expiring bucket @index 2. The upper
		 * levels have the next expiring bucket @index 1.
		 *
		 * In case that the propagation wraps the next level the same
		 * rules apply:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    F    2
		 *
		 * So after looking at LVL0 we get:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1
		 *  0    0    0    1    0
		 *
		 * So no propagation from LVL1 to LVL2 because that happened
		 * with the add already, but then we need to propagate further
		 * from LVL2 to LVL3.
		 *
		 * So the simple check whether the lower bits of the current
		 * level are 0 or not is sufficient for all cases.
		 */
		adj = clk & LVL_CLK_MASK ? 1 : 0;
		clk >>= LVL_CLK_SHIFT;
		clk += adj;
L
Linus Torvalds 已提交
1416
	}
1417
	return next;
1418
}
1419

1420 1421 1422 1423
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1424
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1425
{
1426
	u64 nextevt = hrtimer_get_next_event();
1427

1428
	/*
1429 1430
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1431
	 */
1432 1433
	if (expires <= nextevt)
		return expires;
1434 1435

	/*
1436 1437
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1438
	 */
1439 1440
	if (nextevt <= basem)
		return basem;
1441

1442
	/*
1443 1444 1445 1446 1447 1448
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1449
	 */
1450
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1451
}
1452 1453

/**
1454 1455 1456 1457 1458 1459
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1460
 */
1461
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1462
{
1463
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1464 1465
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1466
	bool is_max_delta;
1467

1468 1469 1470 1471 1472
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1473 1474
		return expires;

1475
	spin_lock(&base->lock);
1476
	nextevt = __next_timer_interrupt(base);
1477
	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1478 1479
	base->next_expiry = nextevt;
	/*
1480 1481 1482
	 * We have a fresh next event. Check whether we can forward the
	 * base. We can only do that when @basej is past base->clk
	 * otherwise we might rewind base->clk.
1483
	 */
1484 1485 1486 1487 1488 1489
	if (time_after(basej, base->clk)) {
		if (time_after(nextevt, basej))
			base->clk = basej;
		else if (time_after(nextevt, base->clk))
			base->clk = nextevt;
	}
1490

1491
	if (time_before_eq(nextevt, basej)) {
1492
		expires = basem;
1493 1494
		base->is_idle = false;
	} else {
1495 1496
		if (!is_max_delta)
			expires = basem + (nextevt - basej) * TICK_NSEC;
1497 1498 1499 1500 1501
		/*
		 * If we expect to sleep more than a tick, mark the base idle:
		 */
		if ((expires - basem) > TICK_NSEC)
			base->is_idle = true;
1502
	}
1503 1504
	spin_unlock(&base->lock);

1505
	return cmp_next_hrtimer_event(basem, expires);
1506
}
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/**
 * timer_clear_idle - Clear the idle state of the timer base
 *
 * Called with interrupts disabled
 */
void timer_clear_idle(void)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
	 * We do this unlocked. The worst outcome is a remote enqueue sending
	 * a pointless IPI, but taking the lock would just make the window for
	 * sending the IPI a few instructions smaller for the cost of taking
	 * the lock in the exit from idle path.
	 */
	base->is_idle = false;
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static int collect_expired_timers(struct timer_base *base,
				  struct hlist_head *heads)
{
	/*
	 * NOHZ optimization. After a long idle sleep we need to forward the
	 * base to current jiffies. Avoid a loop by searching the bitfield for
	 * the next expiring timer.
	 */
	if ((long)(jiffies - base->clk) > 2) {
		unsigned long next = __next_timer_interrupt(base);

		/*
		 * If the next timer is ahead of time forward to current
1539
		 * jiffies, otherwise forward to the next expiry time:
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		 */
		if (time_after(next, jiffies)) {
			/* The call site will increment clock! */
			base->clk = jiffies - 1;
			return 0;
		}
		base->clk = next;
	}
	return __collect_expired_timers(base, heads);
}
#else
static inline int collect_expired_timers(struct timer_base *base,
					 struct hlist_head *heads)
{
	return __collect_expired_timers(base, heads);
}
L
Linus Torvalds 已提交
1556 1557 1558
#endif

/*
D
Daniel Walker 已提交
1559
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1567
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1568
	run_local_timers();
1569
	rcu_check_callbacks(user_tick);
1570 1571
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1572
		irq_work_tick();
1573
#endif
L
Linus Torvalds 已提交
1574
	scheduler_tick();
1575 1576
	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
		run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1577 1578
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
/**
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 */
static inline void __run_timers(struct timer_base *base)
{
	struct hlist_head heads[LVL_DEPTH];
	int levels;

	if (!time_after_eq(jiffies, base->clk))
		return;

	spin_lock_irq(&base->lock);

	while (time_after_eq(jiffies, base->clk)) {

		levels = collect_expired_timers(base, heads);
		base->clk++;

		while (levels--)
			expire_timers(base, heads + levels);
	}
	base->running_timer = NULL;
	spin_unlock_irq(&base->lock);
}

L
Linus Torvalds 已提交
1605 1606 1607
/*
 * This function runs timers and the timer-tq in bottom half context.
 */
1608
static __latent_entropy void run_timer_softirq(struct softirq_action *h)
L
Linus Torvalds 已提交
1609
{
1610
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
L
Linus Torvalds 已提交
1611

1612 1613 1614
	__run_timers(base);
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
L
Linus Torvalds 已提交
1615 1616 1617 1618 1619 1620 1621
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1622 1623
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

1624
	hrtimer_run_queues();
1625 1626 1627 1628 1629 1630 1631 1632 1633
	/* Raise the softirq only if required. */
	if (time_before(jiffies, base->clk)) {
		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
			return;
		/* CPU is awake, so check the deferrable base. */
		base++;
		if (time_before(jiffies, base->clk))
			return;
	}
L
Linus Torvalds 已提交
1634 1635 1636 1637 1638
	raise_softirq(TIMER_SOFTIRQ);
}

static void process_timeout(unsigned long __data)
{
1639
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1653 1654
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process())".
L
Linus Torvalds 已提交
1655 1656
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1657 1658
 * delivered to the current task or the current task is explicitly woken
 * up.
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665 1666
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
1667 1668 1669
 * Returns 0 when the timer has expired otherwise the remaining time in
 * jiffies will be returned.  In all cases the return value is guaranteed
 * to be non-negative.
L
Linus Torvalds 已提交
1670
 */
1671
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1696
		if (timeout < 0) {
L
Linus Torvalds 已提交
1697
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1698 1699
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1700 1701 1702 1703 1704 1705 1706
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1707
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1708
	__mod_timer(&timer, expire, false);
L
Linus Torvalds 已提交
1709 1710 1711
	schedule();
	del_singleshot_timer_sync(&timer);

1712 1713 1714
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720 1721
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1722 1723 1724 1725
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1726 1727
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1728 1729
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1730 1731 1732
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1733 1734 1735 1736 1737 1738 1739
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1740 1741
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1742 1743
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1744 1745 1746
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
/*
 * Like schedule_timeout_uninterruptible(), except this task will not contribute
 * to load average.
 */
signed long __sched schedule_timeout_idle(signed long timeout)
{
	__set_current_state(TASK_IDLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);

L
Linus Torvalds 已提交
1758
#ifdef CONFIG_HOTPLUG_CPU
1759
static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1760 1761
{
	struct timer_list *timer;
1762
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1763

1764 1765
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1766
		detach_timer(timer, false);
1767
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1768 1769 1770 1771
		internal_add_timer(new_base, timer);
	}
}

1772
int timers_dead_cpu(unsigned int cpu)
L
Linus Torvalds 已提交
1773
{
1774 1775
	struct timer_base *old_base;
	struct timer_base *new_base;
1776
	int b, i;
L
Linus Torvalds 已提交
1777 1778

	BUG_ON(cpu_online(cpu));
1779

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	for (b = 0; b < NR_BASES; b++) {
		old_base = per_cpu_ptr(&timer_bases[b], cpu);
		new_base = get_cpu_ptr(&timer_bases[b]);
		/*
		 * The caller is globally serialized and nobody else
		 * takes two locks at once, deadlock is not possible.
		 */
		spin_lock_irq(&new_base->lock);
		spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);

		BUG_ON(old_base->running_timer);

		for (i = 0; i < WHEEL_SIZE; i++)
			migrate_timer_list(new_base, old_base->vectors + i);
1794

1795 1796 1797 1798
		spin_unlock(&old_base->lock);
		spin_unlock_irq(&new_base->lock);
		put_cpu_ptr(&timer_bases);
	}
1799
	return 0;
L
Linus Torvalds 已提交
1800 1801
}

1802
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1803

1804
static void __init init_timer_cpu(int cpu)
1805
{
1806 1807
	struct timer_base *base;
	int i;
1808

1809 1810 1811 1812 1813 1814
	for (i = 0; i < NR_BASES; i++) {
		base = per_cpu_ptr(&timer_bases[i], cpu);
		base->cpu = cpu;
		spin_lock_init(&base->lock);
		base->clk = jiffies;
	}
1815 1816 1817
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1818
{
1819 1820
	int cpu;

1821 1822
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1823
}
1824

1825 1826 1827
void __init init_timers(void)
{
	init_timer_cpus();
1828
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1839 1840
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1841 1842 1843 1844 1845
}

EXPORT_SYMBOL(msleep);

/**
1846
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851 1852
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1853 1854
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1855 1856 1857 1858
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1859 1860

/**
1861
 * usleep_range - Sleep for an approximate time
1862 1863
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
1864 1865 1866 1867 1868 1869
 *
 * In non-atomic context where the exact wakeup time is flexible, use
 * usleep_range() instead of udelay().  The sleep improves responsiveness
 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
 * power usage by allowing hrtimers to take advantage of an already-
 * scheduled interrupt instead of scheduling a new one just for this sleep.
1870
 */
1871
void __sched usleep_range(unsigned long min, unsigned long max)
1872
{
1873 1874 1875 1876 1877 1878 1879 1880 1881
	ktime_t exp = ktime_add_us(ktime_get(), min);
	u64 delta = (u64)(max - min) * NSEC_PER_USEC;

	for (;;) {
		__set_current_state(TASK_UNINTERRUPTIBLE);
		/* Do not return before the requested sleep time has elapsed */
		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
			break;
	}
1882 1883
}
EXPORT_SYMBOL(usleep_range);