timer.c 46.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53
#include "tick-internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
57
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
58 59 60

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
70
#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
L
Linus Torvalds 已提交
71

72
struct tvec {
73
	struct hlist_head vec[TVN_SIZE];
74
};
L
Linus Torvalds 已提交
75

76
struct tvec_root {
77
	struct hlist_head vec[TVR_SIZE];
78
};
L
Linus Torvalds 已提交
79

80
struct tvec_base {
81 82
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
83
	unsigned long timer_jiffies;
84
	unsigned long next_timer;
85
	unsigned long active_timers;
86
	unsigned long all_timers;
87
	int cpu;
88
	bool migration_enabled;
89
	bool nohz_active;
90 91 92 93 94
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
95
} ____cacheline_aligned;
L
Linus Torvalds 已提交
96

97

98
static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99

100 101 102
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;

103
void timers_update_migration(bool update_nohz)
104 105 106 107 108 109 110 111 112 113 114
{
	bool on = sysctl_timer_migration && tick_nohz_active;
	unsigned int cpu;

	/* Avoid the loop, if nothing to update */
	if (this_cpu_read(tvec_bases.migration_enabled) == on)
		return;

	for_each_possible_cpu(cpu) {
		per_cpu(tvec_bases.migration_enabled, cpu) = on;
		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115 116 117 118
		if (!update_nohz)
			continue;
		per_cpu(tvec_bases.nohz_active, cpu) = true;
		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119 120 121 122 123 124 125 126 127 128 129 130 131
	}
}

int timer_migration_handler(struct ctl_table *table, int write,
			    void __user *buffer, size_t *lenp,
			    loff_t *ppos)
{
	static DEFINE_MUTEX(mutex);
	int ret;

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (!ret && write)
132
		timers_update_migration(false);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	mutex_unlock(&mutex);
	return ret;
}

static inline struct tvec_base *get_target_base(struct tvec_base *base,
						int pinned)
{
	if (pinned || !base->migration_enabled)
		return this_cpu_ptr(&tvec_bases);
	return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
}
#else
static inline struct tvec_base *get_target_base(struct tvec_base *base,
						int pinned)
{
	return this_cpu_ptr(&tvec_bases);
}
#endif

152 153
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
175
	 * But never round down if @force_up is set.
176
	 */
177
	if (rem < HZ/4 && !force_up) /* round down */
178 179 180 181 182 183 184
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

185 186 187 188 189
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
190
}
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
216 217 218 219 220 221 222
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
223
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
224 225 226 227 228 229 230 231 232 233 234 235
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
236
 * The return value is the rounded version of the @j parameter.
237 238 239
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
240 241 242 243
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
244 245 246 247 248 249 250
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
251
 * round_jiffies() rounds an absolute time in the future (in jiffies)
252 253 254 255 256 257 258 259
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
260
 * The return value is the rounded version of the @j parameter.
261 262 263
 */
unsigned long round_jiffies(unsigned long j)
{
264
	return round_jiffies_common(j, raw_smp_processor_id(), false);
265 266 267 268 269 270 271
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
272
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
273 274 275 276 277 278 279 280
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
281
 * The return value is the rounded version of the @j parameter.
282 283 284 285 286 287 288
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

354 355
/**
 * set_timer_slack - set the allowed slack for a timer
356
 * @timer: the timer to be modified
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 *
 * Set the amount of time, in jiffies, that a certain timer has
 * in terms of slack. By setting this value, the timer subsystem
 * will schedule the actual timer somewhere between
 * the time mod_timer() asks for, and that time plus the slack.
 *
 * By setting the slack to -1, a percentage of the delay is used
 * instead.
 */
void set_timer_slack(struct timer_list *timer, int slack_hz)
{
	timer->slack = slack_hz;
}
EXPORT_SYMBOL_GPL(set_timer_slack);

373 374
static void
__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
375 376 377
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
378
	struct hlist_head *vec;
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
400 401 402
		/* If the timeout is larger than MAX_TVAL (on 64-bit
		 * architectures or with CONFIG_BASE_SMALL=1) then we
		 * use the maximum timeout.
L
Linus Torvalds 已提交
403
		 */
404 405
		if (idx > MAX_TVAL) {
			idx = MAX_TVAL;
L
Linus Torvalds 已提交
406 407 408 409 410
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
T
Thomas Gleixner 已提交
411

412
	hlist_add_head(&timer->entry, vec);
L
Linus Torvalds 已提交
413 414
}

415 416
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
{
417 418 419 420
	/* Advance base->jiffies, if the base is empty */
	if (!base->all_timers++)
		base->timer_jiffies = jiffies;

421 422
	__internal_add_timer(base, timer);
	/*
423
	 * Update base->active_timers and base->next_timer
424
	 */
425
	if (!(timer->flags & TIMER_DEFERRABLE)) {
426 427
		if (!base->active_timers++ ||
		    time_before(timer->expires, base->next_timer))
428 429
			base->next_timer = timer->expires;
	}
430 431 432 433 434 435 436 437 438 439 440 441 442 443

	/*
	 * Check whether the other CPU is in dynticks mode and needs
	 * to be triggered to reevaluate the timer wheel.
	 * We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to stop its tick can not
	 * evaluate the timer wheel.
	 *
	 * Spare the IPI for deferrable timers on idle targets though.
	 * The next busy ticks will take care of it. Except full dynticks
	 * require special care against races with idle_cpu(), lets deal
	 * with that later.
	 */
444 445 446 447 448
	if (base->nohz_active) {
		if (!(timer->flags & TIMER_DEFERRABLE) ||
		    tick_nohz_full_cpu(base->cpu))
			wake_up_nohz_cpu(base->cpu);
	}
449 450
}

451 452 453 454 455 456 457 458 459 460
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
461 462 463

static void timer_stats_account_timer(struct timer_list *timer)
{
464 465 466 467 468 469 470 471
	void *site;

	/*
	 * start_site can be concurrently reset by
	 * timer_stats_timer_clear_start_info()
	 */
	site = READ_ONCE(timer->start_site);
	if (likely(!site))
472
		return;
473

474
	timer_stats_update_stats(timer, timer->start_pid, site,
475 476
				 timer->function, timer->start_comm,
				 timer->flags);
477 478 479 480
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
481 482
#endif

483 484 485 486
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

487 488 489 490 491
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

492 493 494
/*
 * fixup_init is called when:
 * - an active object is initialized
495
 */
496
static bool timer_fixup_init(void *addr, enum debug_obj_state state)
497 498 499 500 501 502 503
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
504
		return true;
505
	default:
506
		return false;
507 508 509
	}
}

510 511 512 513 514 515
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

516 517 518 519 520
/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
521
static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
522 523 524 525 526 527 528 529 530 531 532
{
	struct timer_list *timer = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The timer was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
533 534
		if (timer->entry.pprev == NULL &&
		    timer->entry.next == TIMER_ENTRY_STATIC) {
535 536
			debug_object_init(timer, &timer_debug_descr);
			debug_object_activate(timer, &timer_debug_descr);
537
			return false;
538
		} else {
539
			setup_timer(timer, stub_timer, 0);
540
			return true;
541
		}
542
		return false;
543 544 545 546 547

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
548
		return false;
549 550 551 552 553 554 555
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
556
static bool timer_fixup_free(void *addr, enum debug_obj_state state)
557 558 559 560 561 562 563
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
564
		return true;
565
	default:
566
		return false;
567 568 569
	}
}

570 571 572 573
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
574
static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
575 576 577 578 579
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
580
		if (timer->entry.next == TIMER_ENTRY_STATIC) {
581 582 583 584 585 586
			/*
			 * This is not really a fixup. The timer was
			 * statically initialized. We just make sure that it
			 * is tracked in the object tracker.
			 */
			debug_object_init(timer, &timer_debug_descr);
587
			return false;
588 589
		} else {
			setup_timer(timer, stub_timer, 0);
590
			return true;
591 592
		}
	default:
593
		return false;
594 595 596
	}
}

597
static struct debug_obj_descr timer_debug_descr = {
598 599 600 601 602 603
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

626 627 628 629 630
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
631 632
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
633

T
Tejun Heo 已提交
634 635
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
636 637
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
638
	do_init_timer(timer, flags, name, key);
639
}
640
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
641 642 643 644 645 646 647 648 649 650 651

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
652
static inline void debug_timer_assert_init(struct timer_list *timer) { }
653 654
#endif

655 656 657 658 659 660 661 662 663 664
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
665
	trace_timer_start(timer, expires, timer->flags);
666 667 668 669 670 671 672 673
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

674 675 676 677 678
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
679 680
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
681
{
682
	timer->entry.pprev = NULL;
683
	timer->flags = flags | raw_smp_processor_id();
684
	timer->slack = -1;
685 686 687 688 689
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
690
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
691
}
692 693

/**
R
Randy Dunlap 已提交
694
 * init_timer_key - initialize a timer
695
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
696
 * @flags: timer flags
R
Randy Dunlap 已提交
697 698 699
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
700
 *
R
Randy Dunlap 已提交
701
 * init_timer_key() must be done to a timer prior calling *any* of the
702 703
 * other timer functions.
 */
T
Tejun Heo 已提交
704 705
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
706
{
707
	debug_init(timer);
T
Tejun Heo 已提交
708
	do_init_timer(timer, flags, name, key);
709
}
710
EXPORT_SYMBOL(init_timer_key);
711

712
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
713
{
714
	struct hlist_node *entry = &timer->entry;
715

716
	debug_deactivate(timer);
717

718
	__hlist_del(entry);
719
	if (clear_pending)
720 721
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
722 723
}

724 725 726 727
static inline void
detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
{
	detach_timer(timer, true);
728
	if (!(timer->flags & TIMER_DEFERRABLE))
729
		base->active_timers--;
730
	base->all_timers--;
731 732
}

733 734 735 736 737 738 739
static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
			     bool clear_pending)
{
	if (!timer_pending(timer))
		return 0;

	detach_timer(timer, clear_pending);
740
	if (!(timer->flags & TIMER_DEFERRABLE)) {
741
		base->active_timers--;
742 743 744
		if (timer->expires == base->next_timer)
			base->next_timer = base->timer_jiffies;
	}
745 746 747
	/* If this was the last timer, advance base->jiffies */
	if (!--base->all_timers)
		base->timer_jiffies = jiffies;
748 749 750
	return 1;
}

751
/*
752
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
753 754 755 756 757 758
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
759 760
 * When the timer's base is locked and removed from the list, the
 * TIMER_MIGRATING flag is set, FIXME
761
 */
762
static struct tvec_base *lock_timer_base(struct timer_list *timer,
763
					unsigned long *flags)
764
	__acquires(timer->base->lock)
765 766
{
	for (;;) {
767 768 769 770 771
		u32 tf = timer->flags;
		struct tvec_base *base;

		if (!(tf & TIMER_MIGRATING)) {
			base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
772
			spin_lock_irqsave(&base->lock, *flags);
773
			if (timer->flags == tf)
774 775 776 777 778 779 780
				return base;
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
781
static inline int
782
__mod_timer(struct timer_list *timer, unsigned long expires,
783
	    bool pending_only, int pinned)
L
Linus Torvalds 已提交
784
{
785
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
786
	unsigned long flags;
787
	int ret = 0;
L
Linus Torvalds 已提交
788

789
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
790 791
	BUG_ON(!timer->function);

792 793
	base = lock_timer_base(timer, &flags);

794 795 796
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
797

798
	debug_activate(timer, expires);
799

800
	new_base = get_target_base(base, pinned);
801

802
	if (base != new_base) {
L
Linus Torvalds 已提交
803
		/*
804 805 806 807 808
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
809
		 */
810
		if (likely(base->running_timer != timer)) {
811
			/* See the comment in lock_timer_base() */
812 813
			timer->flags |= TIMER_MIGRATING;

814
			spin_unlock(&base->lock);
815 816
			base = new_base;
			spin_lock(&base->lock);
817 818
			WRITE_ONCE(timer->flags,
				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
L
Linus Torvalds 已提交
819 820 821 822
		}
	}

	timer->expires = expires;
823
	internal_add_timer(base, timer);
I
Ingo Molnar 已提交
824 825

out_unlock:
826
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
827 828 829 830

	return ret;
}

831
/**
I
Ingo Molnar 已提交
832 833 834
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
835
 *
I
Ingo Molnar 已提交
836 837 838 839
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
840
 */
I
Ingo Molnar 已提交
841
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
842
{
843
	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
844
}
I
Ingo Molnar 已提交
845
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/*
 * Decide where to put the timer while taking the slack into account
 *
 * Algorithm:
 *   1) calculate the maximum (absolute) time
 *   2) calculate the highest bit where the expires and new max are different
 *   3) use this bit to make a mask
 *   4) use the bitmask to round down the maximum time, so that all last
 *      bits are zeros
 */
static inline
unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
{
	unsigned long expires_limit, mask;
	int bit;

863
	if (timer->slack >= 0) {
864
		expires_limit = expires + timer->slack;
865
	} else {
866 867 868 869
		long delta = expires - jiffies;

		if (delta < 256)
			return expires;
870

871
		expires_limit = expires + delta / 256;
872
	}
873 874 875 876
	mask = expires ^ expires_limit;
	if (mask == 0)
		return expires;

877
	bit = __fls(mask);
878

879
	mask = (1UL << bit) - 1;
880 881 882 883 884 885

	expires_limit = expires_limit & ~(mask);

	return expires_limit;
}

886
/**
L
Linus Torvalds 已提交
887 888
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
889
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
890
 *
891
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
908 909
	expires = apply_slack(timer, expires);

L
Linus Torvalds 已提交
910 911 912 913 914
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
915
	if (timer_pending(timer) && timer->expires == expires)
L
Linus Torvalds 已提交
916 917
		return 1;

918
	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
919 920 921
}
EXPORT_SYMBOL(mod_timer);

922 923 924 925 926 927 928
/**
 * mod_timer_pinned - modify a timer's timeout
 * @timer: the timer to be modified
 * @expires: new timeout in jiffies
 *
 * mod_timer_pinned() is a way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
929 930 931 932 933 934 935
 * and to ensure that the timer is scheduled on the current CPU.
 *
 * Note that this does not prevent the timer from being migrated
 * when the current CPU goes offline.  If this is a problem for
 * you, use CPU-hotplug notifiers to handle it correctly, for
 * example, cancelling the timer when the corresponding CPU goes
 * offline.
936 937 938 939 940 941 942 943 944 945 946 947 948 949
 *
 * mod_timer_pinned(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 */
int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
{
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires, false, TIMER_PINNED);
}
EXPORT_SYMBOL(mod_timer_pinned);

I
Ingo Molnar 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
980 981
	struct tvec_base *new_base = per_cpu_ptr(&tvec_bases, cpu);
	struct tvec_base *base;
I
Ingo Molnar 已提交
982 983 984 985
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

	/*
	 * If @timer was on a different CPU, it should be migrated with the
	 * old base locked to prevent other operations proceeding with the
	 * wrong base locked.  See lock_timer_base().
	 */
	base = lock_timer_base(timer, &flags);
	if (base != new_base) {
		timer->flags |= TIMER_MIGRATING;

		spin_unlock(&base->lock);
		base = new_base;
		spin_lock(&base->lock);
		WRITE_ONCE(timer->flags,
			   (timer->flags & ~TIMER_BASEMASK) | cpu);
	}

1003
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
1004 1005 1006
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
1007
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
1008

1009
/**
L
Linus Torvalds 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
1022
	struct tvec_base *base;
L
Linus Torvalds 已提交
1023
	unsigned long flags;
1024
	int ret = 0;
L
Linus Torvalds 已提交
1025

1026 1027
	debug_assert_init(timer);

1028
	timer_stats_timer_clear_start_info(timer);
1029 1030
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1031
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
1032 1033 1034
		spin_unlock_irqrestore(&base->lock, flags);
	}

1035
	return ret;
L
Linus Torvalds 已提交
1036 1037 1038
}
EXPORT_SYMBOL(del_timer);

1039 1040 1041 1042
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
1043 1044 1045 1046 1047
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1048
	struct tvec_base *base;
1049 1050 1051
	unsigned long flags;
	int ret = -1;

1052 1053
	debug_assert_init(timer);

1054 1055
	base = lock_timer_base(timer, &flags);

1056 1057 1058
	if (base->running_timer != timer) {
		timer_stats_timer_clear_start_info(timer);
		ret = detach_if_pending(timer, base, true);
1059 1060 1061 1062 1063
	}
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1064 1065
EXPORT_SYMBOL(try_to_del_timer_sync);

1066
#ifdef CONFIG_SMP
1067
/**
L
Linus Torvalds 已提交
1068 1069 1070 1071 1072 1073 1074
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1075
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1076
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1077 1078 1079 1080
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1081
 *
T
Tejun Heo 已提交
1082 1083 1084
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1101 1102 1103 1104
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1105
#ifdef CONFIG_LOCKDEP
1106 1107
	unsigned long flags;

1108 1109 1110 1111
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1112
	local_irq_save(flags);
1113 1114
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1115
	local_irq_restore(flags);
1116
#endif
1117 1118 1119 1120
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1121
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1122 1123 1124 1125
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1126
		cpu_relax();
1127
	}
L
Linus Torvalds 已提交
1128
}
1129
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1130 1131
#endif

1132
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
1133 1134
{
	/* cascade all the timers from tv up one level */
1135 1136 1137
	struct timer_list *timer;
	struct hlist_node *tmp;
	struct hlist_head tv_list;
1138

1139
	hlist_move_list(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
1140 1141

	/*
1142 1143
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
1144
	 */
1145
	hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1146 1147
		/* No accounting, while moving them */
		__internal_add_timer(base, timer);
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152
	}

	return index;
}

1153 1154 1155
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1156
	int count = preempt_count();
1157 1158 1159 1160 1161 1162 1163 1164 1165

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1166 1167 1168
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1183
	if (count != preempt_count()) {
1184
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1185
			  fn, count, preempt_count());
1186 1187 1188 1189 1190 1191
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1192
		preempt_count_set(count);
1193 1194 1195
	}
}

1196 1197 1198
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
1199 1200 1201 1202 1203 1204
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
1205
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
1206 1207 1208
{
	struct timer_list *timer;

1209
	spin_lock_irq(&base->lock);
1210

L
Linus Torvalds 已提交
1211
	while (time_after_eq(jiffies, base->timer_jiffies)) {
1212 1213
		struct hlist_head work_list;
		struct hlist_head *head = &work_list;
1214 1215 1216 1217 1218 1219 1220 1221
		int index;

		if (!base->all_timers) {
			base->timer_jiffies = jiffies;
			break;
		}

		index = base->timer_jiffies & TVR_MASK;
1222

L
Linus Torvalds 已提交
1223 1224 1225 1226 1227 1228 1229 1230
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
1231
		++base->timer_jiffies;
1232 1233
		hlist_move_list(base->tv1.vec + index, head);
		while (!hlist_empty(head)) {
L
Linus Torvalds 已提交
1234 1235
			void (*fn)(unsigned long);
			unsigned long data;
T
Tejun Heo 已提交
1236
			bool irqsafe;
L
Linus Torvalds 已提交
1237

1238
			timer = hlist_entry(head->first, struct timer_list, entry);
1239 1240
			fn = timer->function;
			data = timer->data;
1241
			irqsafe = timer->flags & TIMER_IRQSAFE;
L
Linus Torvalds 已提交
1242

1243 1244
			timer_stats_account_timer(timer);

1245
			base->running_timer = timer;
1246
			detach_expired_timer(timer, base);
1247

T
Tejun Heo 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256
			if (irqsafe) {
				spin_unlock(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock(&base->lock);
			} else {
				spin_unlock_irq(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock_irq(&base->lock);
			}
L
Linus Torvalds 已提交
1257 1258
		}
	}
1259
	base->running_timer = NULL;
1260
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
1261 1262
}

1263
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1264 1265
/*
 * Find out when the next timer event is due to happen. This
R
Randy Dunlap 已提交
1266 1267
 * is used on S/390 to stop all activity when a CPU is idle.
 * This function needs to be called with interrupts disabled.
L
Linus Torvalds 已提交
1268
 */
1269
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
1270
{
1271
	unsigned long timer_jiffies = base->timer_jiffies;
1272
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1273
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
1274
	struct timer_list *nte;
1275
	struct tvec *varray[4];
L
Linus Torvalds 已提交
1276 1277

	/* Look for timer events in tv1. */
1278
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
1279
	do {
1280
		hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1281
			if (nte->flags & TIMER_DEFERRABLE)
1282
				continue;
1283

1284
			found = 1;
L
Linus Torvalds 已提交
1285
			expires = nte->expires;
1286 1287 1288 1289
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
1290
		}
1291 1292 1293 1294 1295 1296 1297 1298
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
1299 1300 1301 1302 1303 1304

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
1305 1306

	for (array = 0; array < 4; array++) {
1307
		struct tvec *varp = varray[array];
1308 1309

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
1310
		do {
1311
			hlist_for_each_entry(nte, varp->vec + slot, entry) {
1312
				if (nte->flags & TIMER_DEFERRABLE)
1313 1314
					continue;

1315
				found = 1;
L
Linus Torvalds 已提交
1316 1317
				if (time_before(nte->expires, expires))
					expires = nte->expires;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
1335
	}
1336 1337
	return expires;
}
1338

1339 1340 1341 1342
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1343
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1344
{
1345
	u64 nextevt = hrtimer_get_next_event();
1346

1347
	/*
1348 1349
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1350
	 */
1351 1352
	if (expires <= nextevt)
		return expires;
1353 1354

	/*
1355 1356
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1357
	 */
1358 1359
	if (nextevt <= basem)
		return basem;
1360

1361
	/*
1362 1363 1364 1365 1366 1367
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1368
	 */
1369
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1370
}
1371 1372

/**
1373 1374 1375 1376 1377 1378
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1379
 */
1380
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1381
{
1382
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1383 1384
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1385

1386 1387 1388 1389 1390
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1391 1392
		return expires;

1393
	spin_lock(&base->lock);
1394 1395 1396
	if (base->active_timers) {
		if (time_before_eq(base->next_timer, base->timer_jiffies))
			base->next_timer = __next_timer_interrupt(base);
1397 1398 1399 1400 1401
		nextevt = base->next_timer;
		if (time_before_eq(nextevt, basej))
			expires = basem;
		else
			expires = basem + (nextevt - basej) * TICK_NSEC;
1402
	}
1403 1404
	spin_unlock(&base->lock);

1405
	return cmp_next_hrtimer_event(basem, expires);
1406
}
L
Linus Torvalds 已提交
1407 1408 1409
#endif

/*
D
Daniel Walker 已提交
1410
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1418
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1419
	run_local_timers();
1420
	rcu_check_callbacks(user_tick);
1421 1422
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1423
		irq_work_tick();
1424
#endif
L
Linus Torvalds 已提交
1425
	scheduler_tick();
1426
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1427 1428 1429 1430 1431 1432 1433
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1434
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1445
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1455
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1456
{
1457
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1458 1459 1460 1461 1462 1463
}

#endif

static void process_timeout(unsigned long __data)
{
1464
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1493
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1518
		if (timeout < 0) {
L
Linus Torvalds 已提交
1519
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1520 1521
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1522 1523 1524 1525 1526 1527 1528
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1529
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1530
	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
1531 1532 1533
	schedule();
	del_singleshot_timer_sync(&timer);

1534 1535 1536
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1544 1545 1546 1547
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1548 1549
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1550 1551
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1552 1553 1554
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1555 1556 1557 1558 1559 1560 1561
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1562 1563
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1564 1565
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1566 1567 1568
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
/*
 * Like schedule_timeout_uninterruptible(), except this task will not contribute
 * to load average.
 */
signed long __sched schedule_timeout_idle(signed long timeout)
{
	__set_current_state(TASK_IDLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);

L
Linus Torvalds 已提交
1580
#ifdef CONFIG_HOTPLUG_CPU
1581
static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1582 1583
{
	struct timer_list *timer;
1584
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1585

1586 1587
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1588
		/* We ignore the accounting on the dying cpu */
1589
		detach_timer(timer, false);
1590
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1591 1592 1593 1594
		internal_add_timer(new_base, timer);
	}
}

1595
static void migrate_timers(int cpu)
L
Linus Torvalds 已提交
1596
{
1597 1598
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1599 1600 1601
	int i;

	BUG_ON(cpu_online(cpu));
1602
	old_base = per_cpu_ptr(&tvec_bases, cpu);
T
Thomas Gleixner 已提交
1603
	new_base = get_cpu_ptr(&tvec_bases);
1604 1605 1606 1607 1608
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1609
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1610 1611

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1612 1613

	for (i = 0; i < TVR_SIZE; i++)
1614 1615 1616 1617 1618 1619 1620 1621
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1622 1623 1624
	old_base->active_timers = 0;
	old_base->all_timers = 0;

1625
	spin_unlock(&old_base->lock);
1626
	spin_unlock_irq(&new_base->lock);
T
Thomas Gleixner 已提交
1627
	put_cpu_ptr(&tvec_bases);
L
Linus Torvalds 已提交
1628 1629
}

1630
static int timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1631 1632
				unsigned long action, void *hcpu)
{
1633
	switch (action) {
L
Linus Torvalds 已提交
1634
	case CPU_DEAD:
1635
	case CPU_DEAD_FROZEN:
1636
		migrate_timers((long)hcpu);
L
Linus Torvalds 已提交
1637 1638 1639 1640
		break;
	default:
		break;
	}
1641

L
Linus Torvalds 已提交
1642 1643 1644
	return NOTIFY_OK;
}

1645 1646 1647 1648 1649 1650 1651
static inline void timer_register_cpu_notifier(void)
{
	cpu_notifier(timer_cpu_notify, 0);
}
#else
static inline void timer_register_cpu_notifier(void) { }
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1652

1653
static void __init init_timer_cpu(int cpu)
1654
{
1655
	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1656

1657 1658 1659 1660 1661 1662 1663 1664
	base->cpu = cpu;
	spin_lock_init(&base->lock);

	base->timer_jiffies = jiffies;
	base->next_timer = base->timer_jiffies;
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1665
{
1666 1667
	int cpu;

1668 1669
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1670
}
1671

1672 1673 1674
void __init init_timers(void)
{
	init_timer_cpus();
1675
	init_timer_stats();
1676
	timer_register_cpu_notifier();
1677
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1688 1689
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1690 1691 1692 1693 1694
}

EXPORT_SYMBOL(msleep);

/**
1695
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1702 1703
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1704 1705 1706 1707
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1708

1709
static void __sched do_usleep_range(unsigned long min, unsigned long max)
1710 1711
{
	ktime_t kmin;
1712
	u64 delta;
1713 1714

	kmin = ktime_set(0, min * NSEC_PER_USEC);
1715
	delta = (u64)(max - min) * NSEC_PER_USEC;
1716
	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1717 1718 1719 1720 1721 1722 1723
}

/**
 * usleep_range - Drop in replacement for udelay where wakeup is flexible
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
 */
1724
void __sched usleep_range(unsigned long min, unsigned long max)
1725 1726 1727 1728 1729
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);