timer.c 46.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53
#include "tick-internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
57
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
58 59 60

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
70
#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
L
Linus Torvalds 已提交
71

72
struct tvec {
73
	struct hlist_head vec[TVN_SIZE];
74
};
L
Linus Torvalds 已提交
75

76
struct tvec_root {
77
	struct hlist_head vec[TVR_SIZE];
78
};
L
Linus Torvalds 已提交
79

80
struct tvec_base {
81 82
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
83
	unsigned long timer_jiffies;
84
	unsigned long next_timer;
85
	unsigned long active_timers;
86
	unsigned long all_timers;
87
	int cpu;
88
	bool migration_enabled;
89
	bool nohz_active;
90 91 92 93 94
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
95
} ____cacheline_aligned;
L
Linus Torvalds 已提交
96

97

98
static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99

100 101 102
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;

103
void timers_update_migration(bool update_nohz)
104 105 106 107 108 109 110 111 112 113 114
{
	bool on = sysctl_timer_migration && tick_nohz_active;
	unsigned int cpu;

	/* Avoid the loop, if nothing to update */
	if (this_cpu_read(tvec_bases.migration_enabled) == on)
		return;

	for_each_possible_cpu(cpu) {
		per_cpu(tvec_bases.migration_enabled, cpu) = on;
		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115 116 117 118
		if (!update_nohz)
			continue;
		per_cpu(tvec_bases.nohz_active, cpu) = true;
		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119 120 121 122 123 124 125 126 127 128 129 130 131
	}
}

int timer_migration_handler(struct ctl_table *table, int write,
			    void __user *buffer, size_t *lenp,
			    loff_t *ppos)
{
	static DEFINE_MUTEX(mutex);
	int ret;

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (!ret && write)
132
		timers_update_migration(false);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	mutex_unlock(&mutex);
	return ret;
}

static inline struct tvec_base *get_target_base(struct tvec_base *base,
						int pinned)
{
	if (pinned || !base->migration_enabled)
		return this_cpu_ptr(&tvec_bases);
	return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
}
#else
static inline struct tvec_base *get_target_base(struct tvec_base *base,
						int pinned)
{
	return this_cpu_ptr(&tvec_bases);
}
#endif

152 153
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
175
	 * But never round down if @force_up is set.
176
	 */
177
	if (rem < HZ/4 && !force_up) /* round down */
178 179 180 181 182 183 184
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

185 186 187 188 189
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
190
}
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
216 217 218 219 220 221 222
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
223
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
224 225 226 227 228 229 230 231 232 233 234 235
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
236
 * The return value is the rounded version of the @j parameter.
237 238 239
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
240 241 242 243
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
244 245 246 247 248 249 250
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
251
 * round_jiffies() rounds an absolute time in the future (in jiffies)
252 253 254 255 256 257 258 259
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
260
 * The return value is the rounded version of the @j parameter.
261 262 263
 */
unsigned long round_jiffies(unsigned long j)
{
264
	return round_jiffies_common(j, raw_smp_processor_id(), false);
265 266 267 268 269 270 271
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
272
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
273 274 275 276 277 278 279 280
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
281
 * The return value is the rounded version of the @j parameter.
282 283 284 285 286 287 288
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

354 355
/**
 * set_timer_slack - set the allowed slack for a timer
356
 * @timer: the timer to be modified
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 *
 * Set the amount of time, in jiffies, that a certain timer has
 * in terms of slack. By setting this value, the timer subsystem
 * will schedule the actual timer somewhere between
 * the time mod_timer() asks for, and that time plus the slack.
 *
 * By setting the slack to -1, a percentage of the delay is used
 * instead.
 */
void set_timer_slack(struct timer_list *timer, int slack_hz)
{
	timer->slack = slack_hz;
}
EXPORT_SYMBOL_GPL(set_timer_slack);

373 374
static void
__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
375 376 377
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
378
	struct hlist_head *vec;
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
400 401 402
		/* If the timeout is larger than MAX_TVAL (on 64-bit
		 * architectures or with CONFIG_BASE_SMALL=1) then we
		 * use the maximum timeout.
L
Linus Torvalds 已提交
403
		 */
404 405
		if (idx > MAX_TVAL) {
			idx = MAX_TVAL;
L
Linus Torvalds 已提交
406 407 408 409 410
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
T
Thomas Gleixner 已提交
411

412
	hlist_add_head(&timer->entry, vec);
L
Linus Torvalds 已提交
413 414
}

415 416
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
{
417 418 419 420
	/* Advance base->jiffies, if the base is empty */
	if (!base->all_timers++)
		base->timer_jiffies = jiffies;

421 422
	__internal_add_timer(base, timer);
	/*
423
	 * Update base->active_timers and base->next_timer
424
	 */
425
	if (!(timer->flags & TIMER_DEFERRABLE)) {
426 427
		if (!base->active_timers++ ||
		    time_before(timer->expires, base->next_timer))
428 429
			base->next_timer = timer->expires;
	}
430 431 432 433 434 435 436 437 438 439 440 441 442 443

	/*
	 * Check whether the other CPU is in dynticks mode and needs
	 * to be triggered to reevaluate the timer wheel.
	 * We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to stop its tick can not
	 * evaluate the timer wheel.
	 *
	 * Spare the IPI for deferrable timers on idle targets though.
	 * The next busy ticks will take care of it. Except full dynticks
	 * require special care against races with idle_cpu(), lets deal
	 * with that later.
	 */
444 445 446 447 448
	if (base->nohz_active) {
		if (!(timer->flags & TIMER_DEFERRABLE) ||
		    tick_nohz_full_cpu(base->cpu))
			wake_up_nohz_cpu(base->cpu);
	}
449 450
}

451 452 453 454 455 456 457 458 459 460
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
461 462 463

static void timer_stats_account_timer(struct timer_list *timer)
{
464 465 466 467 468 469 470 471
	void *site;

	/*
	 * start_site can be concurrently reset by
	 * timer_stats_timer_clear_start_info()
	 */
	site = READ_ONCE(timer->start_site);
	if (likely(!site))
472
		return;
473

474
	timer_stats_update_stats(timer, timer->start_pid, site,
475 476
				 timer->function, timer->start_comm,
				 timer->flags);
477 478 479 480
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
481 482
#endif

483 484 485 486
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

487 488 489 490 491
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

492 493 494 495 496 497 498 499
static bool timer_is_static_object(void *addr)
{
	struct timer_list *timer = addr;

	return (timer->entry.pprev == NULL &&
		timer->entry.next == TIMER_ENTRY_STATIC);
}

500 501 502
/*
 * fixup_init is called when:
 * - an active object is initialized
503
 */
504
static bool timer_fixup_init(void *addr, enum debug_obj_state state)
505 506 507 508 509 510 511
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
512
		return true;
513
	default:
514
		return false;
515 516 517
	}
}

518 519 520 521 522 523
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

524 525 526
/*
 * fixup_activate is called when:
 * - an active object is activated
527
 * - an unknown non-static object is activated
528
 */
529
static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
530 531 532 533 534
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
535 536
		setup_timer(timer, stub_timer, 0);
		return true;
537 538 539 540 541

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
542
		return false;
543 544 545 546 547 548 549
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
550
static bool timer_fixup_free(void *addr, enum debug_obj_state state)
551 552 553 554 555 556 557
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
558
		return true;
559
	default:
560
		return false;
561 562 563
	}
}

564 565 566 567
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
568
static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
569 570 571 572 573
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
574 575
		setup_timer(timer, stub_timer, 0);
		return true;
576
	default:
577
		return false;
578 579 580
	}
}

581
static struct debug_obj_descr timer_debug_descr = {
582 583
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
584
	.is_static_object	= timer_is_static_object,
585 586 587 588
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

611 612 613 614 615
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
616 617
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
618

T
Tejun Heo 已提交
619 620
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
621 622
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
623
	do_init_timer(timer, flags, name, key);
624
}
625
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
626 627 628 629 630 631 632 633 634 635 636

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
637
static inline void debug_timer_assert_init(struct timer_list *timer) { }
638 639
#endif

640 641 642 643 644 645 646 647 648 649
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
650
	trace_timer_start(timer, expires, timer->flags);
651 652 653 654 655 656 657 658
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

659 660 661 662 663
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
664 665
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
666
{
667
	timer->entry.pprev = NULL;
668
	timer->flags = flags | raw_smp_processor_id();
669
	timer->slack = -1;
670 671 672 673 674
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
675
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
676
}
677 678

/**
R
Randy Dunlap 已提交
679
 * init_timer_key - initialize a timer
680
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
681
 * @flags: timer flags
R
Randy Dunlap 已提交
682 683 684
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
685
 *
R
Randy Dunlap 已提交
686
 * init_timer_key() must be done to a timer prior calling *any* of the
687 688
 * other timer functions.
 */
T
Tejun Heo 已提交
689 690
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
691
{
692
	debug_init(timer);
T
Tejun Heo 已提交
693
	do_init_timer(timer, flags, name, key);
694
}
695
EXPORT_SYMBOL(init_timer_key);
696

697
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
698
{
699
	struct hlist_node *entry = &timer->entry;
700

701
	debug_deactivate(timer);
702

703
	__hlist_del(entry);
704
	if (clear_pending)
705 706
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
707 708
}

709 710 711 712
static inline void
detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
{
	detach_timer(timer, true);
713
	if (!(timer->flags & TIMER_DEFERRABLE))
714
		base->active_timers--;
715
	base->all_timers--;
716 717
}

718 719 720 721 722 723 724
static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
			     bool clear_pending)
{
	if (!timer_pending(timer))
		return 0;

	detach_timer(timer, clear_pending);
725
	if (!(timer->flags & TIMER_DEFERRABLE)) {
726
		base->active_timers--;
727 728 729
		if (timer->expires == base->next_timer)
			base->next_timer = base->timer_jiffies;
	}
730 731 732
	/* If this was the last timer, advance base->jiffies */
	if (!--base->all_timers)
		base->timer_jiffies = jiffies;
733 734 735
	return 1;
}

736
/*
737
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
738 739 740 741 742 743
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
744 745
 * When the timer's base is locked and removed from the list, the
 * TIMER_MIGRATING flag is set, FIXME
746
 */
747
static struct tvec_base *lock_timer_base(struct timer_list *timer,
748
					unsigned long *flags)
749
	__acquires(timer->base->lock)
750 751
{
	for (;;) {
752 753 754 755 756
		u32 tf = timer->flags;
		struct tvec_base *base;

		if (!(tf & TIMER_MIGRATING)) {
			base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
757
			spin_lock_irqsave(&base->lock, *flags);
758
			if (timer->flags == tf)
759 760 761 762 763 764 765
				return base;
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
766
static inline int
767
__mod_timer(struct timer_list *timer, unsigned long expires,
768
	    bool pending_only, int pinned)
L
Linus Torvalds 已提交
769
{
770
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
771
	unsigned long flags;
772
	int ret = 0;
L
Linus Torvalds 已提交
773

774
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
775 776
	BUG_ON(!timer->function);

777 778
	base = lock_timer_base(timer, &flags);

779 780 781
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
782

783
	debug_activate(timer, expires);
784

785
	new_base = get_target_base(base, pinned);
786

787
	if (base != new_base) {
L
Linus Torvalds 已提交
788
		/*
789 790 791 792 793
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
794
		 */
795
		if (likely(base->running_timer != timer)) {
796
			/* See the comment in lock_timer_base() */
797 798
			timer->flags |= TIMER_MIGRATING;

799
			spin_unlock(&base->lock);
800 801
			base = new_base;
			spin_lock(&base->lock);
802 803
			WRITE_ONCE(timer->flags,
				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
L
Linus Torvalds 已提交
804 805 806 807
		}
	}

	timer->expires = expires;
808
	internal_add_timer(base, timer);
I
Ingo Molnar 已提交
809 810

out_unlock:
811
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
812 813 814 815

	return ret;
}

816
/**
I
Ingo Molnar 已提交
817 818 819
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
820
 *
I
Ingo Molnar 已提交
821 822 823 824
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
825
 */
I
Ingo Molnar 已提交
826
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
827
{
828
	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
829
}
I
Ingo Molnar 已提交
830
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/*
 * Decide where to put the timer while taking the slack into account
 *
 * Algorithm:
 *   1) calculate the maximum (absolute) time
 *   2) calculate the highest bit where the expires and new max are different
 *   3) use this bit to make a mask
 *   4) use the bitmask to round down the maximum time, so that all last
 *      bits are zeros
 */
static inline
unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
{
	unsigned long expires_limit, mask;
	int bit;

848
	if (timer->slack >= 0) {
849
		expires_limit = expires + timer->slack;
850
	} else {
851 852 853 854
		long delta = expires - jiffies;

		if (delta < 256)
			return expires;
855

856
		expires_limit = expires + delta / 256;
857
	}
858 859 860 861
	mask = expires ^ expires_limit;
	if (mask == 0)
		return expires;

862
	bit = __fls(mask);
863

864
	mask = (1UL << bit) - 1;
865 866 867 868 869 870

	expires_limit = expires_limit & ~(mask);

	return expires_limit;
}

871
/**
L
Linus Torvalds 已提交
872 873
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
874
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
875
 *
876
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
893 894
	expires = apply_slack(timer, expires);

L
Linus Torvalds 已提交
895 896 897 898 899
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
900
	if (timer_pending(timer) && timer->expires == expires)
L
Linus Torvalds 已提交
901 902
		return 1;

903
	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
904 905 906
}
EXPORT_SYMBOL(mod_timer);

907 908 909 910 911 912 913
/**
 * mod_timer_pinned - modify a timer's timeout
 * @timer: the timer to be modified
 * @expires: new timeout in jiffies
 *
 * mod_timer_pinned() is a way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
914 915 916 917 918 919 920
 * and to ensure that the timer is scheduled on the current CPU.
 *
 * Note that this does not prevent the timer from being migrated
 * when the current CPU goes offline.  If this is a problem for
 * you, use CPU-hotplug notifiers to handle it correctly, for
 * example, cancelling the timer when the corresponding CPU goes
 * offline.
921 922 923 924 925 926 927 928 929 930 931 932 933 934
 *
 * mod_timer_pinned(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 */
int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
{
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires, false, TIMER_PINNED);
}
EXPORT_SYMBOL(mod_timer_pinned);

I
Ingo Molnar 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
965 966
	struct tvec_base *new_base = per_cpu_ptr(&tvec_bases, cpu);
	struct tvec_base *base;
I
Ingo Molnar 已提交
967 968 969 970
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

	/*
	 * If @timer was on a different CPU, it should be migrated with the
	 * old base locked to prevent other operations proceeding with the
	 * wrong base locked.  See lock_timer_base().
	 */
	base = lock_timer_base(timer, &flags);
	if (base != new_base) {
		timer->flags |= TIMER_MIGRATING;

		spin_unlock(&base->lock);
		base = new_base;
		spin_lock(&base->lock);
		WRITE_ONCE(timer->flags,
			   (timer->flags & ~TIMER_BASEMASK) | cpu);
	}

988
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
989 990 991
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
992
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
993

994
/**
L
Linus Torvalds 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
1007
	struct tvec_base *base;
L
Linus Torvalds 已提交
1008
	unsigned long flags;
1009
	int ret = 0;
L
Linus Torvalds 已提交
1010

1011 1012
	debug_assert_init(timer);

1013
	timer_stats_timer_clear_start_info(timer);
1014 1015
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1016
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
1017 1018 1019
		spin_unlock_irqrestore(&base->lock, flags);
	}

1020
	return ret;
L
Linus Torvalds 已提交
1021 1022 1023
}
EXPORT_SYMBOL(del_timer);

1024 1025 1026 1027
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
1028 1029 1030 1031 1032
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1033
	struct tvec_base *base;
1034 1035 1036
	unsigned long flags;
	int ret = -1;

1037 1038
	debug_assert_init(timer);

1039 1040
	base = lock_timer_base(timer, &flags);

1041 1042 1043
	if (base->running_timer != timer) {
		timer_stats_timer_clear_start_info(timer);
		ret = detach_if_pending(timer, base, true);
1044 1045 1046 1047 1048
	}
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1049 1050
EXPORT_SYMBOL(try_to_del_timer_sync);

1051
#ifdef CONFIG_SMP
1052
/**
L
Linus Torvalds 已提交
1053 1054 1055 1056 1057 1058 1059
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1060
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1061
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1062 1063 1064 1065
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1066
 *
T
Tejun Heo 已提交
1067 1068 1069
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1086 1087 1088 1089
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1090
#ifdef CONFIG_LOCKDEP
1091 1092
	unsigned long flags;

1093 1094 1095 1096
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1097
	local_irq_save(flags);
1098 1099
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1100
	local_irq_restore(flags);
1101
#endif
1102 1103 1104 1105
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1106
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1107 1108 1109 1110
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1111
		cpu_relax();
1112
	}
L
Linus Torvalds 已提交
1113
}
1114
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1115 1116
#endif

1117
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
1118 1119
{
	/* cascade all the timers from tv up one level */
1120 1121 1122
	struct timer_list *timer;
	struct hlist_node *tmp;
	struct hlist_head tv_list;
1123

1124
	hlist_move_list(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
1125 1126

	/*
1127 1128
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
1129
	 */
1130
	hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1131 1132
		/* No accounting, while moving them */
		__internal_add_timer(base, timer);
L
Linus Torvalds 已提交
1133 1134 1135 1136 1137
	}

	return index;
}

1138 1139 1140
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1141
	int count = preempt_count();
1142 1143 1144 1145 1146 1147 1148 1149 1150

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1151 1152 1153
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1168
	if (count != preempt_count()) {
1169
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1170
			  fn, count, preempt_count());
1171 1172 1173 1174 1175 1176
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1177
		preempt_count_set(count);
1178 1179 1180
	}
}

1181 1182 1183
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
1184 1185 1186 1187 1188 1189
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
1190
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
1191 1192 1193
{
	struct timer_list *timer;

1194
	spin_lock_irq(&base->lock);
1195

L
Linus Torvalds 已提交
1196
	while (time_after_eq(jiffies, base->timer_jiffies)) {
1197 1198
		struct hlist_head work_list;
		struct hlist_head *head = &work_list;
1199 1200 1201 1202 1203 1204 1205 1206
		int index;

		if (!base->all_timers) {
			base->timer_jiffies = jiffies;
			break;
		}

		index = base->timer_jiffies & TVR_MASK;
1207

L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213 1214 1215
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
1216
		++base->timer_jiffies;
1217 1218
		hlist_move_list(base->tv1.vec + index, head);
		while (!hlist_empty(head)) {
L
Linus Torvalds 已提交
1219 1220
			void (*fn)(unsigned long);
			unsigned long data;
T
Tejun Heo 已提交
1221
			bool irqsafe;
L
Linus Torvalds 已提交
1222

1223
			timer = hlist_entry(head->first, struct timer_list, entry);
1224 1225
			fn = timer->function;
			data = timer->data;
1226
			irqsafe = timer->flags & TIMER_IRQSAFE;
L
Linus Torvalds 已提交
1227

1228 1229
			timer_stats_account_timer(timer);

1230
			base->running_timer = timer;
1231
			detach_expired_timer(timer, base);
1232

T
Tejun Heo 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241
			if (irqsafe) {
				spin_unlock(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock(&base->lock);
			} else {
				spin_unlock_irq(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock_irq(&base->lock);
			}
L
Linus Torvalds 已提交
1242 1243
		}
	}
1244
	base->running_timer = NULL;
1245
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
1246 1247
}

1248
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1249 1250
/*
 * Find out when the next timer event is due to happen. This
R
Randy Dunlap 已提交
1251 1252
 * is used on S/390 to stop all activity when a CPU is idle.
 * This function needs to be called with interrupts disabled.
L
Linus Torvalds 已提交
1253
 */
1254
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
1255
{
1256
	unsigned long timer_jiffies = base->timer_jiffies;
1257
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1258
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
1259
	struct timer_list *nte;
1260
	struct tvec *varray[4];
L
Linus Torvalds 已提交
1261 1262

	/* Look for timer events in tv1. */
1263
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
1264
	do {
1265
		hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1266
			if (nte->flags & TIMER_DEFERRABLE)
1267
				continue;
1268

1269
			found = 1;
L
Linus Torvalds 已提交
1270
			expires = nte->expires;
1271 1272 1273 1274
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
1275
		}
1276 1277 1278 1279 1280 1281 1282 1283
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
1284 1285 1286 1287 1288 1289

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
1290 1291

	for (array = 0; array < 4; array++) {
1292
		struct tvec *varp = varray[array];
1293 1294

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
1295
		do {
1296
			hlist_for_each_entry(nte, varp->vec + slot, entry) {
1297
				if (nte->flags & TIMER_DEFERRABLE)
1298 1299
					continue;

1300
				found = 1;
L
Linus Torvalds 已提交
1301 1302
				if (time_before(nte->expires, expires))
					expires = nte->expires;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
1320
	}
1321 1322
	return expires;
}
1323

1324 1325 1326 1327
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1328
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1329
{
1330
	u64 nextevt = hrtimer_get_next_event();
1331

1332
	/*
1333 1334
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1335
	 */
1336 1337
	if (expires <= nextevt)
		return expires;
1338 1339

	/*
1340 1341
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1342
	 */
1343 1344
	if (nextevt <= basem)
		return basem;
1345

1346
	/*
1347 1348 1349 1350 1351 1352
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1353
	 */
1354
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1355
}
1356 1357

/**
1358 1359 1360 1361 1362 1363
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1364
 */
1365
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1366
{
1367
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1368 1369
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1370

1371 1372 1373 1374 1375
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1376 1377
		return expires;

1378
	spin_lock(&base->lock);
1379 1380 1381
	if (base->active_timers) {
		if (time_before_eq(base->next_timer, base->timer_jiffies))
			base->next_timer = __next_timer_interrupt(base);
1382 1383 1384 1385 1386
		nextevt = base->next_timer;
		if (time_before_eq(nextevt, basej))
			expires = basem;
		else
			expires = basem + (nextevt - basej) * TICK_NSEC;
1387
	}
1388 1389
	spin_unlock(&base->lock);

1390
	return cmp_next_hrtimer_event(basem, expires);
1391
}
L
Linus Torvalds 已提交
1392 1393 1394
#endif

/*
D
Daniel Walker 已提交
1395
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400 1401 1402
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1403
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1404
	run_local_timers();
1405
	rcu_check_callbacks(user_tick);
1406 1407
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1408
		irq_work_tick();
1409
#endif
L
Linus Torvalds 已提交
1410
	scheduler_tick();
1411
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1412 1413 1414 1415 1416 1417 1418
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1419
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
L
Linus Torvalds 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1430
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1440
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1441
{
1442
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1443 1444 1445 1446 1447 1448
}

#endif

static void process_timeout(unsigned long __data)
{
1449
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1478
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1503
		if (timeout < 0) {
L
Linus Torvalds 已提交
1504
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1505 1506
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511 1512 1513
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1514
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1515
	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
1516 1517 1518
	schedule();
	del_singleshot_timer_sync(&timer);

1519 1520 1521
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1522 1523 1524 1525 1526 1527 1528
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1529 1530 1531 1532
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1533 1534
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1535 1536
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1537 1538 1539
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1540 1541 1542 1543 1544 1545 1546
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1547 1548
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1549 1550
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1551 1552 1553
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/*
 * Like schedule_timeout_uninterruptible(), except this task will not contribute
 * to load average.
 */
signed long __sched schedule_timeout_idle(signed long timeout)
{
	__set_current_state(TASK_IDLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);

L
Linus Torvalds 已提交
1565
#ifdef CONFIG_HOTPLUG_CPU
1566
static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1567 1568
{
	struct timer_list *timer;
1569
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1570

1571 1572
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1573
		/* We ignore the accounting on the dying cpu */
1574
		detach_timer(timer, false);
1575
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1576 1577 1578 1579
		internal_add_timer(new_base, timer);
	}
}

1580
static void migrate_timers(int cpu)
L
Linus Torvalds 已提交
1581
{
1582 1583
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1584 1585 1586
	int i;

	BUG_ON(cpu_online(cpu));
1587
	old_base = per_cpu_ptr(&tvec_bases, cpu);
T
Thomas Gleixner 已提交
1588
	new_base = get_cpu_ptr(&tvec_bases);
1589 1590 1591 1592 1593
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1594
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1595 1596

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1597 1598

	for (i = 0; i < TVR_SIZE; i++)
1599 1600 1601 1602 1603 1604 1605 1606
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1607 1608 1609
	old_base->active_timers = 0;
	old_base->all_timers = 0;

1610
	spin_unlock(&old_base->lock);
1611
	spin_unlock_irq(&new_base->lock);
T
Thomas Gleixner 已提交
1612
	put_cpu_ptr(&tvec_bases);
L
Linus Torvalds 已提交
1613 1614
}

1615
static int timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1616 1617
				unsigned long action, void *hcpu)
{
1618
	switch (action) {
L
Linus Torvalds 已提交
1619
	case CPU_DEAD:
1620
	case CPU_DEAD_FROZEN:
1621
		migrate_timers((long)hcpu);
L
Linus Torvalds 已提交
1622 1623 1624 1625
		break;
	default:
		break;
	}
1626

L
Linus Torvalds 已提交
1627 1628 1629
	return NOTIFY_OK;
}

1630 1631 1632 1633 1634 1635 1636
static inline void timer_register_cpu_notifier(void)
{
	cpu_notifier(timer_cpu_notify, 0);
}
#else
static inline void timer_register_cpu_notifier(void) { }
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1637

1638
static void __init init_timer_cpu(int cpu)
1639
{
1640
	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1641

1642 1643 1644 1645 1646 1647 1648 1649
	base->cpu = cpu;
	spin_lock_init(&base->lock);

	base->timer_jiffies = jiffies;
	base->next_timer = base->timer_jiffies;
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1650
{
1651 1652
	int cpu;

1653 1654
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1655
}
1656

1657 1658 1659
void __init init_timers(void)
{
	init_timer_cpus();
1660
	init_timer_stats();
1661
	timer_register_cpu_notifier();
1662
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1673 1674
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679
}

EXPORT_SYMBOL(msleep);

/**
1680
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1687 1688
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1689 1690 1691 1692
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1693

1694
static void __sched do_usleep_range(unsigned long min, unsigned long max)
1695 1696
{
	ktime_t kmin;
1697
	u64 delta;
1698 1699

	kmin = ktime_set(0, min * NSEC_PER_USEC);
1700
	delta = (u64)(max - min) * NSEC_PER_USEC;
1701
	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1702 1703 1704 1705 1706 1707 1708
}

/**
 * usleep_range - Drop in replacement for udelay where wakeup is flexible
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
 */
1709
void __sched usleep_range(unsigned long min, unsigned long max)
1710 1711 1712 1713 1714
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);